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Abstract: A simple and practical two-degree-of-freedom control strategy is proposed for 
unstable processes with time delay. It can decouple load disturbance from setpoint response. 
By combining the theory on stabilizing PID controller proposed by Silva et al. with IMC 
method, the process in which the ratio of time delay to unstable time constant is smaller than 2 
can be controlled effectively. Simulation examples are given to show the performance of the 
proposed method. Copyright © 2005 IFAC 
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1． INTRODUCTION 

 
Besides many open-loop stable processes, there still 
exist some unstable ones in the chemical industries. 
Unstable processes are more difficult to control than 
stable ones because of simultaneous existence of the 
time delay and the right-half-plane (RHP) poles. It is 
even more difficult to control the unstable processes 
with long time delay. 

Since the PID controller remains the most popular 
approach for industrial process control, a great deal 
of effort has been directed at finding effective tuning 
methods of PID controller for unstable processes, 
such as the extended internal model control (IMC) 
method (Morari and Zafiriou, 1989), gain-phase 
margin method (De Paor and O’Malley, 1989; 
Venkatashankar and Chidambaram, 1994), graphical 
method (Shafiei and Shenton, 1994) and other 
advanced methods (Rotstein and Lewin, 1991; 
Huang and Lin, 1995). However, all these methods 
only apply to the case where the ratio of time delay 
to unstable time constant ( /L T ) is smaller than 
unity. Huang and Chen (1997) propose a three-
element structure to control unstable processes where 

/L T  is smaller than 2.  

It is interesting to note that even though numerous 
methods have been developed for setting the 
parameters of PID controllers, the set of all 
stabilizing PID parameters remains unknown. In 
other words, it is significant to provide the complete 
solution to the problem of characterizing the set of 
all PID parameters that can stabilize a given first-
order process with time delay. Silva, et al. (2002) 
have proposed a complete solution to this problem on 
the basis of a version of the Hermite-Biehler 
Theorem. The set of stabilizing PID parameters is 

determined for both open-loop stable and unstable 
processes. 

In this paper a two-degree-of-freedom control 
structure is proposed based on the theory of 
stabilizing PID controller for unstable processes with 
time delay (Silva, et al., 2002) and on the IMC 
method (Morari and Zafiriou, 1989). Simple and 
straightforward tuning rules are suggested. The load 
disturbance response is decoupled from the setpoint 
response. Furthermore, the proposed method is also 
applicable to the case where /L T  is smaller than 2.  

The paper is organized as follows. In Section 2, the 
two-degree-of-freedom control structure is 
introduced and analyzed briefly. In Section 3, both 
the necessary and sufficient condition for existence 
of the stabilizing PID controller for unstable 
processes and the algorithm for determining PID 
parameters is presented in detail, and the extended 
IMC method is proposed. Examples are given in 
Section 4 and the conclusions are given in Section 5. 

 

2． TWO-DEGREE-OF-FREEDOM CONTROL 
SYSTEM FOR UNSTABLE PROCESSES 

WITH TIME DELAY 
 

This paper considers that the dynamic behavior of 
the unstable processes with time delay can be 
described by the following transfer function: 
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where k  represents the static gain of the plant, T  
represents the time constant of the plant, and L  
represents the time delay. In this case, 

0, 0, 0T k L< > > .  



     

 
Kaya and Atherton proposed a new PI-PD Smith 
predictor for control of processes with long dead 
time (1999). In this paper, a new two-degree-of-
freedom control structure for unstable processes 
with time delay is proposed, which is shown in Fig. 
1. In this control structure, LsGe−  is the model of 
the real process mL s

mG e− . dG  is a compensator 
which can stabilize unstable processes and reject 
disturbance. The filter F  and the controller cG  are 
used to control the performance of setpoint 
response. When 0F =  and 0dG = , the structure is 
equivalent to the standard Smith predictor. 

 

 
Suppose that the model describes dynamic 
characteristic of real process, i.e. it is in nominal 
situation: mG G= , mL L= . The response of the 
closed-loop system for setpoint changes and load 
disturbance is derived from Fig. 1 as: 

( ) ( ) ( ) ( ) ( )r dY s Y s R s Y s D s= +                      (2) 
where ( )rY s  and ( )dY s  are closed-loop transfer 
functions for setpoint changes and load changes, 
respectively, with: 
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Eqs. (3) and (4) show that ( )rY s  is determined only 
by the setpoint controller cG  in nominal situation, 
while ( )dY s  is determined by cG  and the 
compensator dG . Furthermore, since  the 
denominators of ( )rY s  and ( )dY s  have the same 
factor (1 )m cG G+ , ( )dY s  will be dependent only on 

dG  when cG  is designed independently at first. This 
makes it possible to improve the performances of 
both setpoint tracking and disturbance rejections by 
separately tuning the PID controllers cG  and dG . 
Hence the setpoint response and the disturbance 
response are decoupled from each other. It can also 
be observed that the setpoint response does not 
contain the delay term in its characteristic equation, 
and therefore cG  will be designed by employing the 
IMC method to guarantee that ( )rY s  only has left-
half-plane poles. As to the disturbance response, its 
stability performance is dependent only on the factor 
(1 )mL s

d mG G e−+ , which is equivalent to that of a 

closed-loop system, with the process mL s
mG e−  and the 

controller dG . So we apply the method of 
characterizing the set of stabilizing PID parameters 
proposed by [6] to designing the PID-type 
compensator dG . 
 
 

3． STABILIZATION PROCEDURE OF 
UNSTABLE PROCESSES WITH TIME 

DELAY 
 

3.1 Stabilization of unstable processes with time 
delay by using PID controller 

 
Suppose that dG  is of the PID type as  

( ) i
d p d

kG s k k s
s

= + +                             (5) 

where the derivative factor is an ideal one. In practice 
the pure derivative term dk s  is always replaced by 

(0.01 1)dk s s + . The first order unstable process with 
time delay is given in the expression (1). 
 
Theorem: A necessary and sufficient condition for 
the existence of a stabilizing PID controller for the 
open-loop unstable process is / 2L T < . If this 
condition is satisfied, then the range of pk  for which 
a given open-loop unstable process can be stabilized 
using a PID controller is given by  

 1 1 1
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where 1α  is the solution of the equation  
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For pk  values outside this range, there don’t exist 
stabilizing PID controllers. For each pk  which 
satisfies the expression (6), the cross section of the 
stabilizing region in the ( , )i dk k  space is the 
quadrilateral shown in Fig. 2. 
 
Hence, the algorithm for determining stabilizing PID 
parameters for unstable processes is: 
 
Step 1: Find the roots in the interval (0, )π  of Eq. (7); 
 
Step 2: Determine the range of pk  from expression 
(6) and let pk  equal to the median of this range;  
 
Step 3: Solve the equation 
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Tkk z z z
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and denote the positive-real roots by , 1,2jz j = ,……, 
arranged in ascending order of magnitude; 
 
Step 4: Calculate jm , jb , jw  from  

( ), ( )j j j jm m z b b z= =                     （9） 
2
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Fig.1. Two-degree-of-freedom control structure for 
unstable processes 
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Fig. 3.  Stabilizing region of ( , )i dk k when 

1.16 1pk− < < −  
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Step 5: Determine the stabilizing region in the ik - dk  
space using Fig. 2. 
 

 
 
3.2 Design of the controller cG  

 
IMC method is powerful for control-system synthesis, 
and it is well-known that the control system cannot 
be implemented by the IMC structure if the process 
is an unstable one [1]. However, as suggested by 
Morari and Zafiriou, one can still design the 
controllers for processes without delay using the 
IMC method, and then, implement the controllers in 
an equivalent-feedback structure. Since the setpoint 
response does not contain the delay term in its 
characteristic equation, cG  can be designed as an 
IMC feedback controller for the unstable process 

(1 )mG k Ts= + . The standard IMC controller is 
chosen to meet the requirements of internal stability 
and pole zero excess:  
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where λ  is an adjustable parameter. Then the 
equivalent feedback controller is derived from  
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Thus we have 
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Hence, the setpoint response is rewritten as  
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Let the filter function ( )F s  be 
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where 1λ  is another adjustable parameter. When the 
uncertainty of processes is unknown, we often 
choose / 2Lλ =  and 1 Tλ = . Substituting it into 
(16), we have: 
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The parameter 1λ  relates directly to the nominal 
performance and robustness of the system. The 
smaller 1λ  is, the faster the input response is, while 
the robustness is worse. 
 
 

4． SIMULATION EXAMPLES AND 
PERFORMANCE ANALYSIS 

 
Consider the simulation example used in Huang and 
Chen’ paper [7], i.e. 1.2( ) (1 )s

pG s e s−= − . By 
carrying out the new control method, 0.60λ = , 

1 1.00λ = , 4.33ck = − , 1.56iT =  are firstly obtained. 
Then we get 1.32 1.00pk− < < −  and let pk  equals to 
the median of this range, i.e. 1.16pk = − . So the 
stabilizing region of ( ik , dk ) is calculated and shown 
in Fig. 3.  
 

Note that the system is unstable when 0ik > . By 
simulating the closed-loop response of the system in 
the case of 0ik < , we find that the smaller ik  is, the 
better performance of disturbance rejection and 
robustness can be obtained. This rule is the same to 

pk . As to dk , the value corresponding to the best 
performance of disturbance rejection is near the 
median of stabilizing range. Finally, we choose 

0ik = , 1.05pk = −  and 0.5dk = − , which means that 
the PID controller becomes a PD controller. Fig. 4. 
shows the nominal closed-loop response of the 

dk

0

1( , / )w T k 2( , / )w T k

1 1d ik m k b= +

2 2d ik m k b= +

2b

1b

ik

 Fig. 2.  Stabilizing region of ( , )i dk k when 
(1/ )u pk k k< < −  



     

proposed method and also for comparison, of Huang 
and Chen’s method [7]. 
 
The new method gives better results for setpoint 
response and the disturbance rejection is also good. 
The closed-loop response for model mismatch in L 
(+10%) is shown in Fig. 5. 
 

 

 
From the results, we observe that the proposed 
control method is extremely robust. In practice, we 
can make 1λ  be even smaller so as to expedite the 
speed of input response. The robustness can be tuned 
by parameters of PID controller. 

 
 

 

5． CONCLUSIONS 
 

In this paper a two-degree-of-freedom control 
strategy is proposed based on the theory on 
stabilizing PID controller for unstable processes with 
time delay and the IMC method. The load 
disturbance is decoupled from the setpoint response. 
As shown in the simulation example, the proposed 
method has better nominal performance and 
robustness than Huang and Chen’s method. 
Moreover, it is also applicable to the case where 

/L T  is smaller than 2.  
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Fig.4  The closed-loop response of the nominal 

process 
(Solid line: proposed method;  dotted line: Huang 

and Chen’s method) 

 
Fig.5 The closed-loop response of the process with 

L increased by 10% (Solid line: proposed
method;  dotted line: Huang and Chen’s 
method) 



     

 


