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Abstract: Method for optima control calculation for discrete optimal control problems
characterized by non-quadratic criterion, nonlinear model with affine control, state and control
delays and constraints is developed. An augmented functional of Lagrange is applied and its
decomposition in time domain is proposed using new coordinating vector for dual
decomposition in order to calculate the optimal state and control trgjectories. The method is
applied to solve the problems for maximum production of batch and minimum start-up time of
continuous fermentation processes. Copyright © 2005 IFAC
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1. INTRODUCTION

The industrial processes are characterised by high
dimension and complexity, non-linearity, multiple
time delays, goals, uncertainties, constraints. It is well
known that the methods of the optimal control theory
have some difficulties in solution of optimal control
problems for plants with such characteristics (Brayson
and Ho, 1969). They take also considerable
computational time. New methods, algorithms and
programmes are needed. Large scale systems theory
and methodology gives a possibility the problems for
optimal control of the technological processes to be
formulated in the frameworks of hierarchical
structures (Singh and Titli, 1978), based on the
information flows, the principle of given hierarchy,
and the analytical and numerical methods to be used.
This approach is realised by the central concepts of
decomposition and coordination (Singh and Titli,
1978; Bertsekas, 1979). An overal optimisation
problem might be decomposed into governed by
interconnected subsystems series of sub-problems

with lower dimension or lower complexity. The
solution of the overall problem can be obtained
through a coordination process of iterative
computations between the levels of hierarchy.

The decomposition method of Tamura (Tamura,
1975) is very useful because it alows the global
problem to be decomposed in time domain. It gives
very simple solution for systems with state and
control delays as the delays can be considered
as predictions in the coordinating vector of the
conjugate variables. The method is developed for a
quadratic criterion. When the criterion is non-
guadratic one the optimal control problem can be
solved using augmented towards the model equations
Lagrange functional (Bertsekas, 1979). In this case it
appears that application of the coordination procedure
of prediction of the conjugate variables can not
decompose the augmented functional in time domain
because its dual functional is not any more separable
(Lin, 1992). It is necessary to find additional variables
to be selected as coordinating ones in order to obtain
full time domain decomposition. This possibility is



investigated in the paper. The results obtained for
different types of optimal control problems (Tsoneva
and Patarinska 1995; Tsoneva et al., 1998) are
generalised in the paper as a method for nonlinear
optimal control problems solution. The application of
the method for two fermentation processesis given.

2. PROBLEM STATEMENT

The optimal control problem is: find the control
u(k), k =0,K-1, such that the criterion
J =fy(x,K), (1)
is maximised, subject to the model equations

x(k +1) = x(k) + A{f[x(k), k,a] +

+1,[x(k — 1), k,a] + f5[x(k), k,alu(k - 6) }=f(k), (2)
x(k) =@, (k), kO[-7, 0],x(0) =4, (0),

u(k) = ¢, (k), kU[-6,-1], ®)
and constraints

X in () < x(k) € X 1 (k) k =0, K,

Uy (F) Su(k) S, (k) k=0,K -1, (@)
where xOR",uR™ are the vectors of state and
control variables, f, : R" . R isthecriterion function
determined at the end point of the optimisation
interval, f,,f, 0R", f30R™"are the continuous and

continuoudly differentiable functions of state, rand &
are the constant state and control delays, ¢ ,¢, are

the initial functions, 4 is the discretization period, K
is the number of steps in the optimization horizon,

X in s X u .,u..  are the bound values of the

constraints, alJR" isthe vector of the parameters.

max ?

3. DECOMPOSITION METHOD

The optimal control problems can be solved using a
functional of Lagrange

K-1

L=1o(x,K)+ Y (AT ~x(k +D H(K)],  (5)
k=0

where A(k) O R"is the conjugate variables vector. As

the control vector does not appear in (1) and enters
linearly the model equations, the considered problem
is a singular one. The control vector does not appear
in the necessary conditions for optimality
oL _ pf fx(k +6),k +6,a]" Mk +6) =0

ou(k)

and it has to be caculated using other approaches
(Brayson and Ho, 1969; Bertsekas, 1979). If an
augmented Lagrange's functional with penalty part
according to the model equationsis used

K-1

L, =fo(x,K) + Y {17 (k)[~x(k +1) + (k)] +
k=0

+ 1/ 2 p~x(k +1) +£(k)]%} (6)

where 4 is a penalty coefficient, the control vector
appears in a quadratic term. In this case the functional
of Lagrange is quadratic according to the control
vector and the necessary condition of optimality is an
analytical function of the control vector. Then as the
considered problem is characterised with state and
control time delays, the method of Tamura (Tamura,
1975) can be applied. The optimal control problem (6)
can be solved on the basis of the necessary conditions
for optimality

GiL(Z) = —x(k +1) +x(k) + A{f [x(k), k,a] +
£,[x(k = 1), k,a] + f5[x(k), k, alu(k - 6)} = e, (K),
Za - ~ Mk =D +{I +At{w+
ox(k) ax(k)

+[0fa[x(k), k,a]/ 9x(k)]u(k - 6)} T }h(k) +

+ N[O ,[x(k), k,a]/ 9x(k)]” A(k +T) +

+14~x(k +1) + x(k) + D E,[x(k), k,a] +

+E,[x(k = 1), k,a] + £5[x(k), k, alu(k — O)}}".
L[0x(k +1) / 0x (k)] + 1+ A [0f [ x (k). k, a] / Ox(k)] +
+of,[x(k - 1), k,a]/ Ox (k)] +

[0f s[x(k), k,a]u(k - 6)]/ dx(k)} =e_ (k) =0,

k=0K-1.
oL, _ ) ]
aX(K) —afo(x(K),K)/ax(K) _eI(K) —0.
o, T
au(k) - Atfs[x(k),k,a] )\'(k+8)+

+1~x(k +1) + x(k) + D £,[x(k), k,a] +
f,[x(k = 7),k,a] + £5[x(k), k, alu(k - O)}}”.
[0f,[x(k).k,alu(k — 6)/du(k)] = e, (k) =0,

k=0,K -1, (7

where the conjugate variables are sdlected as
coordinating ones. But the separability of the dual
problem can not be reached as the values of the
variables in the time moments 4 can not be separated
because of the vector of variables x(k +1) , which can

be considered as vector of interconnections in time
domain. In order to overcome these difficulties it is
proposed to extend the coordination vector with the
interconnections vector in time domain

p(k) =x(k+1),k=0,K -1, (8)

Their values will be set at the beginning and
calculated in the course of problem solution process.
Then the optimal control problem can be solved in
two level caculating structure using the new



coordinating vector.

The values of the coordinating variables are set from
the second level of the two level calculating structure:

Mk) =/ (k),k =0,K, p(k) =p’ (k),k =0,K -1,(9)

where j is the index of the coordinating process
iterations. When the values of the coordinating
variables are subgtituted into the Lagrange's
functional, its full decomposition according to the
discrete time moments £ is obtained. The functional is
decomposed into K+/ sub-functionals L,(k) and

each of them determines the optimal control and state
at the given moment 4. The coordinating sub-problem
is obtained and solved on the basis of the necessary
conditions for optimality

AL, (k) = e’ (k) =0,k =0,K,
aL, | dp’ (k) =e[,(k):0,k:O,K—1. (10
The coordinating sub-problem is solved using a

gradient procedure for » and direct expressing of p
from (10). The solutions have the form:

37k =27 (k) = p' e (k) k = 0,K ~1, (11)
e (k) = —p’ (k) + x/ (k) + A f,[x (k), k,a] +
f,[x’ (k - 1),k,a] +f3[x’ (k), k,alu’ (k - 6)},
k=0K-1, e} (K)=0, (12)

p (k) = 17 (k) I 1 +ef (k) +p’ (k), k =0,K -1

(13)
In (11)-(13) the values of x”(k),u’ (k) are obtained
after solving the first level sub-problems with the set
valuesof A’ (k),k =0,K,p’ (k),k=0,K -1.

Coordination process terminates upon satisfaction of
some error conditions:

e ()~} (k)| <&, &, >0, k=0K, (14)
les* (k) ~e) (k)| <&, £,>0, k=0K-1. (15

If these conditions are not satisfied, the first level sub-
problems are solved with the obtained values of the
co-ordinating variables and new values of the penalty
coefficient. Its value for the new iteration can be
caculated according to Algorithm 1, using the
obtained coordinating vector gradients in order to
achieve quick convergence of the coordinating sub-
problem solution

Algorithm 1:
1.The error is computed

o/ = {“e /j]'+1(k)H2 + He ;-;1(1{)“2}1/2, (16)

2. The new penalty coefficient is calculated from the
conditions:

ifj=7 or /™ <e/ then p/*t =y, (17)

if j>1and e/* = e/ then 1/*' = ap’, a=[0.1, 10.0]

The first level sub-problems are determined under the
set from the second level coordinating variables
according to the necessary conditions for optimality

of the sub-functionals L, (k):
OL,(k)I &' (k)=e," (k)=0, k=0,K, (18)
AL, (k) ' (k)=e,'(k)=0, k=0K-1

and are solved by gradient procedures:
- for the state variables:

xRy =X (k) + a el (k) (19)
e (k) = {1+ A of,[x7 (k), k,a]/ Ox(k) +

+[0f 5[x7" (k), k,a)/ ox(k)]u’" (k — 6)}} T x

X[ (k) - e (k)] +

+ D[of H[x77 (k), k,a] 1 9x (k)] %

[N (k +1) - pel (k +7)], k=0,K -1, (20)
where u’ (k) = ¢, (k),k O[-6,-1],

X (k)= ¢, (k),kO[-7,-1,

AMk+1)=0, x(k+1)=0 if k+T7>K,
p/(k+7)=0if k+7>K -1,
w(k-6+1)=0ifk-0+7>K -1

-for the control variables:

w k) =u (k) +a,e)! () @D
el (k) = DALS[x"" (k +6),k +6,a]} " x

X[M (k+ @) +plef' (k+6)],k=0K-1, (22
where x/* (k) = ¢, (k),k O[-7,-1],

X (k+6)=0) (k+6)=0if k+0>K,
p/(k+6)=0if k+6>K-1,
Xj,l(k_z-+8):olfk—l'+0>K,

[ is the iteration index. Calculations terminate upon
satisfaction of error conditions. To account for the
constraints the obtained values of the state and control
trajectories are projected over their domains (4)
respectively:

X pin(h), X" (k) < X 1y, (k) (23)
() = {7 (), X (k) < X7 () < X (K)
X e (K), X7 (k) > X, () . k = O, K.
The projection of the calculated values of the control

trajectory over the constraint domain is done as in
(23), only thetime horizonis x =0, K -1

The computational procedure for solving the optimal
control problem is organised in two level structure
Fig.1., according to the following:

Algorithm 2:



1.The values of the coordinating variables and those
of the penalty coefficients are set at the second level

M k), p’ (k), i’ k =0,K -1 and are transferred to the

first one, j=1.

2.At the first level, the initial control trajectory is set

and the initial trgjectory of the state is calculated,

I=1, j=1.

3.At the first level the gradients
el’(k), k=0,K -Le/' (k), k=K -1 ae calculated

and the new state and control trajectories are obtained

from equations (19)-(21). They are projected onto the
constraint domain (23).

4.The state and control error conditions are checked.

If they are satisfied, the obtained state and control

trajectories are transferred to the second level. If the
conditions are not satisfied, items 3), 4) are repeated,

[=1+1.

5.The new values of the coordinating variables are
caculated from (11)-(13), j=j+I. The conditions
(14),(15) are checked. If they are satisfied, the optimal
solutions of the coordinating sub-problem and of the
global problem are obtained. If these conditions are
not satisfied, new values of the penalty coefficients
are calculated according to (16),(17) and items
3),4),5) are repeated, and so on.

The convergence of the algorithm is found to depend

on the selection of the initial trajectories of state and

control vectors and of the initial trgjectory of the
conjugate variable vector. The adaptive selection of

the gradient procedure step sizes, allows to make the
convergence faster. Different types of gradient
procedures can be used in the above method.

Coordnabr )\ p
\ A
%//' p X R X
u v u
k=0 K=k k=K
- - "

Fig.1. Two level calculating structure

4.MAXIMUM PRODUCTION OF XANTHAN
GUM IN A BATCH FERMENTATION PROCESS

Xanthan gum, produced by Xanthomonas campestris
-- ITS342, is considered The main problem in
producing xanthan is the enormous increase of
viscosity as the product accumulates because of
changes in oxygen transfer in the fermentor. The
influence of the oxygen supply is reflected in the
mathematical model. The process is described by the
following three difference equations

x(k+D) =x(k)+

+b ML= [x(k) b1} x(k) = £, (k)

s(k+1) =s(k) -

~baA{1= p(k) [[bgpu(k) +byop ]} x(k) = f (),
pk+1) = p(k) +

+b )AL= p(k) I[b ou(k) + b 21} x(k) = £, (k) ,
x(0)=xg, 5(0) =59, p(0)=po =0 (24)
where x,s,p,u [g/l] are respectively the concentrations
of biomass, substrate, xanthan gum and dissolved

oxygen, b are the parameters. The oxygen
concentration is considered as a control input.

The optima control problem is to find the control
trajectory u(k),k=0,K —1, and the state trajectories
v(k) = x(k), s(k), p(k), k =0,K , which maximize the
end concentration of the xanthan gum:

J = p(K) - max, (25)
under the model equations (24) and satisfy
constraints of the type (4)

The optimal control problem is solved using the
above decomposition method. An augmented
Lagrange’s functional is introduced:

K-1
Ly =p(K)+ D D AA Mk +D + £, (k)] +

k=0v=x,s,p
+ (U, [-v(k +D + £, ()]}, (26)
The selection of the coordinating variables is:
A (k) = ML (k),0, (k) = p (K).v = x,5.p, (27)
p, (k) =v(k+)k =0,K -Lv=1x,s,p, (28)

The coordinating sub-problem is obtained from the
necessary conditions for optimality and is the same as
the sub-problem (11)-(14). The optimal control sub-
problems, defined by the sub-functionals L, (k) are
solved by gradient procedures according to the
necessary conditions for optimality:

dL, (k) (k) =0,v = x,s, p,u,k =0,K —1.(29)

p.10[g/kg]
OoON D

0O 10 20 30 40 50

S DS e S

b)
Fig.2.0ptimal product (a) and control (b) trajectories



Thefirst level sub-problemsfor are:

v k) = v (k) + el (k) (30)
where the gradients are obtained at each moment &
and have the form

el k)= DL )1 RONAL (k) - pl el (K],

Z=X,8,p
v=x,s,p,u,k =0,K -1 (3D

and e/ (k),z=x,s,p, k=0,K -1 are the values of

the gradients of the Lagrange's functional according
to the conjugate variables. The results are given in
Fig.2.

5.0PTIMAL START-UP OF CONTINUOUS
FERMENTATION PROCESS

The problem for minimizing sart-up time of
continuous fermentation process is considered (
Tzoneva and Patarinska, 1995). Dynamic behaviour
of these processes is nonlinear one with time delaysin
states. The process for growth of Saccharomyces
cerevisiae iStaken under study.

Mathematically, discrete minimum time control
problem for the continuous fermentation processes is.

- find the control trajectory D(k), £ =0,K —1, which
in minimum time
J = KA\t (32)
leads the system
x(k+1) ={1+Ae[[u,, s(k 1)1 k, +s(k —7)] —
kplx(k) ~AD(R)[x(k) =x°1 = £, (k),  (393)
s(k+1) ={1-Dtp,x (k) Y[k, +s(k)[}s(k) +
+AD(K)[s° (k) =s(k)] = £, (k), (34
from the initial state
x(0) = xo, 5(0) =sp, s(k) =@, (k), k Tk 7, 0],

(35
to the optimal steady state
x(K)=x, s(K)=s, (36)
while satisfying constraints of the type (4) for the
state and control variables and a constrains for the
sampling interval
0<Ar<0.00k, +Smu ]/
(K = kp = Dina)Smax —k (kp +D )], (37)
determined on the basis of stability of the discrete

time model behaviour. In the above problem

x, s, x°, 50 are the biomass, the limiting substrate,

the inlet biomass and the inlet substrate
concentrations /g/I], D is the dilution rate [ 7], y7.

is the maximum growth rate [#7],Y is the yield
coefficient [g/g/, k, is the Michaelis-Menten
parameter [g/l], T is the time delay [h], k, is the
dead constant [i7Y], xg.s, ae the initia
concentrations /g/l], ;,E are the steady state values

(1], Viin Vimax, V =x,5,D , are the bound values of

variables. The dilution rate is the control signal, the
biomass and the limiting substrate are the process
states.

The minimum time problem is solved when the
number of the steps in the optimization horizon is
known. The minimum time problem is transformed
into a problem for minimizing the value of the
sampling interva in the limits (37) and it is solved
using the following augmented functional of
Lagrange:

L, =KAt+

+ Y {AK)(K) = V] + U 2 p, [v(K) - V]°} +

V=X,s

K-1
Y LA @Ik +D + £, (k)] +
k=0v=x,s
+(U 2, [k +D + £, ()], (39)
The coordinating variables are
Mk) =27 (k),k=0,K, DNt=Nt/

p(k) =v(k +2), p(k)=p’(k),, k=0,K -1, (39)
The coordinating sub-problem for A, 0 is given by

the equations (11)-(14), but with a positive step of the
gradient procedure, where

H,s’ (k1)

(k) — _ 5 J - J -
ey =—py (k) +{1+ A [kx+s,(k_r) kp1}x’ (k)
~ A DY ()[x (k) = x°] + At wy (), k = 0,K —1,

e ==pl (1) +{1- ) ) gy

Y[k, + s/ (k)]
+ 7 DY (k)[s° = 57 (k)] + &t/ woy (k),k =0,K -1 , (40)

and for Atis given by the analytical solution of the
necessary condition for optimality of (38) according
to Ar

Apitt ={M[M(1{)+p:f}ﬂ(l()] -K -

Y[kj+sj(K)]

[ksﬂj(K_T) ko 1/ (K)AL(K) + ! x7 (KT}
; U,s’ (K -T1) B . )
/{M{[ks+s-f(1<—r) kpltx/ (K)}2)+
+,Ué‘_"{ /I”ZS‘i(K)xj(K)IZ}’ (41)

Y[k, +s/(K -71)]"
The sub-problems on the first level are calculated by
gradient procedures

v kY =vI (k) - a el (k), v=x,s,D, (42)
where | is an index of the procedures and the
gradients are

u,s" (k-1)
k, +s"(k-1)

X[AL (k) =~ ple, (k)] =

el (k) ={1+Ar'[ —kp] = A D (k) x



LSO o e "
e, rortgop POl 6

Mk (k + 1)
[k, +s7 (k= 1)]?
X[AL(k +7) = ptle] (k)] +

ke x ! (k)

Ylk, +s7! (k)2

x[AL (k) = pfe] (b1,

el (k) = A 17 x

+{1-At7] -A/ D7 (k)Y x

ep () =80 [ () =1 LA, (k) = plef ()] +
007 [s% = s A () = e (0], (44)
k=0,K -1, and a is the gradient procedure step. The

optimal trajectories are given in Fig.3. The minimum
timeis 8.065h.

x[g/1]

.10-2 10
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0
S R,
k
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Fig.3. Optimal biomass (a), substrate (b) and control
(c) trajectories of the continuous fermentation process

6. CONCLUSION

A decomposition method is proposed to solve an
optimal control problem for processes with high
dimension, time delays, nonlinearities and singular
control. The method is based on the augmented

Lagrange’'s functiona and on a new coordinating
vector for its decomposition in time domain.

This method overcomes the difficulties encountered
in solving the nonlinear two point boundary value
problem with state and control delays and reduces the
number of calculations. It is not necessary to
caculate a singular kind of control trajectory by
means of boundary layers, because an augmented
Lagrange’s functional is used. At the same time the
new coordinating vector allows the dua optimal
control problem to become separable and the time
domain decomposition to be obtained based on a
conjugate variable prediction. The method
convexifies and transforms a non convex problem
into one that preserves the separability of the dual
problem which is necessary for applying the of the
decomposition approach. In this way the applicability
of time domain decomposition is extended to non-
convex problems.
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