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1. INTRODUCTION

In the last decade, a lot of techniques have been
developed for analysis and controller synthesis for
hybrid dynamical systems. Each result depends on
the mathematical model that represents behavior
of hybrid dynamical systems. One of the typi-
cal models is the piecewise linear system (PLS).
The system consists of some pairs of linear time-
invariant dynamics and a switching rule given by
a linear function of the continuous state. Study on
PLSs is important as a first step to establish hy-
brid control theory, because the hybrid dynamics
is the simplest in all classes of hybrid dynamical
systems.

Unlike linear time-invariant systems, checking sta-
bility of a given PLS is a very hard problem
due to its hybrid nature. In fact, there exist no
systematic ways to check stability of the class of
PLSs exactly, although many results have been
obtained on stability for several classes of hy-
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brid dynamical systems which include the class
of PLSs (see (Decarlo et al., 2000; Lygeros et
al., 2003) and the references therein). Most of the
results on stability are extensions of Lyapunov’s
theorem, where we need to show the existence of
a Lyapunov function to guarantee the stability.
The Lyapunov methods provide not only suffi-
cient conditions but also necessary conditions for
stability under hybrid natures. Actually, the con-
verse theorems ensure the existence of a Lyapunov
function when the system is asymptotically stable
(Michel and Hu, 1999). On the other hand, we
must restrict available classes of Lyapunov func-
tions within a class of piecewise quadratic func-
tions (Rantzer and Johansson, 2000; Gonçalves et
al., 2003) or a class of sums of squares (Prajna and
Papachristodoulou, 2003) to give systematic ways
of finding the Lyapunov functions. This makes the
stability conditions conservative. Therefore, we
need a new approach to get an explicit necessary
and sufficient stability condition for the class of
PLSs.

In recent years, direct analysis of behavior of
hybrid states has led to exact stability tests for
several classes of hybrid dynamical systems. Xu



and Antsaklis (2000) derived necessary and suf-
ficient conditions for stabilizability of a class of
planar and linear switched systems through an
investigation of behavior of the systems. Çamlıbel
et al. (2003) provided a necessary and sufficient
stability condition for a class of planar and linear
complementarity systems. Recently, two necessary
and sufficient stability conditions were obtained
for a class of planar and bimodal PLSs (Iwatani
and Hara, 2004b) which includes the class of pla-
nar and linear complementarity systems as a spe-
cial case. In (Iwatani and Hara, 2004b), a class of
higher-order and bimodal systems has been also
treated.

The contribution of this paper is to derive an
explicit necessary and sufficient stability condition
for planar and multi-modal PLSs. The results in
this paper are an extension of one of the results
on planar and bimodal PLSs in (Iwatani and
Hara, 2004b) to multi-modal systems. The exten-
sion, however, is not straightforward, since the be-
haviors of the multi-modal system are not so sim-
ple as those of the bimodal system. In other words,
we require a new approach that leads to an exact
stability condition for multi-modal systems. To
this end, we define two concepts, namely transitive
mode and weak transitive mode, which properly
capture behaviors of the hybrid state. The two
concepts characterize a necessary and sufficient
stability condition for the systems. We then derive
a necessary and sufficient stability condition in
terms of poles and zeros of transfer functions of
the subsystems, which are naturally defined by
state space data of given multi-modal system. It
clearly provides a computationally tractable exact
stability test. In addition, the condition is equiv-
alent to the results in (Iwatani and Hara, 2004b)
for the bimodal case. Three numerical examples
are finally addressed. They illustrate typical tra-
jectories of PLSs and clarify differences between a
class of linear time-invariant systems and a class
of PLSs from a view point of stability.

All the proofs of lemmas and theorems in this
paper are omitted from this paper for lack of
space. They are found in a more detailed technical
report (Iwatani and Hara, 2004a).

2. PLANAR MULTI-MODAL PIECEWISE
LINEAR SYSTEMS

We consider a class of planar and multi-modal
PLSs represented by

ẋ =





A1x, if x ∈ S1,
A2x, if x ∈ S2,

...
...

Amx, if x ∈ Sm,

(1)

Fig. 1. Planar multi-modal piecewise linear model.

where Ai ∈ R2×2, Si is a convex cone of the form
Si := {x ∈ R2 | Cix ≥ 0}, and Ci ∈ R2×2

(i = 1, . . . , m). A matrix Ai may be equal to
another matrix Aj as seen in Figure 1.

We here introduce two notions, called the proper
state space and well-posedness, in order to exclude
the cases which are out of our interests.

First, the state space of the system (1) is said to
be proper, if all the following statements hold:

Si 6= R2, ∀i,
intSi 6= ∅, ∀i,
∪m

i=1Si = R2,
int(Si ∩ Sj) = ∅, ∀(i, j), (i 6= j).

It is clear that they are quite natural and hence
they are not restrictive under memoryless nonlin-
earities.

Second, the system (1) is said to be well-posed,
if the system has a unique solution for each
initial state. Definition of solutions can be chosen
from the concepts defined in (Imura and van der
Schaft, 2000; Imura, 2002; Imura, 2003). The
choice does not influence our results shown below.
On the other hand, we do not treat systems with
sliding modes. In fact, Theorem 7 provided in
Section 5 does not hold under existence of sliding
modes.

The solution from an initial state x0 is denoted by
x(t, x0) where the initial time is always set 0.

Finally, we suppose detCi 6= 0 for all i throughout
this paper. The assumption does not make the
resulting stability condition conservative, because
each system whose state space is proper satisfies
the assumption after additional partition of the
state space with the x1-axis and the x2-axis. An
alternative to avoiding the non-singular assump-
tion is found in (Iwatani and Hara, 2004a) where
it needs complicated notation.

Remark 1. Consider a class of planar and bimodal
PLSs represented by

ẋ =
{

A1x, if cx ≥ 0,
A2x, if cx ≤ 0,

(2)

where c ∈ R1×2 (Iwatani and Hara, 2004b). It
is clear that no bimodal systems of the form (2)
satisfy the non-singular assumption.



3. STABILITY ANALYSIS

This section provides the basic concepts of stabil-
ity analysis for the system (1).

We first investigate trajectories of the system (1).
Suppose that the system is well-posed and the
state space is proper. Then the system has one
of the following two properties: (T-i) Infinitely
many events occur on each trajectory as illus-
trated in Figure 2-(i). (T-ii) The number of events
which take place on each trajectory is finite as
depicted in Figure 2-(ii). The two properties are
closely connected with transitive modes and weak
transitive modes defined as follows.

Definition 2. (i) A mode i is said to be transitive,
if ∀x0 ∈ Si\{0}, ∃t > 0, x(t, x0) 6∈ Si.
(ii) A mode i is said to be weakly transitive, if
one of the following two statements holds for all
x0 ∈ Si\{0}:
(a) ∃t > 0, x(t, x0) 6∈ Si.
(b) limt→∞ x(t, x0) = 0 and ∀t ≥ 0, x(t, x0) ∈ Si.

We first discuss the relationship between transi-
tive modes and the property (T-i). To this end,
we define a set of vectors on the boundary ∂Si as
follows:
Bi := {x0 ∈ ∂Si\{0} | ∃ε > 0,

∀t ∈ [0, ε), x(t, x0) ∈ Si},
where the set Bi is called the inward boundary (see
Figure 3-(i)). Then, we can show that a mode i is
transitive, if and only if Bi 6= ∅ and

∃τi > 0, ∀x0 ∈ Bi, {x(τi, x0) ∈ ∂Si and

∀t ∈ (0, τi), x(t, x0) ∈ intSi}, (3)

(see Figure 3-(ii)). This implies that (T-i) holds if
and only if all modes are transitive. Suppose that
all modes are transitive. Then

∀x0 ∈ R2, ∃ρ ∈ R, ρx0 = x

(
m∑

i=1

τi, x0

)
, (4)

where each τi is defined by (3). Clearly, the origin
is globally asymptotically stable if and only if
ρ < 1 for all x0.

Fig. 2. Trajectories of the system (1)

Fig. 3. (i) The thick line represents the inward
boundary Bi. (ii) An illustration of (3).

Fig. 4. Trajectories in weak transitive modes.

We then focus on the weak transitive modes. Tra-
jectories in three possible weak transitive modes
can be seen in Figure 4. Every weak transitive
mode has the following three features which are
immediate from Definition 2: (i) A mode i is
weakly transitive, if i is transitive. (ii) The origin
is not stable, if there exists a mode i which is not
weakly transitive. (iii) There exists at least one
weak transitive mode, if the origin is asymptoti-
cally stable and (T-ii) holds.

Using the terminologies of transitive modes and
weak transitive modes, we can show the following
theorem which provides a necessary and sufficient
condition for the system (1) to be stable.

Theorem 3. Consider the system (1). Suppose
that the system is well-posed and the state space
is proper. Then the following statements hold.

(i) Suppose that all modes are transitive. Then
the origin is globally asymptotically stable, if
and only if x(

∑m
i=1 τi, x0) < x0 holds for all

x0 ∈ R2\{0}.
(ii) Suppose that there exists a mode which is not

transitive. Then the origin is globally asymptot-
ically stable, if and only if all modes are weakly
transitive.

Theorem 3 will be written in terms of poles and ze-
ros of subsystems in Section 5. The stability condi-
tion in Theorem 7 shown there is computationally
tractable as seen in an algorithm described below
the theorem.

4. TRANSFER FUNCTION
REPRESENTATION

This section introduces a 2 × 2 matrix trans-
fer function for each mode. Each function is the
Laplace transform of initial value responses for



two initial states on ∂Si. The poles and zeros of
the functions characterize a necessary and suffi-
cient stability condition in the next section.

We first partition C−1
i as [zi1, zi2] := C−1

i . Every
vector zij is on ∂Si. We then consider a transfer
function of the form

Ti(s) = Ci(sI − Ai)−1C−1
i

=
1

s2 + αis + βi

[
s + γi11, γi12

γi21, s + γi22

]
. (5)

Clearly, Ti(s) represents the Laplace transform of
initial value responses whose initial values are on
∂Si. We can easily check if zij is on the inward
boundary Bi as follows.

Proposition 4. Consider the system (1). Assume
det Ci 6= 0. Then zij ∈ Bi holds, if and only if
γij̄j ≥ 0 where j̄ ∈ {k ∈ {1, 2} | k 6= j}.

The following definition chooses two special zeros
associated with an initial state on Bi from γijk

(j = 1, 2, k = 1, 2) in Ti(s), if it exists:

γi := γipipi , δi := γiqipi , (6)

where

pi :=
{

1, if γi21 ≥ 0,
2, otherwise, (7)

qi ∈ {j ∈ {1, 2} | j 6= pi} . (8)

Note that zipi is on the inward boundary Bi, if
Bi 6= ∅. Conversely, Bi = ∅, if δi < 0.

5. AN EXPLICIT NECESSARY AND
SUFFICIENT STABILITY CONDITION

An explicit necessary and sufficient stability con-
dition for the system (1) is given in terms of poles
and zeros of Ti(s), where we often omit the index i
which expresses a mode from symbols to simplify
the notation.

The following lemma provides a necessary and
sufficient condition for a mode i to be transitive
or weakly transitive.

Lemma 5. Consider the system (1) and assume
det Ci 6= 0. Then the following statements hold.

(i) The mode i is transitive, if and only if it holds
that

β >





α2

4
, if α ≤ 2γ,

γα − γ2, if α ≥ 2γ.
(9)

(ii) The mode i is weakly transitive, if and only
if it holds that





β >
α2

4
, if δ ≥ 0 and α ≤ 2γ,

β > γα − γ2, if δ ≥ 0 and α ≥ 2γ,

β < γα − γ2, if δ < 0,

(10)

where γ := max(0, γ) and γ := min(0, γ).

The following lemma plays an important role
to make ρ defined in (4) or equivalently (i) in
Theorem 3 explicit.

Lemma 6. Consider the system (1). Suppose that
det Ci 6= 0 and (9) holds for i. Define τ according
to (3). Then, x(τ, zp) = ηzq holds, where 2

η =





δ√
β − αγ + γ2

exp

(
−αθ√
4β − α2

)
,

if α2 < 4β,
2δ

α − 2γ
exp

(
−α

α − 2γ

)
, if α2 = 4β,

δ exp
(

λ2 log |λ2 + γ| − λ1 log |λ1 + γ|
λ1 − λ2

)
,

if α2 > 4β,

(11)

θ = Arccos

(
α − 2γ

2
√

β − αγ + γ2

)
,

λ1 =
−α +

√
α2 − 4β

2
, λ2 =

−α −
√

α2 − 4β

2
.

Note that η is well-defined under (9).

We are now ready to give an explicit necessary
and sufficient stability condition in terms of poles
and zeros of Ti(s).

Theorem 7. Consider the system (1). Suppose
that the system is well-posed, the state space is
proper and detCi 6= 0 for all i. Then the following
two statements hold true.

(i) Suppose (9) holds for all i. Then the origin is
globally asymptotically stable, if and only if it
holds that

m∏

i=1

(ηi‖ziqi‖) <
m∏

i=1

‖zipi‖. (12)

(ii) Suppose that there exists a mode i such that
(9) does not hold. Then the origin is globally
asymptotically stable, if and only if (10) holds
for all i.

The following algorithm based on Theorem 7 leads
to an exact stability test for the system (1).

Algorithm 1.

2 For x ∈ [−1, 1], Arccos(x) expresses the principal value
of the inverse cosine of x, i.e. Arccos(x) ∈ [0, π].



Step 1) Check if the state space of a given sys-
tem is proper and the system is well-posed (see
(Imura, 2002; Imura, 2003; Imura and van der
Schaft, 2000) for well-posedness conditions). If
yes, go to Step 2. If not, the algorithm ends.

Step 2) Check if det Ci 6= 0 for all i. If not,
partition the state space with the x1-axis and
the x2-axis.

Step 3) Check if (9) holds for all i. If yes, then
go to Step 4-i. If not, then go to Step 4-ii.

Step 4)
(i) Check if (12) is satisfied. If yes, the origin
is globally asymptotically stable. If not, the
origin is not globally asymptotically stable.

(ii) Check if (10) holds for all i. If yes, the
origin is globally asymptotically stable. If
not, the origin is not globally asymptotically
stable.

Remark 8. The bimodal system (2) is globally
asymptotically stable, if and only if all the follow-
ing inequalities holds (Iwatani and Hara, 2004b):

βi > max(0,−|αi|αi

4
), i = 1, 2,

|α1|α1

β1
+

|α2|α2

β2
> 0.

Algorithm 1 may lead to the same stability con-
dition, which implies that the result in this pa-
per is an extension of the result in (Iwatani and
Hara, 2004b) when x ∈ R2. However, it requires
further partition of the state space, and hence we
need a lot of work to derive the stability condition
from Algorithm 1. On the other hand, another
approach provided in (Iwatani and Hara, 2004a)
leads to the stability condition more easily than
Algorithm 1.

6. NUMERICAL EXAMPLES

This section illustrates three typical numerical
examples in order to clarify differences between
trajectories of linear time invariant systems and
PLSs from a view point of stability.

Example 9. Consider a four-modal system with

A1 = A3 =
[

σ, 1
−ω2, σ

]
, A2 = A4 =

[
1, π

−π, 1

]
,

C1 =−C4 =
[

1, 0
0, 1

]
, C2 = −C3 =

[
−1, 0

0, 1

]
. (13)

Each set Si expresses the i-th quadrant. The aim
here is to derive a necessary and sufficient stability
condition of the system in terms of σ ∈ R and
ω ∈ R+ via Algorithm 1. As a result, Algorithm 1
shows that the origin is asymptotically stable, if
and only if e1+ σπ

ω < ω2 holds.
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Fig. 5. Trajectories of Example 9.
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Fig. 6. Trajectories of Example 10.

Typical trajectories of the system are illustrated
in Figure 5. It is seen from Figure 5–(i) that
the origin is asymptotically stable, while all con-
stituent matrices Ai are unstable: This phe-
nomenon has been pointed out in (Branicky,
1998). Figure 5-(iii) implies that every trajectory
is a closed orbit when e1+ σπ

ω = ω2 holds. This
confirms the proposed stability test is exact.

Example 10. Consider a four-modal system with

A1 = A3 = 1
2

[
λ + 1, λ − 1
λ − 1, λ + 1

]
,

A2 = A4 =
[
−2, −1
−1, −2

]
,

and Ci (i=1,2,3,4) defined by (13). Assume λ < 1,
which guarantees well-posedness of the system. It
is seen that (9) does not hold for any i. Thus,
let us investigate (10). Consequently, Algorithm
1 shows that the system is stable, if and only if
λ < 0. Typical trajectories can be seen in Figure
6. We have a remark for the unstable case, i.e.
0 ≤ λ < 1. Every trajectory converges to the
origin, if the initial state is not on the line through
[1, 1]> and −[1, 1]> (Iwatani and Hara, 2004a). In
other words, limt→∞ x(t, x0) = 0, a.e. x0 ∈ R2,
even if the origin is unstable as illustrated in
Figure 6–(ii).

Example 11. Consider a three-modal system with
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Fig. 7. Trajectories of Example 11.

A1 =
1
2

[
λ + 1, λ − 1
λ − 1, λ + 1

]
, A2 = A3 =

[
−1, π
−π, −1

]
,

C1 =
[

1, 0
−
√

3, 1

]
, C2 =

[
1, 0√
3, −1

]
,

C3 =
[
−1, 0

0, 0

]
.

Assume λ > 1 to guarantee well-posedness of the
system. By Algorithm 1, the origin is asymptoti-
cally stable, if and only if it holds that

λ >
11
6 + log

√
3+1
2

11
6 + log

√
3−1
2

' 2.59. (14)

Note that λ is one of the eigenvalues of A1.
Therefore, (14) implies that an eigenvalue of A1

must be greater than the value defined by the right
hand side of (14). Moreover, the greater the value
of λ is, the faster the state converges to the origin
as illustrated in Figure 7. Roughly speaking, the
more unstable the subsystem is, the more stable
the hybrid system is, in this case.

7. CONCLUSION

In this paper, we have derived a necessary and
sufficient condition for planar and multi-modal
PLSs to be stable. The condition is given in terms
of poles and zeros of subsystems, and it is com-
putationally tractable. Also, we have shown three
numerical examples which provide typical trajec-
tories of PLSs. They clarify differences between a
class of linear time invariant systems and a class
of PLSs from a view point of stability.

There still remain several open problems on stabil-
ity of PLSs to be addressed in the future, although
we have established some basic tools for stability
analysis in this paper. In particular, we need to

discuss stability analysis for the higher-order case.
A necessary condition and a sufficient condition
for stability of higher-order and bimodal systems
are addressed in (Iwatani and Hara, 2004b).
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