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Abstract: This paper presents a methodology for parameters optimization applied
to an hybrid behavioral control architecture. The coordination between behaviors
in this architecture is insured using both hierarchical and fusion action mecha-
nisms. This global mechanism of coordination is characterized by a multitude of
parameters which must be finely tuned to enhance the efficiency of the execution of
cooperative tasks. The proposed parameters optimization is obtained using genetic
algorithms. Appropriate genetic operators are used to manipulate real chromo-
somes with a normalization relationship between its genes. The validation of the
results is established using a large number of simulations. Copyright c© 2005 IFAC

Keywords: Behavioral architecture of control, Cooperative mobile robotics,
Parameters optimization, Genetic algorithms.

1. INTRODUCTION

Behavioral architectures of control are based on
the concept that a complex behavior of a robot
can be obtained from the coordination of several
elementary behaviors. This coordination can be
either competitive or cooperative.

In competitive architectures, the command is
given by an unique behavior, which has been se-
lected temporarily among a set of active behav-
iors. The principle of competition can be defined
by a set of fixed priorities like in subsumption
architecture where a hierarchy is defined between
behaviors (Brooks, 1986). This principle can be
also dynamic like in the actions selection archi-
tecture (Maes, 1989) where the behavior with a
great level of activation is selected.

In cooperative architectures, the final command
is the result of a compromise or a fusion between
different behaviors, which are active at the same
time. This include the fuzzy control (Saffiotti et

al., 1993) via the process of defuzzification, the
schema-based architecture (Arkin, 1989) which
uses vectorial addition to encode the robot’s be-
havioral response.

Competitive like cooperative process of selection
need to set or to adapt specific parameters accord-
ing to the task to achieve. These parameters are
generally tedious to obtain. For this reason, many
works deal with their optimization. Parker (94)
uses reinforcement learning for parameters adap-
tation of motivational behaviors blocks used to
enhance the pushing of a long rectangular box. In
(Ram, et al., 94), authors use a genetic algorithm
to learn appropriate parameters corresponding to
schemas motors dedicated for local navigation of
a mobile robot.

This paper deals with Cooperative Box-Pushing
Task “CBPT”. The proposed architecture of con-
trol combines the coordination principles of sub-
sumption and motor schemas to obtain an efficient



control architecture for cooperative robotics. The
appropriate parameters of fusion blocks are de-
termined using specific parameters optimization
based on genetic algorithms.

The rest of this paper is organized as follows. Sec-
tion 2 gives the specifications of the CBPT and
a short description of the simulated mini-robots.
Section 3 presents the details of the proposed
hybrid architecture of control. Section 4 is devoted
to the description and the analysis of the proposed
methodology for parameters optimization. A brief
description of MiRoCo simulator is also done.
Conclusions and future directions are presented
at the end of the paper.

2. COOPERATIVE BOX-PUSHING TASK

CBPT remains a privileged complex task for
the study of reactive and distributed features for
cooperative robotics control (Kube, 1997). This
task is difficult to control due to the large dynamic
of entities interactions in direct surrounding of
the object to push. In addition to that, the used
robots in this study are very limited in structural,
decisional and sensory point of views. Indeed, the
mobile mini-robot named ALICE (Fig. 1) has very
reduced dimensions of 2cm×2cm×2cm (Caprari et
al., 2002) and has, in its original structure, only
four infrared sensors IS1, IS2, IS3, IS4 which mea-
sure light intensity and local distance to obstacles.
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Fig. 1. Mini-robots ALICE

The CBPT can be summarized as follows. The
environment contains a number N of robots that
must push a box B towards a circular target
T. The displacement of B requires in less the
cooperation of a critical number Nc of robots.

3. CONTROL ARCHITECTURE

The proposed behavioral architecture of control
(Fig. 2) is composed by a set of elementary be-
haviors (Adouane and LeFort-Piat, 2004a) where
each of them can send a command C among a set
of discrete commands Cd:
- Go Forward GF = C(0◦, Tra cm),
- Go Backward GB = C(0◦, -Tra cm),
- Go Right-Rotate GRR = C(-Rot◦, 0 cm),
- Go Left-Rotate GLR = C(Rot◦, 0 cm),

- Go Right-Turn GRT = C(-Rot◦, Tra cm),
- Go Left-Turn GLT = C(Rot◦, Tra cm),
- Remain There RT = C(0◦, 0 cm).

Where: Rot and Tra constants correspond
respectively to rotational and translatory com-
mands which will be executed by the robot in a
coupled movement.

Each mini-robot can measure the θ angle that it
makes with an active landmark in the environ-
ment. θ angle goes from -180◦ to 180◦ and it can
be measured with an incertitude of ±15◦.

3.1 Elementary behaviors

Exploration This behavior sends commands to
the motors according to predetermined constant
coefficients of the occurrence probability of each
command C ∈ Cd.

Obstacles avoiding This behavior uses the four
infrared sensors only in boolean mode. It consists
therefore in avoiding the obstacles according to
a pre-established strategy giving the response
according to the sixteen possible stimuli of the
infrared sensors.

Attraction to the Box This behavior consists
in attracting the mini-robot towards the box,
which broadcasts light. This is performed using
the infrared sensors just in reception mode.

Alignment This behavior consists in insuring
that the mini-robot is aligned with the box B
before activating the behavior of Box-pushing or
the one of Repositioning. Therefore, this behavior
controls the relative angle δ that the mini-robot
makes with B, so that δ ∈[-η ◦, η◦].

Box-pushing After the detection of θ1 and θ2 an-
gles that the mini-robot makes with respectively
the box B and with the target T (Fig. 3), this
behavior generates a response according to the
following rule:∣∣∣∣ If ((|θ1|and |θ2|) ≤ θMax) Then apply the GF
Else apply RT command.

With θMax is a positive constant less than 90◦.
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Fig. 3. Box-pushing necessary information
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Fig. 2. Control based hybrid architecture to achieve the CBPT

Repositioning The aim of this behavior is to
reposition appropriately and quickly the robot
around B. According to the measured θ angle
between the robot and the target T at the in-
stant “t”, this behavior generates a sequence of
commands as following:
• the robot rotates with an angle α[◦] such as

α = f(θ) (1)

• after the rotation is ended, the robot moves
forward for a distance of d[cm] such as

d = g(θ) (2)

Where α and d are as big as |θ| is big.

Altruistic behaviors The altruism is the fact to
generate an effect (an action) with the objective
to help its neighbors, and this without immediate
obvious gain for the entity that generates this
effect. The notion of altruism introduced in the
proposed architecture of control is represented by
the following two behaviors.

a - Broadcast of the altruistic signals : This behav-
ior is activated when behaviors of Box-pushing or
Repositioning are activated (Fig. 2). This purely
altruistic behavior consists in giving out attractive
or repulsive signals (Fig. 4) as follows.∣∣∣∣ If (|θ| < θMax) Then the signal is attractive

Else the signal is repulsive.
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Fig. 4. Attractive and repulsive signals

These signals have the objectives to attract mini-
robots around the privileged zone (zone where the
mini-robots are susceptible to appropriately push
B toward T) and at opposite, to repulse mini-
robots from non-privileged zone. Figure 4 shows
roughly these two zones.

b - Altruistic signals answers : The answers to the
altruistic signals are commands that attract the
mini-robot towards the most attractive altruistic
signal (of bigger intensity) and move away from
the most repulsive altruistic signal received by the
four infrared sensors.

3.2 Coordination of behaviors

Hierarchical coordination In the proposed archi-
tecture of control, the hierarchical coordination
between behaviors is managed entirely through
their responses. Indeed, among all the possible
responses given by each behavior, it exists a spe-
cific response called Refuge Response “RR”
(Adouane and LeFort-Piat, 2004a) which is gen-
erated for a particular stimulus of sensors.

The principle of using the “RR” to hierarchically
coordinate a set of behaviors is the following:
starting from the behavior “n” of highest level in
the architecture of control (Alignment behavior
in (Fig. 2)) If it generates a command Cn �=
“RRn” Then Cn is executed by robot’s motors
Else behavior “n” gives the hand to the behavior
“n-1” which applies the same rule. Thus, by chain
effect, the hierarchical coordination is achieved.

Fusion organization To avoid undesirable effects
linked to the pure hierarchical coordination, fu-
sion blocks Σ1, Σ2, Σ3 (Fig. 2) are introduced.
These blocks compute a command as follows:

For each command “Cj(Rotj , Traj)|j=1..3” in
input of a fusion block Σi|i=1..3 is associated a
gain, respectively gij |j=1..3 such as:∑

j=1..3

gij = 1

with : gij |j=1..3 ∈ ]0 1[
(3)

The output of the fusion block Σi|i=1..3 is a com-
mand Ci(Rot i, Tra i) given by this method:
If Box-pushing, Repositioning, or Attraction to
the box behaviors give their RR Then the cor-
responding fusion block (respectively Σ1, Σ2 and



Σ3) gives in output this RR which allows to not
inhibit behaviors or fusion blocks of lower levels.
Else the Rot i and Tra i components of Ci are
computed as follows:

Rot i = ∠


 ∑

j=1..n

(gij · −→v ij)


 (4)

Where −→v ij are unit vectors as ∠−→v ij (angle−→v ij) = “Rotj”.

Trai =
∑

j=1..n

(gij ·Traj) (5)

4. PARAMETERS OPTIMIZATION

To improve the achievement of the CBPT, the
mini-robots must compute their commands in or-
der to satisfy many criteria at the same time. For
the case of Σ3 which has as global objective to lead
the robot toward the box, the different criteria are
as follows: to move toward the box while avoiding
others mini-robots (and/or obstacles) and if the
mini-robot detects altruistic signals, to react con-
sequently.

The choice of gij |i=1..3,j=1..3 gains of the fusion
blocks Σ1, Σ2, Σ3 can be obtained empirically
like in (Adouane and LeFort-Piat, 2004b) where
they are chosen according to the emergence of
some visual configurations of the mobile robots.
However, this phase can be tedious. Thus to avoid
a too long manual trial-error method to obtain
the more suitable gains for the fusion blocks, we
propose to use genetic algorithms “GA” which are
very suitable for multicriteria and parameters op-
timization. In what follows, the proposed method-
ology of optimization will be explained through its
application on the gains gij |i=3,j=1..3 of Σ3 fusion
block.

The population used for the GA is constituted of
a large number of chromosomes. Each of them
contains three genes corresponding the the gains
attributed to Σ3 and which must satisfy (3).

These gains coupled to the commands generated
by corresponding elementary behaviors (i.e., At-
traction to the box, Obstacle avoiding and Altru-
istic signals answers) characterize completely the
motion of the mini-robot when the fusion block Σ3

is activated. Therefore, commands generated by
Σ3 should give the best compromise between keys
objectives that lead the robot toward the box.

Figure 5 shows the method applied to the evalua-
tion of each chromosome of the population.

The temporary fitness evaluation Fitnesskij of
one chromosome, is obtained according to (6):

Fitnesskij = α1×CRBkij +α2×DRBkij −α3×
DROkij +α4×DRSAkij−α5×DRSRkij (6)
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  - Fitness = Const1; k = 0; iMax = Const2; jMax = Const3 

  -  Put the box to push and the obstacles in the environment 
  -  Give initial conditions (position and orientation) "i" for the robot 

 Evaluation of: 
 - CRBkij “Boolean variable. Determines if the robot is in contact or not with the box”  
 - DRBkij “Gives the displacement of the robot in relation to the box”  
 - DROkij “Gives the displacement of the robot in relation to the detected obstacles” 
 - DRSAkij and DRSRkij “Give respectively the displacement of the robot in relation to 
   attractive and/or repulsive altruistic signals if they are detected by the robot” 
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Fig. 5. Adopted methodology for evaluate each
chromosome affected to Σ3

Where:

• CRBkij is a boolean variable which repre-
sents the collision or not of the robot with
the box, (CRBkij = ‘1’ if the robot collides
with the box, and ‘0’ else),

• DRBkij , DROkij , DRSAkij , DRSRkij

represent the relative displacement of the
robot in relation to the box, obstacles and
altruistic signals (attractive and repulsive)
respectively, and this when they are de-
tected by the robot’s sensors. These relative
displacements give the means to estimate
if the robot goes closer (positive value) or
moves away (negative value) from the de-
tected agents,

• αi|i=1..5 are the priority (balance) attributed
to each corresponding criteria to achieve the
attraction to the box behavior. We chose to
give more priority respectively to the collision
with the box α1 = 2 to give more favor to
chromosome which leads to reach the box
quickly; α2 = 1.4 to go toward the box;
α3 = 1 to avoid obstacles; α4=α5=0.4 to
respond to altruistic signals.

The global fitness Fitness affected to each chro-
mosome is calculated as follows:

Fitness =
1∑

k=0

iMax∑
i=0

jMax∑
j=0

Fitnesskij (7)

Where: “k” corresponds to the iteration made
with and without altruistic signals surrounding
the box; “i” represents different initial positions



and orientations taken by the robot at each start
of simulation; and “j” corresponds to the number
of steps before stopping the simulation number
“i”.

4.1 Simulation environment

To apply the proposed methodology of parameters
optimization, we have used the MiRoCo (Mini-
Robotics Collective) simulator (Fig. 6) which per-
mits to have a good approximation of: ALICE
mini-robot structure, the displacement and the
accurate interaction between the mini-robot and
its environment, etc. This simulator allows also to
make a very big number of simulations to evaluate
each chromosome of the population.
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Fig. 6. MiRoCo, a simulator for collective mobile
robotics

Figure 7 shows the setup used to perform batch
simulations. It shows also an initial position and
orientation taken by ALICE to evaluate chromo-
somes.
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Fig. 7. Batch simulation setup

4.2 Genetic cycles

To achieve genetic cycles which allow to obtain op-
timal chromosome (gains) for Σ3 which maximize
(7), we use appropriate selection, crossover and
mutation operators. These operators are adapted
to manipulate real genes (Guvenir and Erel, 1998),
(Muhlenbein and Schlierkamp-Voosen, 1993), while
taking into account (3).

Selection operator This is performed using the
roulette wheel selection (Goldberg, 1991).

Crossover operator This operator allows to cross
two chromosomes while preserving the sum of any
sequence of genes. Given two normalized chromo-
somes x = 〈x1, x2, x3〉 and y = 〈y1, y2, y3〉,
the obtention of two normalized offsprings x′ =
〈x′

1, x′
2, x′

3〉 and y′ = 〈y′
1, y′

2, y′
3〉 is such as:{

x′
i = sxi + (1 − s)yi

y′
i = (1 − s)xi + syi

(8)

where “s” is a stride and changes randomly be-
tween [0, 0.5] for each crossover operation.

Mutation operator This operator transforms the
value of a random gene to either 0 or 1 with equal
probability. Therefore, if a chromosome under-
gone a mutation, it must be normalized according
to (9).

xi=1..3 =
xi∑3

j=1 xj

. (9)

4.3 Simulations Results

The genetic algorithm is applied on a population
of 1000 chromosomes, with the probability of
crossover and mutation equal respectively to 0.8
and 0.02.

Figure 8 shows the evolution of the maximum
and average fitness of consecutive populations.
Optimal chromosome is obtained after 120 genetic
cycles and it corresponds to:

• Σ∗
3: g∗

31= 0.181, g∗
32= 0.400, g∗

33= 0.419

For the fusion blocks Σ1 and Σ2 (Fig. 2), we
consider the same parameters as in (Adouane and
LeFort-Piat, 2004b):

• Σ1: g11= 0.500, g12= 0.400, g13= 0.100
• Σ2: g21= 0.500, g22= 0.450, g23= 0.050

With: g11, g21, g∗
31 are gains of commands corre-

sponding respectively to Box-pushing, Reposition-
ing and Attraction to the box behaviors; g12, g22,
g∗

32 correspond to Obstacles avoiding behavior
and g13, g23, g∗

33 correspond to Altruistic signals
answers behavior.

Fig. 8. Evolution of the GA optimization

To validate the relevance of the proposed evalua-
tion methodology, which assigns a fitness to chro-



mosomes according to their adaptation to achieve
the attraction to the box sub-task, we take the
optimal chromosome x∗ = 〈0.181, 0.400, 0.419〉
and the chromosome y = 〈0.596, 0.397, 0.006〉
which has a fitness value on the middle part of
the final population.
The test consists in putting sequentially each of
these two chromosomes on the fusion block Σ3

and to perform a large number of CBPT with
the global architecture of control (Fig. 2). The
minimum number of robots to push the box Nc
was chosen equal to 2. In the simulations, the
number of robots N is increased from 2 to 11,
and for each N, 50 simulations were made. Initial
conditions of the simulations are the same for both
chromosomes.

Figure 9 shows the number of activation NA of
the fusion block Σ3 for all the robots which par-
ticipate to achieve the CBPT. Figure 10 shows
the average time needed by the robots to lead the
box from its initial position toward the target.

We observe that the NA corresponding to the
best chromosome are smaller than those obtained
for the less fitness chromosome. NA smaller indi-
cates that robots found quickly the box and con-
tribute thus actively to push it. This is confirmed
in (Fig. 9) where the time necessary to achieve the
CBPT becomes smaller when the best chromo-
some is used by the architecture of control.

Fig. 9. NA of Σ3 according to N

Fig. 10. Evolution of the number of iterations
according to N

5. CONCLUSIONS AND FUTURE WORKS

A methodology of parameters optimization for an
hybrid architecture of control was proposed in this
paper. The optimization has been done using a

genetic algorithm via appropriate genetic oper-
ators, which deals with real value chromosomes.
The adopted genetic operators prove to be very
efficient to obtain quick convergence of the genetic
algorithm toward appropriate parameters. The
validity of the optimization is confirmed through
a batch of cooperative box-pushing task simula-
tions. Future works are going to use multiobjec-
tive optimization like Pareto-optimal method in
order to attribute appropriate parameters of con-
trol according to robot’s ecological niche. Experi-
mentations with the physical mini-robots ALICE
endowed with optimal parameters of control are
going also to be made.
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