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Abstract: How to extend standard support vector machines to solve multi-class 
classification problem and yield the outputs in the frame of Dempster-Shafer theory 
is useful. The multi-class probability support vector machine is proposed, firstly. 
The Dempster-Shafer theory based multi-class support vector machine is designed 
by constructing probability support vector machines for binary classification using 
one-against-all strategy and then combining them using Dempster-Shafer theory. 
Our proposed method is applied to fault diagnosis for a diesel engine. The 
experimental results show our proposed method obtains a comparable performance 
with that of standard multi-class support vector machines. Furthermore, the 
uncertainty can also be evaluated. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Support vector machines (SVMs), deriving from 
statistical learning theory and VC-dimension theory, 
have been widely used in many fields and show 
good performance (Vapnik, 1995). It is originally 
developed to solve binary classification problems. 
However, in real world problems, the 
discrimination between more than two categories is 
required. How to extend the standard SVM to solve 
multi-class problem is an ongoing research 
problem. Currently there are two types of 
approaches for multi-class SVM (MSVM) (Hsu 
and Lin, 2002). One is by constructing and 
combining several binary classifiers while the other 
is by directly considering all data in one 
optimization formulation. The one-against-all 
strategy is the standard method for constructing 
MSVM (Vapnik, 1995; Platt, et al., 2000). 
 
Generally, a posterior probability is convenient for 
post-processing. However, both standard SVM and 
MSVM classifiers do not provide such probabilities. 
Platt (1999) describes a method for fitting a 
sigmoid that maps SVM outputs to posterior 

probabilities, while still maintaining their sparseness. 
However, the probability SVM (PSVM) can still not 
be directly used to solve multi-class classification 
problem. Therefore, in this paper, we extend the 
standard MSVM method, one-against-all, to multi-
class probability SVM (MPSVM) method. Thus, all 
the outputs of MPSVM are presented as posterior 
probabilities. The final classification output of 
MPSVM is the class that corresponds to the PSVM 
with the highest probability output value. 
 
The Dempster-Shafer theory is a general extension of 
Bayesian theory, which can robustly deal with 
incomplete data (Rakar and BalleÂ, 1999). 
Additionally, it allows assigning measures of 
probability to focal elements, and attaching probability 
to the frame of discernment. How to extend the 
support vector machine to yield the outputs in the 
frame of Dempster-Shafer theory is very useful. For 
example, the outputs of this type of SVM can directly 
be combined by using Dempster-Shafer theory, and 
more useful classification information can be obtained. 
Furthermore, a sound basis is constructed for the 
application of support vector machines in some other 
fields, such as information fusion. By designing the 



  

basic probability assignment (bpa) function 
according to all the outputs and performances of 
PSVMs consisting in the MPSVM and then 
combining all the evidences, the Dempster-Shafer 
theory based multi-class support vector machine 
(DSMSVM) is constructed. Different from the 
standard MSVM and MPSVM, the performance of 
individual PSVMs for binary classification in 
DSMSVM is also taken into account. Our proposed 
method is applied to fault diagnosis for a diesel 
engine. The experimental results show the 
proposed method obtains a comparable 
performance with the standard MSVM and 
MPSVM. Furthermore, the belief, plausibility, 
belief interval and ignorance about classes can also 
be provided. 
 
This paper is organized as follows. In Section 2, the 
standard SVMs and PSVMs are reviewed. The 
standard MSVM is also introduced. Then, the 
MPSVM method is proposed. Section 3 describes 
the Dempster-Shafer evidence theory. In Section 4, 
the DSMSVM is proposed and a numerical 
example is given. In Section 5, by applying these 
methods to fault diagnosis for a diesel engine, 
comparison of different MSVMs is provided. 
Finally, conclusions are given in Section 6. 
 

2. MULTI-CLASS PROBABILITY SUPPORT 
VECTOR MACHINES 

 
It is generally simpler to construct classifier theory 
and algorithms for two classes than for more than 
two classes (Platt, et al., 2000). Therefore, it is a 
better strategy to combine many two-class 
classifiers into a multi-class classifier. 
 
In this section, we first introduce the standard SVM 
for binary classification. Second, the PSVM is 
introduced. Third, the standard MSVM method is 
reviewed. Finally, based on the PSVM and 
standard MSVM, the MPSVM method is proposed. 
 
 
2.1 Support Vector Machines for binary 

classification 
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where ix  represents condition attribute and iy  
represents class attribute, SVMs optimize the 
classification boundary by separating the data with 
the maximal margin hyperplane. The practical data 
are usually inseparable. These cases are discussed 
as below. 
 
For linearly inseparable case, the optimal 
classification hyperplane can be obtained by 
solving the optimization problem 
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where C  is the constant of capacity control and iξ  is 
the slack factor that permits margin failure of 
corresponding ix . 
 
According to the Lagrange optimization method and 
duality principle, the optimization problem (1) can be 
rewritten as follows. 
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By solving (2), we can get the optimal hyperplane with 
maximal margin 

( ) 0i i i
sv

f x y x x bα= ⋅ + =∑                  (3) 

Therefore, the decision function based on SVM for 
linear classification in the input space is 

( )( ) sgn sgn i i i
sv

d x f x y x x bα 
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For nonlinearly inseparable case, the original data are 
projected into a certain high dimensional Euclidean 
space H  by a nonlinear map : nR HΦ → , so that the 
problem of nonlinear classification is transferred into 
that of linear classification in the space H . By 
introducing the kernel function 

( ) ( ) ( ), ,i j i jK x x x x= Φ Φ , it is not necessary to 

explicitly know ( )Φ i  (Burges, 1998). Hence, the 
optimization problem (1) can be moved directly to the 
more general kernel version 
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The problem (5) can be rewritten as follows 
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By solving (6), we can get the optimal classification 
hyperplane 

( ) ( ), 0i i i
sv

f x y K x x bα= + =∑                (7) 

and the decision function that separates training 
vectors into two classes in the input space 

( ) ( ) ( )sgn sgn ,i i i
sv

d x f x y K x x bα 
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2.2 Probability Support Vector Machines for Binary 

Classification 
 
The PSVM method is provided by Platt where a 
sigmoid is trained to map standard SVM outputs to 
posterior probabilities, and the sparseness of SVM is 
still retained (Platt, 1999). 
 



  

Let the real number output of a standard SVM, the 
distance from the unknown example x  to the 
optimal classification hyperplane, be f  (or ( )f x ). 
Instead of estimating the class-conditional density 

( | )p f y , a parametric model is used to fit the 
posterior ( 1| )P y f=  directly. The parameters A  
and B of the model are adapted to give the best 
probability outputs. 
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The parameters A and B are found by minimizing 
the negative log likelihood of the training data, 
which is a cross-entropy error function 
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Based on equation (12) and the training set ( , )i if y , 
a new training set ( , )i if t  is defined. The 
optimization problem (10) is solved by using the 
model-trust minimization algorithm for robustness 
(Gill, et al., 1981). 
 
A method of preventing overfitting in training 
sigmoid is used by Platt (1999). The out-of-sample 
data is modeled with the same empirical density as 
the sigmoid training data, but with a finite 
probability of opposite label. When a positive 
example is observed at a value if , we do not use 

1it = , but assume that there is a finite chance of 
opposite label at the same if  in the out-of-sample 
data. Therefore, a value of 1it ε+= −  will be used, 
for some ε+ . 
 
The probability of correct label can be derived 
using Bayesian rule. Suppose N+  positive 
examples are observed. The maximum a posteriori 
(MAP) estimate for the target probability of 
positive examples is 
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Similarly, if there exist N−  negative examples, the 
MAP estimate for the target probability of negative 
examples is 
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Hence, the training set for sigmoid fit is 
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Instead of {0,1} , these non-binary targets are used 
for all the data in the sigmoid fit. Moreover, the 
non-binary targets will converge to {0,1}  when the 

training set size approaches infinity, which recovers 
the maximum likelihood sigmoid fit. 
 
Thus, by training sigmoid using the modified training 
set, the output of PSVM for unknown example x  is 
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and the decision function of PSVM is 
1,  ( ) 0.5
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2.3 Standard Multi-class Support Vector Machines 
 
For a K-class classification problem, the standard 
MSVM method is to construct K  standard SVMs for 
binary classification and then combining them (Platt, 
et al., 2000; Vapnik, 1998). The kth  SVM will be 
trained using all of the instances, among which the 
instances belonging to the kth  class are labelled as 
positive, and all the other instances are labelled as 
negative. Therefore, the MSVM method trained in this 
way is also denoted as one-against-all or one-versus-
rest method. The final classification output of standard 
MSVM is the class that corresponds to the SVM with 
the highest output value. Suppose the output of the 
kth  SVM is ( )kf x , the final decision function is 

{ }1( ) arg max ( ), , ( )Kd x f x f x= ……            (18) 
 

2.4 Multi-class Probability Support Vector Machines 
 

Given training data set ( ){ } 1
,

l
i i i
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=

, where n
ix R∈  

represents condition attribute and { }1, ,iy K∈ "  is the 
class attribute of ix , the objective is to correctly 
discriminate these classes from each other. Based on 
the PSVM for binary classification and one-against-all 
strategy (Vapnik, 1998), the MPSVM can be 
constructed by applying the following procedure. 
 
1) Construct K binary SVM classifiers where ( )kf x  
( 1, ,k K= " ) separates training examples of the class k  
from the other training examples. The training set used 

for kth  binary SVM is ( ){ } 1
, '

l
i i i

x y
=

 ( ' 1iy = , if iy k= ; 

' 1iy = −  otherwise ). 
 
2) Training the sigmoid using the modified training set 

1{( , ' )}l
i if t , K binary PSVM classifiers with outputs 

( )kp x , 1, ,k K= "  are constructed. 
 
3) Construct the K-class MPSVM classifier by 
choosing the class corresponding to the PSVM with 
the highest probability value among ( )kp x , 

1, ,k K= " . Therefore, the decision function is 
{ }1( ) arg max ( ), , ( )Kd x p x p x= ……           (19) 

 

3. DEMPSTER-SHAFER EVIDENCE THEORY 



  

Dempster-Shafer evidence theory is regarded as a 
generalization of classic Bayesian theory. The 
attractive feature in evidence theory is that it not 
only directly takes into account what remains 
unknown, but also represents what is known 
precisely (Beynona, et al., 2001; Guan and Bell, 
1992). 
 
Let { }1 2, , nh h hΘ = …,  be a frame of discernment, a 

function : 2 [0,  1]m Θ →  is called a basic 
probability assignment (bpa) if it satisfies 
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where 2Θ  is the power set of Θ . Any subset X  of 
the frame of discernment Θ  with non-zero mass 
value is called a focal element and the mass 
function ( )m X  represents the exact belief in the 
proposition corresponding to the subset X . 
 
A belief function [ ]:  2 0,  1bel Θ → , derived from 
the mass function, is defined by 

( ) ( ),  for all A
X A

bel A m X
⊆

= ⊆ Θ∑            (21) 

It represents the measure of the total belief lying in 
A  and all subsets of A . 

 
A plausibility function : 2 [0,1]pls Θ →  is defined 
as 

( ) 1 ( ) ( )
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for all A ⊆ Θ . Obviously ( )pls A  denotes the 
extent to which we fail to disbelieve A . 
Furthermore, ( ) ( )bel A pls A≤  is always satisfied. 
 
For a given subset A, a belief interval conveniently 
represents the information contained in the 
evidential functions ( )bel A  and ( )pls A , that is, 

[ ( ),   ( )]bel A pls A                       (23) 
Here the degree to which subset A  remains 
plausible is measured by ( )pls A . The difference 
between ( )pls A  and ( )bel A  represents the 
residual ignorance. 

( ) ( ) ( )ignorance A pls A bel A= −              (24) 
 
A method to combine the measures of evidence 
from N sources is also provided in Dempster-
Shafer theory. The combined mass function 
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where 1 2, , , NX X X"  are focal elements, and NK  is 
defined as 
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where the constant 1/ NK  measures the extent of 
conflict among these mass functions.  

 
4. DEMPSTER-SHAFER THEORY BASED MULTI-

CLASS SUPPORT VECTOR MACHINES 
 
Suppose there exists a pattern space P containing K 
mutually exclusive classes, {1,2, , }KΓ = "  represents 
a class attribute set, which is also the frame of 

discernment Θ . Given training data set ( ){ } 1
,

l
i i i

x y
=

, 
n

ix R∈  represents condition attribute and iy k= ∈ Γ  
is the class attribute of ix . Based on the MPSVM 
method, the DSMSVM can be constructed by using 
the following procedure. 
 
1) Construct K-class MPSVM classifier consisting of 
K  PSVM classifiers. The thi  PSVM classifier is 
designed to discriminate examples of class i from all 
the other examples. The probability outputs and 
decision outputs of these PSVM classifiers are ip  and 

id , 1, ,i K= " , [0,1]ip ∈ , id ∈ Θ , respectively. 
 
2) Obtain the performance of every PSVM classifier. 
The true classification accuracy of a classifier is not 
available. We can only gain the approximations of 
these true values. In this paper, by applying the K-
class MPSVM classifier to a validation set, we can 
obtain the classification accuracies of K  PSVM 
classifiers, ia , 1, ,i K= " , [0,1]ia ∈ . Let a validation 
set size be V , the ith  PSVM correctly discriminates 

iv  examples in the validation set. The classification 
accuracy of the thi  PSVM is 

i
i

v
a

V
=                                (27) 

 
3) Design the bpa functions for every PSVM classifier. 
If the classification accuracy of a PSVM classifier 
satisfies 1a < , an unknown example will be correctly 
classified with probability a , that is, we can not 
determine which class it belong to with probability 
(1 )a− . Thus, it is reasonable to set ( ) 1m aΘ = − . 
Suppose the probability output, decision output and 
classification accuracy of the thi  PSVM classifier are 

ip , id  and ia , respectively, the bpa functions are 
given by 

({ })i i im k p a=                            (28) 
({1, 2, , 1, 1, , }) (1 )i i im k k K p a− + = −" "        (29) 

( ) 1i im aΘ = −                             (30) 
where 1,2, ,i K= "  and k i= ∈ Θ . Obviously, 
formula (28)-(30) satisfies the condition (20). 
 
4) Apply the Dempster-Shafer theory to combine 
evidences from all the individual K  PSVM classifiers. 
All the combined values of mass, belief, plausibility, 
belief interval and ignorance can be obtained by using 
corresponding formula given in Section 3. There exist 
several criterions for giving final decision. In this 
paper, the maximal belief rule is used. Because all the 
non-singletons in focal elements just give meaningless 
decisions, only the singletons are compared with each 
other (A singleton is a subset with only one element). 



  

The final decision is the class that corresponds to 
the singleton with the highest belief. Therefore, we 
can obtain the final decision function as follows. 

{1, , }
( ) arg  max { ({1}), ({2}), , ({ })}

i K
d x bel bel bel K

∈
=

"
"  (31) 

 
The aforementioned procedure is illustrated in Fig. 
1. A simple example is also given in the following 
to present the usage of DSMSVM. 
 

PSVM KPSVM 1
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−
Θ

"

, , , ,m bel pls ignorance"

 
Fig.1. The method of Dempster-Shafer theory 

based multi-class support vector machines 
 
Example: Given a 3-class classification problem, 
three PSVMs for binary classification are 
constructed. The accuracies of them are obtained 
by using a validation set (Table 1). For an unknown 
example, the individual probability outputs of these 
PSVMs are shown in Table 1. Our task is to 
determine which class the example belongs to. 
 

Table 1 The data of an example 
 

Individual 
classifier 

Probability 
output Accuracy 

PSVM 1 
PSVM 2 
PSVM 3 

0.37 
0.34 
0.38 

0.95 
0.80 
0.90 

 
According to (17), the decisions of three PSVMs 
are {2,3} , {1,3}  and {1, 2} , that is to say, none of 
them can give a definitive decision. Obviously, by 
using MPSVM method (Expression (19)), we can 
determine the example belong to Class 3. 
 
Now we will use DSMSVM to solve this problem. 
Let {1,2,3}Θ =  be the frame of discernment, 
according to (28)-(30), the bpa are listed in Table 2. 
Then based on the formulas given in Section 3, the 
combination results of three PSVMs using 
Dempster-Shafer theory are given in Table 3. 
 
Only the beliefs corresponding to singletons, 
{1},{2},{3} , is considered in Table 3. We can find 
the singleton {3}  has maximal belief value. Thus, 
the final decision is that the example belongs to 
Class 3 according to formula (31). We can also find 
the singleton {2}  with maximal plausibility and 
ignorance, which is mainly because the lowest 

accuracy of PSVM 2 results in large classification 
uncertainty. As compared with MPSVM and standard 
MSVM, DSMSVM provides a great deal of useful 
information for post-processing. 

 
Table 2 The values of basic probability assignment 

(Groups: Gs; Values, Vs) 
 

PSVM 1 PSVM 2 PSVM 3 
Gs Vs Gs Vs Gs Vs 
{1} 
{2,3}
Θ  

0.3476
0.6024
0.0500

{2} 
{1,3}
Θ  

0.2750 
0.5250 
0.2000 

{3} 
{1,2} 
Θ  

0.3332
0.5668
0.1000

 
Table 3 The combination results of three PSVMs 

(Groups:Gs; Mass: M; Belief: B;  
Plausibility: P; Ignorance: I ) 

 
Gs M B P I 
{1} 0.3146 0.3146 0.3306 0.0160
{2} 0.3232 0.3232 0.3554 0.0322
{3} 0.3255 0.3255 0.3524 0.0270
{2,3} 0.0207 0.6694 0.6854 0.0160
{1,3} 0.0045 0.6446 0.6768 0.0322
{1,2} 0.0097 0.6476 0.6745 0.0270
Θ  0.0017 1.0000 1.0000 0 

 
5. EXPERIMENTAL RESULTS 

 
Tay and Shen (2003) proposed a method that rough 
sets theory is used to diagnose the valve fault for a 
multi-cylinder diesel engine. Due to the complex 
structure and multi-excite sources that exist in diesel 
engine, the vibration signals collated from the engine 
surface have the following characteristics. Four states 
are researched by Tay and Shen (2003): Normal state; 
Intake valve clearance is too small; Intake valve 
clearance is too large; Exhaust valve clearance is too 
large. Among these four states, three fault types were 
simulated in the intake valve and exhaust valve on the 
second cylinder head. Three sampling points are 
selected to collect vibration signals. They are the first 
cylinder head, the second cylinder head and another 
one at the centre of the piston stroke, on the surface of 
the cylinder block. The extracted single feature in 
frequency domain and time domain cannot indicate 
conspicuous difference exists among the different fault 
types. Therefore, six features are extracted from the 
vibration signals. These features present the 
information contained in vibration signals both from 
the frequency domain and time domain. Thus, each 
instance in the dataset is composed of 18 condition 
attributes (six features from each sampling point) and 
one class attribute (four states). 
 

Table 4 Classification accuracy of each part 
(training data: TND; testing data: TD ) 

 
Data set 1st part: TND 

2nd part: TD 
2nd part: TND 
1st part: TD 

Accuracy 0.78947 0.73684 

 



  

Tay and Shen (2003) applied two-fold cross-
validation test for showing the effect of the rough 
set theory in fault diagnosis. The classification 
accuracy is listed in Table 4. We can find that the 
average classification accuracy is 0.7632. 
 
The aforementioned whole dataset is listed in (Shen, 
et al., 2000). It consists of 37 instances, among 
which 25 instances are used as training set and the 
rest are used as test set in our experiment. The 
choice of kernel and of the regularizing parameter 
was determined via performance on a validation set. 
80% of the training set is used for training binary 
SVM classifiers and the rest 20% of the training set 
is used as validation set. Three types of SVM for 
multi-class classification are used. The whole 
experiment is repeated for 50 times. In Table 5, the 
average classification accuracies are listed. We can 
find that all types of MSVMs have comparable 
performance. The classification accuracy obtained 
by using these MSVM methods largely 
outperforms that obtained by using Rough Set 
Theory (Table 4). However, the DSMSVM can 
provide more classification information than the 
standard MSVM and MPSVM. 
 

Table 5 Classification accuracy of different 
MSVMs 

 
Methods Standard 

MSVM 
MPSVM DSMSVM

Accuracy (%) 93.83 93.33 93.50 

 
6. CONCLUSIONS 

 
Optional SVM based methods for multi-class 
classification problem are proposed in this paper. 
 
The PSVM proposed by Platt (1999) can produce a 
posterior probability. Based on PSVM, the 
MPSVM using one-against-all strategy is proposed 
to deal with multi-class problem. The final decision 
is determined by the maximal probability rule. 
 
It is almost impossible to obtain an ideal classifier 
to correctly discriminate all the unknown instances 
in inseparable cases. The error rate of classification 
can be considered as uncertainty lying in the 
classifier. Therefore, it is reasonable to represent 
MPSVM method in the frame of Dempster-Shafer 
theory. In this paper, the basic probability 
assignment is designed based on all the probability 
outputs and the performances of all PSVMs 
consisting in MPSVM. By using the Dempster-
Shafer theory to combine all the evidences 
provided by every PSVM in MPSVM, and then 
applying the maximal belief rule only to the classes 
corresponding to the singletons, we can obtain the 
final decision output. In addition to this, the values 
of belief, plausibility, belief interval and ignorance 
about all the classes and class subsets are also 
gained. We call this new method as the Dempster-
Shafer theory based multi-class support vector 
machine (DSMSVM). Compared with the standard 
MSVM and MPSVM, the DSMSVM provides bulk 

of useful information for post process. This makes it 
appropriate to be applied in some other fields, such as 
information fusion, including using Dempster-Shafer 
theory to combine multiple DSMSVMs, or combine 
them with other methods, for fewer weaker conditions 
need be satisfied for the application of Dempster-
Shafer theory. In the experiment, the DSMSVM is 
applied to fault diagnosis for a diesel engine. The 
results show that our proposed method obtains a 
comparable performance with the standard MSVM 
and MPSVM. This provides a new optional method for 
multi-class classification problem and extends the 
application filed of SVM based method. 
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