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Abstract: Closed-loop flow control is gaining more and more interest in the last
few years. Whereas most of the published results are based on simulation studies,
this work explores the synthesis of black-box model based closed-loop controllers
for separated, wall-bounded shear flows in experiments. In this paper we compare
a linear robust controller with a flatness based approach. To consider both the
uncertainty of the model and the inherent time delay, the well-known flatness based
controller synthesis scheme had to be extended by a robust design approach and a
prediction step. The actuated backward-facing step flow is chosen as a benchmark
configuration, in which the length of the separated flow region is to be controlled.
This configuration can be seen as a simple representation of the situation in a
burner or behind a flame holder. Copyright c©2005 IFAC
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1. INTRODUCTION

Separated flows show positive and negative effects
depending on the application. A desired recircula-
tion region as a result of a separation is needed in
combustion chambers to keep the fuel mixture in
the reaction zone for a complete combustion. By
influencing a recirculation zone, the residence time
behaviour in a general mixing problem is altered.
In contrast to that, negative consequences could
be efficiency loss and noise production in turbo-
machines and process plants, or drag increase and
lift reduction for aeroplanes.

When shaping of the geometry has reached an
optimum or when passive means, such as vortex
generators, have positive and negative effects,
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active devices in open- or closed-loop control can
further improve the performance by suction and
blowing or acoustic actuation. However, most of
the work published so far is dedicated to open-
loop control.

Experimental validations of closed-loop flow con-
trol are still rather rare. The present investigation
explores the closed-loop control of separated flows
by active means in wind tunnel experiments to
profit from the well-known advantages, such as
disturbance rejection and set-point tracking. As a
benchmark problem, the flow around a backward-
facing step is investigated here. For feedback flow
control three different approaches concerning the
controller synthesis can be distinguished. First,
strategies based on a numerical solution of the
governing Navier Stokes equations (NSE) are pro-
posed. This is done by (Hinze, 2000), for instance,
who also gives a review about this field. How-



ever, those approaches are still not applicable in
real-time. In a second promising approach, low-
dimensional models based on the NSE are de-
rived, with the intention to describe the nonlinear
physics and to synthesise nonlinear controllers.
The use of those Galerkin- and vortex models
for controller synthesis and their application to
experimental setups is still in a state of research,
see e.g. (Baker and Christofides, 2002), (Noack
et al., 2003) and (Pastoor et al., 2003). First
experimental results are presented in (Glauser et
al., 2004) and (Siegel et al., 2004).

Third, (Allan et al., 2000) and (Becker et al.,
2005) propose low-dimensional black-box models
for controller synthesis as a feasible alternative
for experimental configurations. In (Allan et al.,
2000) tuning rules are used for the control of a
generic model of an airfoil. Robust controllers are
synthesised and compared in simulation studies
and wind tunnel experiments in (Becker et al.,
2005). This approach will be used here as well. A
survey of several successful applications of robust
and adaptive controllers for separated shear flows
is given in (King et al., 2004).

This paper is organised as follows: A description
of the configuration and its dynamics is given
in section 2. First, a simply structured, linear
controller is designed employing robust methods,
see section 3. However, the performance is limited
by the uncertainty of the linear design model.
Second, to overcome this limitation, a nonlinear
model that resolves the dynamical phenomena
more precisely in combination with a flatness
based control approach is proposed in section 4.
The command tracking performance of the robust
and the flatness based control are compared in
section 5. Finally, the results are summarised.

2. FLOW CONFIGURATION

2.1 General description

The backward-facing step flow has been estab-
lished as a benchmark problem for separated flows
in fluid dynamics. A variety of information about
the flow process and actuation mechanisms is
available, see for example the survey in (Becker
et al., 2005). A sketch of the flow field is given
in Fig. 1 where the oncoming flow detaches at
the edge of the step and reattaches downstream.
Three different regimes exist in the wake: a sep-
aration region, also called separation bubble, a
reattachment zone and a newly developing bound-
ary layer. The separation bubble consists of the
recirculation zone and the shear layer above.

Here, the goal is to control the size of the separa-
tion bubble given by the reattachment length xR.

U ¥

f r e e - s t r e a m  v e l o c i t y

m e a n  r e a t t a c h m e n t  l e n g t h  x R

i n f l o w
b o u n d a r y  l a y e r

s l o t -
l o u d s p e a k e r
a c t u a t o r

r e c i r c u l a t i o n
z o n e

r e a t t a c h m e n t  z o n e

x
y

n e w l y  d e v e l o p i n g
b o u n d a r y  l a y e r

s h e a r  l a y e r c o h e r e n t  v o r t i c a l  
s t r u c t u r e

Fig. 1. Flow field downstream of a backward-
facing step

While negative skin-friction, i.e. reverse flow, oc-
curs in the recirculation zone, downstream a new
boundary layer develops causing positive skin-
friction, i.e. forward flow. The reattachment po-
sition xR is characterised by zero friction.

The shear layer above the recirculation zone is
governed by the Kelvin-Helmholz instability phe-
nomenon. Perturbations are amplified and lead
to two-dimensional shear layer roll-up into span-
wise coherent vortical structures which grow and
convect downstream. Particularly the vortices are
responsible for entrainment of fluid out of the
bubble. By stimulating their growth, the increased
outflow leads to a significant reduction of the
bubble size xR.

The vortex generated entrainment mechanism is
enhanced by acoustic actuation of the detaching
boundary layer at the edge of the step as shown in
Fig. 1. A slot-loudspeaker actuator is used for this.
Therefore, the forcing frequency should be near
the natural instability frequency of the system.
As the forcing frequency is fixed to the optimal
one, the amplitude of the harmonic loudspeaker
signal finally affects the initial size of the growing
vortices, and thus, the reattachment length xR. In
control notation the amplitude of the loudspeaker
signal is taken as the control signal u(t) and the
reattachment length as the plant output y(t) =
xR(t).

2.2 Flow parameters

A Reynolds number of ReH = 4000 corresponding
to U∞ = 3.04m/s giving the dimensionless free-
stream velocity and a step height of H = 20mm
are chosen. To compare the results with fluid
dynamical investigations, all distances are made
dimensionless by the step height H and all times
by the ratio H/U∞ in the following. Details about
the experimental setup are described in (Becker et
al., 2005).

An online measurement of the output signal xR(t)
cannot be done in a straightforward manner. In
the present investigation, wall pressure fluctua-
tions are measured by a microphone array, and
a Kalman filter based scheme is used to estimate
the reattachment length xR(t). Details about this
approach can be found in (Becker et al., 2003).
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Fig. 2. Identification of black-box models from
step responses (top: switching u(t) on; bot-
tom: switching u(t) off).

2.3 Dynamical behaviour

In spite of the nonlinear and infinite dimensional
Navier Stokes equations, it is surprising that the
dynamical behaviour of the reattachment length
xR looks very simple in step experiments, see
Fig. 2. It can be approximated by stable linear
black-box models GP (s) of first or second order
with a time-delay, see again (Becker et al., 2005).
Due to the nonlinear characteristics of the inves-
tigated system, large ranges for the model pa-
rameters have to be accepted for various step
heights of the input signal. To avoid a significant
detuning of the controller, it is desirable to re-
duce the model uncertainty. As the steady-state
gain KP = lims→0GP (s) of all identified models
shows a highly nonlinear dependence on the size
of the control signal u, i.e. the forcing amplitude,
the inverse f−1 of the stationary operating point
characteristics y = KP (u)u = f(u) (u = const.,
t → ∞) can be used to compensate for this
nonlinearity.

In order to describe the nonlinear behaviour of the
real process, a family Π of linear black-box models
GP (s) ∈ Π is identified from representative step
experiments, see Fig. 3. The spread of the cut-off
frequencies is caused by the different dynamics of
the experiments with positive, i.e. switching on,
and negative, i.e. switching off, steps u(t). How-
ever, the slower switching off steps and the faster
switching on steps are clustered, respectively.

3. ROBUST CONTROL

Due to the uncertainty of the identified models,
robust controllers are required to maintain closed-
loop stability for all operating points. A linear
nominal model Gn(s) with a multiplicative un-
certainty description
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Fig. 3. Frequency responses of the model family
with compensation of the nonlinear gain.

lM (ω) = max
GP∈Π

|(GP (jω)−Gn(jω))/Gn(jω)|

for the neglected or non-modelled dynamics is de-
rived from the model family Π, and these are then
used for robust controller synthesis. By searching
a nominal model Gn(s) with the smallest uncer-
tainty radius, it turnes out that a simple first-
order transfer function Gn(s) =

K
1+sT e−T0s can be

used, see as well (Becker et al., 2005). A Padé-
approximation of second order is used for the
following controller synthesis.

To find a trade-off between the performance, given
by the closed-loop sensitivity function, the restric-
tion of the magnitude of the plant input signals,
and the robustness, the mixed sensitivity problem
is solved byH∞-minimisation to shape the closed-
loop transfer functions.

The obtained H∞-controller is tested in wind tun-
nel experiments. Comparing the open- and closed-
loop tracking responses in the case of switching
u(t) on (see first step response after tU∞/H = 90
in Fig. 4), the closed-loop response shows a slower
behaviour than the open-loop response. This can
be explained with the wide spread of the cut-
off frequencies of GP (s) ∈ Π, see Fig. 3. Due to
the requirement of robust stability, the crossover
frequency of lM (ω) is an upper bound of the active
control frequency domain, i.e. the closed-loop gain
has to drop below 1 for higher frequencies. How-
ever, in this case the crossover frequency of lM (ω)
is near the lower cut-off frequencies of the clus-
tered models GP (s) that describe the switching off
processes. Hence, the limited validity of the linear
nominal model Gn(s), given by lM (ω), limits the
achievable closed-loop performance to the case of
the slowest process behaviour, i.e. the switching
off dynamics. Thus, the closed-loop transient time
of the first switching on step in Fig. 4 is as slow
as in the switching off case. The transient open-
and closed-loop velocities are the same after u(t)
is switched off. The different transient time after
the second step in Fig. 4 is a result of the different
starting level due to noise.
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Fig. 4. Comparison between the dynamics of the
open-loop and the closed-loop (linear H∞-
controller) systems with step responses.

Although the linear H∞-control shows a slow
behaviour, it is superior to open-loop control in
the presence of disturbances. The feature of dis-
turbance rejection is demonstrated in the experi-
ments of (Becker et al., 2005).

4. FLATNESS BASED CONTROL

Since the performance limitation of the robust
controller is imposed by the uncertainty of the
linear design model, an extended model that de-
scribes the real behaviour more precisely, in com-
bination with a flatness based control, are pro-
posed next. The idea is to exploit the correlation
between the black-box model parameters and the
flow state, and to improve the control based on
this more precise description.

4.1 Black-box model for the flatness based controller
synthesis

The underlying philosophy here is that a more
precise description can be obtained by taking the
state depending time constants for the switching
on and off processes into consideration. To do so,
the flow process is empirically described by the
following time delay-free system

[T + sign(ẏ∗(t))∆T ] ẏ∗(t) + y∗(t) = u(t) (1)

and the output time delay

y(t) = y∗(t− T0) . (2)

y∗(t) is an artificial system output without time
delay. The time constant of the system is chosen
depending on the sign of ẏ∗(t), i.e. the direction
of motion of y∗(t). Thus, the faster responses,
after switching u(t) on, are described by the time
constant T −∆T , and the slower responses, after
switching u(t) off, by T + ∆T . This accounts
for a hysteresis-type effect known for such flow

systems. Due to the compensation f−1, see above,
the steady-state gain of Eq. (1) is one.

The model (1,2) approximates the process by
switching between the two first order models
Gon(s) and Goff (s) according to

Gon/off (s) =
Y (s)

U(s)
=

Y ∗(s)

U(s)
e−sT0

=
1

1 + (T ∓∆T )s
︸ ︷︷ ︸

G∗

on/off (s)

e−sT0 . (3)

In fact, the time constants of the system responses
after non-stepwise changes in u(t) are somewhere
between the values T ± ∆T . Both, the simple
first order models and the switching between the
two time constants T ±∆T are simplifications of
the real behaviour. On the one hand, overshoots
and oscillations cannot be described by those
PT1-models. On the other hand, the switching
criterium, sign(ẏ∗(t)), is a simplification, too, and
its evaluation is uncertain due to measurement
noise. Concluding these facts, robustness in the
sense of the uncertain time constant and of an
incorrect switching between T ± ∆T is desirable
for the control to follow.

4.2 Control

Roughly speaking, a system is differentially flat
if it is possible to find an output vector y =
y(x,u, u̇, . . . ,u(α)) with dimy = dimu, such that
all states x and all inputs u are expressed by
those outputs and a finite number of its deriva-
tives according to x = x(y, ẏ, . . . ,y(β)) and u =
u(y, ẏ, . . . ,y(β+1)). Since the behaviour of the flat
system can be parameterised by the flat output y,
it is possible to plan trajectories in output space.
The basic approach of a two degrees-of-freedom
design is to separate the nonlinear controller syn-
thesis problem into the design of a feedforward
tracking control, followed by a feedback control
for the stabilisation around the desired trajectory
in the presence of uncertainties and disturbances.
The feedback control is designed such that the
tracking error dynamics is linear.

Both the input u(t) and the internal state y∗(t)
of the system (1,2) can be parameterised by y(t),
i.e.

u(t) = [T + sign(ẏ(t + T0))∆T ] ẏ(t + T0) +

+y(t + T0) (4)

and

y∗(t) = y(t + T0) . (5)

Hence, the physical output y(t) contains the flat-
ness property. Due to the inherent time delay T0,



u(t) and y∗(t) are parameterised by the future
output y(t + T0). This extension of the concept
of flatness to time delay systems is proposed by
(Mounier and Rudolph, 1998).

With the control law

u(t) = [T + sign(ẏ(t + T0)
︸ ︷︷ ︸

ẏ∗(t)

)∆T ] v(t + T0)
︸ ︷︷ ︸

v∗(t)

+

+ y(t + T0)
︸ ︷︷ ︸

y∗(t)

(6)

v(t + T0)
︸ ︷︷ ︸

v∗(t)

= ẏd(t + T0)
︸ ︷︷ ︸

ẏ∗
d
(t)

−

−q(y(t + T0)
︸ ︷︷ ︸

y∗(t)

− yd(t + T0)
︸ ︷︷ ︸

y∗
d
(t)

) (7)

the closed loop reads

[T + sign(ẏ∗(t))∆T ] ẏ∗(t) + y∗(t) =
[T + sign(ẏ∗(t))] (ẏ∗d(t)− q(y∗(t)− y∗d(t))) + y∗(t)

The superscript ∗ denotes the future variables
at t + T0 that are predicted at time instant t.
Introducing the future error e(t + T0) = e∗(t) =
y∗(t) − y∗d(t) it follows from the above equation
that the error equation is linear in the nominal
case, according to ė∗(t) + qe∗(t) = 0. The con-
troller design variable q has to be chosen positive,
such that e∗(t) decreases to zero, thereby keeping
the system (1,2) around the desired trajectory
y∗d(t) = yd(t+ T0) in the presence of disturbances
and model uncertainties.

In the non-nominal case with a time-varying time
constant TP (t) of the real system, stability of the
error equation for T − ∆T ≤ TP (t) ≤ T + ∆T
can be shown. The error e∗(t) tends to zero when
ẏ∗d(t)→ 0 which is given in all practical problems
for the backward facing step.

4.3 Implementation

To implement the above control law (6, 7), the
internal state y∗(t) = y(t+T0) has to be estimated
by a prediction. Therefore, the well-known Smith-
predictor structure is used, see Fig. 5. A time
delay-free model G∗(s) is simulated parallel to
the process to predict y∗(t). Depending on the
sign of dŷ∗(t)/dt, G∗(s) is chosen according to
G∗(s) = G∗

on(s) (switching on process) or G∗(s) =
G∗

off (s) (switching off process), respectively. In
the Smith-predictor approach the nominal model
G∗(s)e−sT0 is simulated as well parallel to the
process. In the nominal case with d = 0, y(t)
and the output of G∗(s)e−sT0 cancel such that
the prediction y∗(t) = ŷ∗(t) of G∗(s) is used as
feedback, and the control system behaves as if the
time delay is arranged after the control structure
according to y(t) = y∗(t − T0). One price payed
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Fig. 5. Extension of the flatness based control (6,
7) to predict the internal state y∗(t) = y(t +
T0) online and in real-time.

using the Smith-predictor is that the feedback
signal consists of the prediction of the future
output y∗(t) = y(t + T0) superimposed by actual
disturbances d(t) and signal components resulting
from model mismatch, i.e. of a corrected signal
ŷ∗(t). This results in a performance limitation
of the feedback control for disturbance rejection.
An alternative prediction approach is proposed by
(Mounier and Rudolph, 1998).

4.4 Robust design

In order to analyse the closed-loop stability not
with model (3), but with a better description
using the identified model family GP ∈ Π, the
loop transfer functions

LP (jω) =
Ŷ ∗(jω)

E(jω)

= qTn
GP (jω) + G∗(jω)(1− e−jωT0)

1−GP (jω)−G∗(jω)(1− e−jωT0)
(8)

are evaluated by the Nyquist criterium. Tn = T ±
∆T denotes the nominal time constant. The goal
is to guarantee both robust stability in the sense
of uncertainties of the model and of incorrect
switching between G∗(s) = G∗

on(s) and G∗(s) =
G∗

off (s), and between Tn = T − ∆T and Tn =
T + ∆T . The controller gain q is chosen such
that LP (jω) in the ’worst case’ does not encircle
the critical point −1. To do so, all possible loop
transfer functions LP (jω), i.e. all combinations
between G∗(s) and Tn for the two nominal cases,
respectively, and the models GP (s) ∈ Π of the
family are considered. In order to obtain a high
performance, q is designed as high as possible.

Since the feedback loop only stabilises the track-
ing of the reference y∗d(t), its performance limi-
tation does not limit the feedforward command
tracking performance. The ’worst case’ crossover
frequency of LP (jω) is a measure for the distur-
bance rejection performance, and this is approx-
imatively as twice as high in comparison to the
robust H∞-control. This is due to both the differ-
ent control structures and the more conservative
unstructured uncertainty description applied in
the H∞-design.
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5. COMMAND TRACKING PERFORMANCE
RESULTS OF BOTH CONTROLS

A comparison of the command tracking responses
of both controls is displayed in Fig. 6. Both,
the inherent time delay T0 and the uncertainty
lM (ω) of the linear design model Gn(s) limit the
performance of the robust control, resulting in a
transport delay of T0U∞/H = 8 convective time
units after the stepwise decrease of r(t) and the
following slow transient behaviour. However, the
flatness based control can compensate for the de-
lay by an appropriate choice of the future refer-
ence y∗d(t) = yd(t + T0). Since the flatness based
control splits command tracking and disturbance
rejection, the feedforward control is not limited.
Consequently, even faster references y∗d(t) could
be followed. Only the disturbance rejection per-
formance is limited by the time delay and the
uncertainty of the design model G∗(s).

6. CONCLUSIONS

A fast and cheap controller synthesis for the
separated flow around a backward facing step can
be performed employing robust methods such as
H∞-controller design. However, the inherent time
delay and the uncertainty of the linear design
model imposes a limitation on the achievable
performance, i.e. the performance is limited to the
case of the slowest process behaviour.

A faster command tracking performance can be
obtained by a nonlinear design model that resolves
the different state depending dynamics of the flow
process in combination with a flatness based con-
trol. Although the nonlinear design model con-
tains significant uncertainties, an arbitrary fast
command tracking performance can be achieved
due to the splitting between open-loop command
tracking and closed-loop disturbance rejection.
Two extensions had to be added to the classical
flatness based control design scheme. First, as
the control signal is computed from the future
output, the prediction approach of the well-known

Smith predictor was used for the online computa-
tion in real-time. Second, the feedback control for
disturbance rejection was designed to guarantee
robust stability. One price paid is that in contrast
to the H∞-controller, a lot of experience for the
determination of the nonlinear black-box design
model and its uncertainty description is needed.
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