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Abstract: The robust control of networked predictive control systevith random network

delay in the feedback channel is studied in this papee stbilisation of systems with

constant time-delay is discussed by converting the goneting Lyapunov inequality to a

non-linear inequality. To obtain the maximum domain of entainties, the non-linear

inequality is evolved as a non-linear optimisation aanproblem. After the optimisation

problem is solved, it yields a controller that can iibthe system and the domain of
uncertainties. Furthermore, for the case of randotwark induced time-delay, robust
stabilisation problem can be formulated as a sehedualities, which are related to the
corresponding constant time-delay, respectively. This tréesuberified by a numerical

example Copyright©2005 IFAC

Keywords: robustness, predictive cdntretwork, uncertainty, time-delay

1. INTRODUCTION formulate the network delay effects in an NCS as the
vanishing perturbation of a continuous-time system

Using a network in control systems produces manyunder the assumption that there is no observation
benefits in practical engineering practice: reducing noise. Hai Lin, et al. (2003) formulated NCS as
system wiring, ease of system diagnosis and discrete-time switched system and proposed a way to
maintenance, and increasing system agility. But it study stability and disturbance attenuation issues for
also brings some new: the network-induced delay a class of NCS under uncertain access delay.
(sensor-to-controller delay and controller-to-actuato
delay), occurrence of packet dropout resulting in Although much research has been done in networked
control signal break-off, etc. Time-delay is one & th control systems, most work has ignored a very
main problems of networked control systems (NCS). important feature of networked control systems that
With the development of NCS research, some communication networks transmit a packet of data at
methods have been developed to address thigshe same time, which is not done in traditional
problem. Halevi and Ray (1988) proposed an control systems. Just making use of this network
augmented deterministic discrete-time model methodfeature, Liu et al. (2004) proposed a new networked
to control a linear plant over a periodic delay control scheme—networked predictive control,
network. Luck and Ray (1990, 1994) utilized the which can overcome the effects caused by network
deterministic or probabilistic information of an NCS delay. The paper considered the precise model of
and developed queuing method. Nilsson (1998) NCS with network induced time-delay in the forward
proposed the optimal stochastic control method channel and didn't discuss the case of feedback
which treats the effects of random network delays in channel time-delay and model uncertainties. This
an NCS as a LQG problem. Walsh, et al. (1999a, paper addresses these cases by considering NCS with
1999b) used non-linear and perturbation theory to structured uncertainties and network induced time-



delay in the feedback channel. The method of
networked predictive control is used to handle the i
network-induced time-delay. Robust stabilization of OUtPut and input vectors of the system,
NCS with constant network induced time-delay is respectivelyAD O™, BOO"™ and cOO"™" are the
forn;lulate% af] ah conlstrai;ed nonl-:inear ((ijgmisztion system  matrices. The  uncertainty items
problem. Both the related control law and boundary _ _ . x

of uncertainty can be obtained by solving a non- areMA=H,RE,, AB=H,RE, withH, 00™,
linear optimisation problem. A NCS with random H gp™,  EQQO%, E OO0 and F OO%
network induced time-delay can be handled by * o 2t
solving a non-linear optimisation problem that Where F F <)’I. For the simplicity of stability
contains a set of non-linear inequalities as comstra  analysis, the reference input of the system is assume
corresponding to specific time-delay values. This to be zero.

method shows that in a definite bound, if there exist a

controller and an observer which stabilises the Assumptionl  The pair(A,B) is completely

augmented system for all constant time-delays, then . .
the control law can robustly stabilise the NCS for controllable, and the palr(A,C) is completely

random time-delay. In addition, this method is Observable. _
validated by a numerical example. Assumption2 The number of consecutive data

dropouts must be less than(m is a non-negative

This paper is organized as follows: Section 2 presentsnteger). The upper bound of the network induced
the main results of networked predictive control time-delay is not greater thah.
systems with constant time-delay in the feedback
channel; Section 3 discusses robustness analysis oRemark: Because the control data are transmitted as
networked predictive control systems with random Packages through networks, especially internet, it is
time-delay in the feedback channel; This method is reasonable to assume that the network induced time-
validated by a numerical example in section 4; delays are integer times of sampling period.
Section 5 gives the conclusion. Assumption 2 indicates that the network will not
continuously drop out data packages unlimitedly
meanwhile guarantee that the NCS is a closed-loop
2. ROBUSTNESS ANALYSIS OF NPCS WITH system. ObviousiW =m. In addition, for our
CONSTANT TIME-DELAY control scheme, the data dropouts are converted to
corresponding time-delay according the used package
To overcome the unknown network transmission protocols and sampling period.
delay, Liu et al. (2004) proposed a networked
predictive control scheme which mainly consists of a Similar to Liu et al (2004), the proposed control
control prediction generator and a network delay scheme is stated as follows. If time-delay is assumed
compensator. The control prediction generator isto be i (i 0{L---N}), then only the signal of the

designed to generate a set of future control  _j jnstant can be used to construct control signal.
predictions. The network delay compensator is usedypo following observer and state estimation are
to compensate the unknown random network delay-designed to predict a series of system states

This networked prgdicti_ve control system (N_PC_S) prediction values.
structure is shown in Fig. 1. Only the transmission ' = AR +BU + LYo~ CRer )
delay in the feedback channel is considered in this At"”‘t" At"ft"‘l Ui Vi Ll
paper. Xeoiop-i = Aojag-i + Bl

where x 00", y, 00" and u OO™ are the state,

)

r=0

Predictive with
uncertainty

Network ug Plant Vi )zt|t—i = A)zt—]]t—i + But_l

Controller

where LOO™ is the systems observing matrix and
Xoisp—i 10" (k=1,---i ) and u,_;, OO™ are thek -

e step ahead state prediction and the input of the
observer the matrix at tinte-i, respectively. It
means that if the designed tolerable time-delay is
......... then at any time instant, the predictor generates the
state prediction of -step ahead. The state-feedback
controller for the case without network delay is
designed by a modern control method, for example,
LQG, eigenstructure assignment etc., and for the case
with network delay, the controller is of the following
form:

Network

Figure 1. The networked predictive control system

In this section, the case with constant time-delay is
discussed. The networked predictive control system
with uncertainties can be described as follows

Xy = (A+DAA)X +(B+AB)Y, (1)

y. =Cx Uik = KXk



where the state feedback matrixk OJO™". A= [BKB BKAB:-- BKA™B BKA™B 0.y
Asy,; =Cx_;, (2) can be written as 2

Xe—kcsi-k = AH(A- LC) Xk

ONn><(N+1)m
D (N+1)nxNm

. . @ A, {[A— LC 0pn BKA?(A-LC) onx(N_i)n]}
+ ZA : But—k+j—l +A Cxt—i I nNxnN OnNﬁE| (N+1)nx(N+D)n
j=1
for i =123,---,k. The system described in (6) can be expressed in the
form
Thus, the output of the networked predictive control X,, = (A +H,FE, )X, 7
at timet_ is determined by where
u = KA (A- LC) X—i—i1 _ éﬂ '512 '513
i . . (4) ﬁ - 621 622 623 DD((2n+m)N+2n)><((2n+m)N+2n)
+> KATBY_, 4 + KATHLCx An Ap As
i=1 ;
with
Therefore, the corresponding closed-loop system can .
i-1
be written as A, = {[A Oneiayn BKA Onx(N—i)n]} O Q(+I(N+Dn
Xy =(A+AA)X, +(B+AB)KA™(A-LO) y 1, Waoans O
+Y KATIBY,,, 4 + KA™LCX, ] (5) A, {[BKB BKAB.-- BKA?B BKA'B onx(N_i)m]}
j=1 0Nro<mN
DD(N+l)nme,
The formula (3), (4), (5) can be described by the o
following augmented system: A, :|:[On><in BKA™(A-LC) Onx(N—i)n]:|DD(N+1)FI><(N+1)n
it+1 = Ai1 (6) ONn><mn
wherex =[X U, X ]" with and
X, =[XtT XtT—l XtT—i+1 XtT—i XtT—i—l XtT—N+1 XtT—N]- B |-~|11 |-~|12 |-~|13
U, :[utT—l utT—z utT—i+1 utT—i utT—i—l utT—N+1 utT—N]l Hi - O(N+DanN OmN<qN OmN<(N+1)q Coryemmnen@ane
X:[s\{rlt s\{r:‘l s\{r " XT|[ XT ' s\{r ' s\{rNt ]] O(N+:I)n><(N+:I)q O(N+:I)n><(N+1)q O(N+:I)n><(N+1)q
-1 -2 -+ A -2 NN NN .
with
and _
;&1 ;&2 ;13 ﬁll: [Hl Onx(i(—)l)q Hz OnX(N—i)q]i|DD(N+1)nx(N+1)q'
A - '&21 '&22 '&23 (][] (@nmN+2m)(@n+mN-+2n) L Nnx(N+1)q
,&31 ,&32 ,&33 H“lz: [Hz Hz Hz Hz Onx(N—i)q] DD(N+1)n><qN’
with . O
Zl - [A+AAonx(i—l)n EKA_l Onx(N—i)n] DD(N+l)n>‘(N+1)n ﬁls = [Onxin H2 Onx(N—i)n] DD(Nﬂ)nx(Nﬂ)q;
! [Inl\an Onl\kn ’ - ONnX(N+1)q
_ o T = di (3N+2)ax(3N+2)q
i, [BKB BKAB:-- BKAB BKA™B Oy iy Fi = fi“ag{':w':tr" F}00 and
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_ E, O
(where B=B+AB), E) 1 Oguun]
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Before the result is presented, the definition of
robustly quadratically stable is given below.

Definition 1: System (1) is robustly quadratically
stable if there exists a positive definite matfxsuch
that for any time instant Lyapunov function

V(x)= xtT Px has the following property:
V(Xt+1) _V(Xt) = Xt+1T PXt+1 - XtTPXt < O

Theorem 1The corresponding closed-loop system of
system (1) with any constant time delay is robustly
quadratically stable if and only if there exists a

matricesP =P' >0 and K such that:

-p™ A ﬁi
MN=| A’ -P+E'E 0 |<0. ®
HT 0 -

where v =1/)* and constant>0. Furthermore, if

(8) holds, then the maximum is defined bw/\/;
wherev is determined by the optimisation problem:
min v

subject toP = PT > Qand (8).

Before this theorem is proved, two lemmas are given.

Lemma 1 (Petersen and Hollot, 1986&)jven
Ox0O0" andOyoa"

ma>{(xTDFEy)2 F'F< |}= x' DD ' xy'EEy.

Lemma 2 (Xie and de Souza, 1992t X,Y and

Z be given symmetric matrices with appropriate
dimension such thaX 20,Y <0 andZ =0.
Furthermore, assume that

(77Yn)* = 41" Xn)(n" 2) >0

for all nonzeron O O". Then there exists a constant
£>0, such that

X +eY +220.

Proof: According to definition 1, system (7) is
robustly quadratically stable if and only if there
exists a positive definite matri such that for any

time instant, Lyapunov functionV(>‘(t):>‘<tTP>‘(t
has the following property:

V()_(t+1)__v()_(t) = )_(T“lp)__(nl - yTt P)_(t (9)
=%'[(A +HFE)"P(A +HFE)-PIX <0

for OF, OR*™ ' F"F, < *I . (9) is equivalent to

(A +H,FE)"P(A +HRE)-P<0 (10)

ForP >0, apply Schur complement (Zhou, 1996) to

formula (10), it gives

A + Hi l:i E|:| <0
-P

Now (11) is proved to be right fdP > 0if and only if

(8) holds.

11)

-P
(A +H.FE)"

Necessity Suppose that (11) has a solut®r 0,
then

-P* A 0 HFE
AT + cTcTgT
A" -P| |E'F'H' 0

Let
-pt A
~T

Z{A b (12)

Then, fordn,,n, 00 A E ', ] #0, it obtains
— HEE
nin<-n |:ETFTH 0 }
(’71H FE|’72 +’72_ _Tﬁ __2’71H FE|’72
Clearlyn"Zn < -2max{p, HFEn,: FF' < )1}

andmax{y, H FEn,:F
lr'zn}

Therefore, from Lemma 1, it gives
0" znf 2 4yl H R 0 ETEm,

P e

Hence, it follows from Lemma 2 that there exists a
constante > 0 such that

o Y’HH 0 0_0_
g|: 3 O}+£Z+|:O EiTEi}<O.
Substituting (12) into (13) and applying Schur
complement, it gives

FF' <y°1} 20, then
>4max{/7 H|F|E|/72: FiFi <y I}

(13)

-1 27 g7 e
“PorarHA, A _T_}so (14)
A -P+(Ye)E'E
which is equal to
p A =
A" -P+WeE'E 0 (<0 (15)
HY 0 Y(ev?)

Let 7=1/eandv =1/)*, then Eq. (8) holds.
Sufficiency Suppose that there exists a constant
7 >0such that (8) has a solutier>0. Then there
exists a constart >0 such that (11) is feasible.

|ForOn,,n, 00", n = [,’771} #0, and any constant

2
>0, then



osn | E1E e -
_[AFFAET 0 ][ o HFE
Lo yeeg[TIERTE o [
Je/HAT o ][ o HFE
S’7|: 0 ]/EEiTEi:|,7 n |:EiTHITFIT 0 :Iq
Therefore,
5V2ﬁiﬁiT 0 > 0 HII?I_I
0 (WoFE'E] |[E'F'H' o0 |

Substituting the above equation into (14) yields

0 (/e)E'E, A" -P
| }

P A+HFE
AT+ETF'H -P
Therefore, it shows that (11) holds.

To obtain the maximum value of the uncertainty
bound, (15) can be written as a nonlinear
optimisation problem described as in the theorem.
The minimum value of leads to maximum.

The proof is completed. 0

NPCS without time-delay is a special case of
constant time-delay. Theorem 1 still works well but

the corresponding matricég ] [ "™ enmizn
ﬁo l:l D((2n+m)N+2n)X(3N+2)q and EO l:l D(3N+2)q><((2n+m)N+2n) |n

(7) have the following form:
[ [A 0 BK  0,.n]

[I nN nN><(nN+mN+2n)]

[0 K 0

[Om(N—l)x(N+1)n Im(N—l) Om(N—l)X((N+1)n+m)]

[LC OnX(m+n)N A+BK-LC OanN]

L [OnNX(mN+nN+n) InN><nN OnNXn]

[Hl On><2qN H2 OanN]
O((2n+m)N+n)><(3N+2)q

[qu(n(N+1)+Nm) EZ qunN] .

0

nx(m+n)N
0

mx(Nn+Nm+n) man]

A=

0

[E 0

OZNqX((2n+m)N+2n)

qX((2n+m)N+n)]

E, =

Ngx((2n+m)N+2n)

3. ROBUSTNESS ANALYSIS OF NPCS WITH
RANDOM TIME-DELAY

In practical networked control systems, the network

induced time-delay size is usually random as networkv(ym) -V(

load changes.
section 2, the time-delay is assumed to vary
randomly in a s§012---N}. For this case, a

Based on the assumptions set in-

Theorem 2The corresponding closed-loop system of
system (1) with random time delay (i®4---,N }) is
robustly quadratically stable if and only if there exist

a common matrix =P’ >0 and a controller matrix
K satisfying all the following inequalities:

Pt A A

M=| A" -P+E'E 0 |<0. (16)
H' 0 -

for i=012---N

where v =1/)* and constant>0. Furthermore, if

all the inequalities in (16) holds, then the maximum
y is defined byl/v ; wherev is determined by the
optimisation problem:

min v

subject to P=P">0 and (16). (17)
Proof: To robustly stabilise Eq. (1) with random
network induced time-delay in the feedback channel,
the following cases should be considered:

Case 1: At any time instantaugmented closed-loop
system of (7) is robustly quadratically stable for
constant time-delay.

Case 2: For time instant$ tot+1, augmented
closed-loop system (7) is still robustly quadratically
stable when time-delay varies fromto j (Without

loss of any generality, it assumes fhat ).

For the case of constant time-delay, theorem 1 has
been proved Case 1, i.e. if the inequalities in (16) are
feasible, then the corresponding augmented closed-
loop system of (1) is robustly stable at any time
instantt for any constant time-delay (0O<i<N .)

Therefore, there exists a matrix=P' >0such that
the following inequality holds

V(%) =V (%) = X1 PRy = X! PX,

X/ (& +H.FE )P + A FE)-P) <0

Assume that at any time instantnetwork induced
time-delay isi and at time instant1 , itis j (Here
i, jd[0,---,N] are any integer in the interval). Then
system (1) is robustly stabilised when network
induced time-delay varies frointo j , if there exists

a matrix P=P' >0such that the

inequality holds:
V(Xii2) =V(X) =V (X2) V(%) +V (%) V(%) <0

following

(18)
For any time instant
) _ZE)_: ?1T+2_P?1+2__ &Tﬂ_PiHl
XL(A; +H F,E,)P(A, + H,FE )X, - X},PX,

For[1,<0, (A +HFE)PA +HFE)-P<0.

similar result is derived as for the case of a constantTherefore

time-delay.

V(X,)-V(X)<0 (19)

+2



From (19), it follows that (18) holds. Therefore, it uncertainty is integrated into the non-linear

can be concluded that for random network induced optimisation problem. The problem of NCS with

time delay, systems (7) is robustly quadratically random network induced time-delay is formulated as

stabilised if and only if there exist a common matrix a non-linear optimisation problem constrained by a

P=P" >0 and matricesK and L satisfying all the set of non-Iin_ear ir)equalities _with a common

inequalities given in (16). Lyapunov matrix. This method is validated by a
numerical example.
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