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Abstract: The diagonally-invariant exponential stability (DIES) is introduced as a special type of exponential 
stability (ES) which incorporates information about the sets invariant with respect to the state-space trajectories. 
DIES is able to unify, at the conceptual level, issues in stability analysis that have been separately addressed by 
previous researches Unlike ES, DIES is a norm-dependent property and its study requires appropriate 
instruments. These instruments are derived in terms of matrix measures from the characteristics of the system 
trajectories; their convenient exploitation in practice is ensured by methods based on matrix comparisons. The 
developed framework presents a noticeable generality and its applicability is illustrated for several classes of 
linear and non-linear systems. This framework can be simply adapted to discrete-time systems.  
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1. INTRODUCTION 

The concept of "diagonal stability" is pertaining to 
linear algebra, where its usage refers to the following 
definition (Kaszkurewicz and Bhaya, 2000). The 
matrix nnA ×∈R  is said to be Hurwitz diagonally 
stable if there exists a positive diagonal matrix 

nnP ×∈R  that makes PAPAT +  negative definite. 
Hence, the diagonal stability of A, regarded from the 
point of view of the linear and time-invariant (LTI) 
system )()( tAxtx =� , means not only the global 
exponential stability (ES), but also the invariance of 
the sets }|||||{ 2

2/1 cxPx n ≤∈R , 0>c , with respect 
to the state-space trajectories.  

A deeper insight into the aforementioned invariance 
problem proves the existence of values 0<r  for 
which the time-dependent sets described by 

}||)(|||)({ 2
2/1 rtn cetxPtx ≤∈R , 0>c , are also 

invariant with respect to the system trajectories. This 
fact suggested us to further explore the link between 
the ES and the time-dependent invariant sets (ISs) of 
the form }||)(|||)({ rt

p
n cetxtx ≤∆∈R , 0>c , 0<r , 

constructed with diagonal positive matrices 

n n∆ ×∈R , for arbitrary Hölder norms || ||p, in the 
general case of nonlinear, time-variant, dynamical 
systems. The existence of such ISs defined by 
diagonal positive matrices presents a great interest 
for practice due to their symmetry with respect to the 
axes corresponding to the state variables nxx ,,1 … . 
For the usual Hölder norms ∞= ,2,1p , these ISs 
have well-known shapes: hyper-diamonds, hyper-
ellipses and hyper-rectangles, respectively. 

Our research has yielded a framework that refines the 
qualitative analysis by defining a special type of ES, 
called by us diagonally-invariant exponential 
stability (DIES), able to incorporate the ISs into the 
classical concept of ES. Unlike ES, which is a norm-
independent property, DIES depends on the 
considered norm || ||p, and, therefore, its study 
requires appropriate instruments. The definition of 
the local and global DIES in terms of the standard 

δ−ε  formalism, as well as general characterizations 
of DIES are given in Section 2. Section 3 formulates 
DIES conditions in terms of matrix measures; these 
conditions are exploited in Section 4 via methods 
based on matrix comparisons. Section 5 applies the 



     

results from the previous sections to several classes 
of linear and nonlinear dynamical systems. Some 
final remarks on the relevance of our work are 
presented in Section 6. 

Although not directly related to the diagonal stability, 
the papers cited below supported our investigation on 
DIES by valuable ideas about ES and/or ISs. Thus, 
(Fang and Kincaid, 1996) proposed a generalization 
of Coppel's inequality (Coppel, 1965) for studying 
the ES of nonlinear and time-variant systems, but the 
information available about the ISs is not taken into 
discussion. The set invariance problem for arbitrary 
norms is addressed within the context of ES in 
(Kiendl et al, 1992), but only for LTI systems. 
Moreover, that paper considers only constant ISs (i.e. 
time-independent), regarded, in the traditional 
manner, as attraction sets for the trajectories. The 
exponential time-dependence of the ISs (called 
"contractive" sets) is considered for LTI systems by 
the survey paper (Blanchini, 1999) and some papers 
cited therein, but without a special interest for the 
link between the ES and the ISs. The way toward a 
profound interpretation of this link as a special type 
of ES, has been opened by several works on 
componentwise stability, such as (Pavel, 1984), 
(Voicu 1984, 1987), (Hmamed and Benzaouia, 
1997), (Matcovschi and Pastravanu, 2004), 
(Pastravanu and Voicu, 2004), that carefully revealed 
the properties of the time-dependent rectangular ISs. 
Some results of these works will be commented by 
the current paper from the DIES point of view. 

To get a reasonable size for this text, the framework 
we have developed refers only to continuous-time 
systems, but it applies mutatis mutandis to the 
discrete-time case. Also for brevity, the proofs of our 
results are limited to the key elements.  
 

2. GENERAL CHARACTERIZATION 

Consider the dynamical system 
 00 )(,),),(()( xtxxttxftx n =∈= R� , (1) 

where nnf RRR →× +:  is continuously differentiable 

in nx R∈ , continuous in +∈Rt , and +∈∀ Rt , 
0),0( =tf , i.e. }0{  is an equilibrium point (EP) of 

system (1). For referring to the state-space trajectory 
initialized in 00 )( xtx = , we write ),;( 00 xttx .  

Let || ||p:Rn→R+ denote the Hölder norm p in Rn. If D 
is a positive diagonal matrix 1diag{ ,..., }nD d d= , 

nidi ,...,1,0 => , denote by D
p||||  the vector norm 

given by p
D
p xDx |||||||| 1−= . 

Definition 1. The EP {0} of system (1) is locally 
diagonally-invariant exponentially stable in the 
Hölder norm p (abbreviated as locally DIESp) if there 
exist a positive diagonal matrix D, a constant 0<r  
and a constant 0>η  such that 

 +∈∀η∈ε∀ R0,),,0( tt , 0tt ≥ , nx R∈∀ 0 , 

 )0(
000 ||),;(|||||| ttrD

p
D
p exttxx −ε≤⇒ε≤ . (2) 

The link between the local DIESp and the local ES 
defined by the δ−ε  formalism for an arbitrary norm 

||||  (e.g. Michel and Wang, 1995, pp.107) 

 nxtttt RR ∈∀≥∈∀>εδ∃>ε∀ + 000 ,,,:0)(,0 , 

 )0(
000 ||),;(||)(|||| ttrexttxx −ε≤⇒εδ≤ , (3) 

is given by the following proposition (easy to prove). 
Proposition 1. The EP {0} of system (1) is locally 
DIESp iff there exist a positive diagonal matrix D, a 
constant 0<r  and a constant 0>η  such that {0} is 
locally ES in the sense of condition (3) applied with 

),0()( η∈ε=εδ , for the vector norm D
p|||| .  

Besides the local ES, the local DIESp also ensures (easy 
to prove) the invariance property formulated below: 
Proposition 2. The EP {0} of system (1) is locally 
DIESp iff there exist a positive diagonal matrix D, a 
constant 0<r  and a constant 0>η  such that 

),0( η∈ε∀ , +∈∀ R0t , the time-dependent sets  

{ }0( )
0 0( ; ) ( ) || ( ) || , 0r t tn D

pX t t x t x t e t tε ε −= ∈ ≤ ≥ ≥R , (4) 

are invariant (positively invariant) with respect to the 
trajectories of system (1).  

These ISs correspond to time-dependent level sets 
associated with strong Lyapunov functions. 
Proposition 3. The EP {0} of system (1) is locally 
DIESp iff there exists 0>η  such that 

+→η<∈=Ω RR }|||||{: D
p

n xxV , D
pxxV ||||)( =  is a 

strong Lyapunov function with the decreasing rate r, i.e  
 ( ) ( ))()(),(,,0 txrVtxVDtxxxt ≤=Ω∈∀≥∀ + , (5) 

where +D  denotes the Dini right derivative. 
Proof. Inequality (5) is equivalent to 
 Ω∈=∀≥≥∀ )(,,0, 0000 txxtttt , 

 ( ) ( ))()( 0
)0( txVetxV ttr −≤ . (6) 

Necessity: Inequality (6) results from the invariance of 
the time-dependent ISs );( 0ttX ε  with D

ptx ||)(|| 0=ε . 
Sufficiency: It can be proved by contradiction. `  

Definition 2. If ∞=η  in Definition 1, then the EP 
{0} of system (1) is globally DIESp (or DIESp in the 
large).   
If the EP {0} of system (1) is globally DIESp, then 
inequality (6) is true for nR=Ω  and it points out the 
link with the definition of global ES formulated for 
an arbitrary norm ||||  (e.g. Michel and Wang, 1995 
pp.108) 
 nxttttK RR ∈∀≥∈∀≥∃ + 000 ,,,:1 , 

 ( ) ||||||),;(|| 000 xKexttx ttr
o

−≤ . (7) 

Proposition 4. The EP {0} of system (1) is globally 
DIESp iff it is globally ES in the sense of condition (7) 
applied with 1=K , for the vector norm D

p|||| .  



     

Remark 1. Propositions 2 and 3 with ∞=η  characterize 
the global DIESp of the EP {0} of system (1).   
 

3. DIESP AND MATRIX MEASURES 

Given a square matrix Q, consider its measure  
 || || 0

( ) lim(|| || 1) /D
p

D
pQ I Q

θ
µ θ θ

↓
= + −  (8) 

associated with the matrix norm p
D
p QDDQ |||||||| 1−= . 

Using the material presented in (Fang and Kincaid, 
1996), the following three Lemmas can be proved. 
Lemma 1. System (1) is equivalent to the system: 
 )()),(()( txttxAtx =� , (9) 
where the nn×  matrix ),( txA  is defined by: 

 ∫=
1

0
),(),( dstsxJtxA , (10) 

and nnxtxftxJ ×∈∂∂= R]/),([),(  denotes the Jacobian 

matrix of the function : n nf +× →R R R  w.r.t. nx∈R .  

Lemma 2. For any norm D
p|||| , nx R∈  and +∈Rt ,  

 ∫µ≤µ
1

0 ||||||||
)),(()),(( dstsxJtxA DpDp

.  (11) 

Lemma 3. For any +∈Rt , 
 ),0(),0( tJtA = .  (12) 

Relying on this background, let us explore the DIESp 
of system (1) in terms of matrix measures.  
Theorem 1. The EP {0} of system (1) is locally DIESp 
if there exist a positive diagonal matrix D, a constant 

0<r  and a vicinity }0{U  of }0{  such that at least 
one of the following two conditions is fulfilled 
(a) +∈∀∈∀ RtUx },0{ , rtxADp

≤µ )),((
||||

; (13) 

(b) +∈∀∈∀ RtUx },0{ , rtxJDp
≤µ )),((

||||
. (14) 

Proof. (a) There exists a constant 0>η , such that, 

}|||||{ η<∈=Ω∈∀ D
p

n xxx R , +∈∀ Rt  we have 

( ) ( ))()( txrVtxVD ≤+  and apply Proposition 3. (b) If 
(14) is true, use Lemma 2 and the result in part (a).  
Remark 2. If inequalities (13) or (14) hold for 

nx R∈∀ , Theorem 1 provides sufficient conditions 
for the global DIESp of the EP {0} of system (1).  

For the local DIESp we can formulate a necessary 
and sufficient condition, by using )),0()),0( tJtA = . 
Theorem 2. The EP {0} of system (1) is locally 
DIESp iff there exist a positive diagonal matrix D and 
a constant 0<r such that 
 +∈∀ Rt , rtJtA DpDp

≤µ=µ )),0(()),0((
||||||||

. (15) 

Proof. Sufficiency: Use the continuity of )),((
||||

txJDp
µ  

to show 0)),((
||||

<σ≤µ txJDp
 for a vicinity of {0} and, 

then, Theorem 1. Necessity: For any trajectory belonging to 
a vicinity of {0}, we write +∈∀ Rt , 0>θ∀ , =θ+ )(tx  

)()),(()(),0()( θθ+θ+θ+ OttxFtxtJtx , 0)(lim
0

=θ
↓θ

O  

and 0||||/||),(||lim
0

=
→

xtxF
x

 for any norm |||| . Hence, 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

θ
−

θ+

θ
=µ

=↓θ

1
||)(||

||)()),0((||
sup1lim),0(

||)(||0|||| D
p

D
p

cDptx
Dp tx

txtJI
tJ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

θ
−

θ+

θ
=

↓θ

1
||)(*||

||)(*)),0((||1lim
0 D

p

D
p

tx

txtJI
, where *x  is the 

generic notation for those x that allow reaching the 
supremum. We can continue to write ( )≤µ ),0(

||||
tJDp

 

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

θ
−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ θ
++

θ

θ+

↓θ

1
||)(*||
)(

||)(*||

||)),(*(||

||)(*||

||)(*||
lim

0 D
p

D
p

D
p

D
p

D
p

tx
O

tx

ttxF

tx

tx

D
p

D
p

D
p

D
p

tx

ttxF

tx

tx

||)(*||

||)),(*(||1
||)(*||

||)(*||
lim

0
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

θ
−

θ

θ+

↓θ
, where the first 

term is dominated by the decreasing rate appearing in 
inequality (6), and the second term is negligible, once the 
considered vicinity of }0{ , cx D

p ≤|||| , is small enough..  
 

4. DIESP AND MATRIX COMPARISONS 

Given a square matrix )( ijqQ = , nji ,,1, …= , denote 

by )( ijqQ = , nji ,,1, …= , the essentially nonnegative 
matrix built from the matrix Q as follows: 
  njijiqqniqq ijijiiii ,,1,,|,|;,,1, …… =≠=== . (16) 

First, we prove four technical results referring to 
essentially nonnegative matrices.  
Lemma 4. If P is an essentially nonnegative matrix, 
then it has a real eigenvalue (simple or multiple), 
denoted by )(max Pλ , which dominates the whole 
spectrum of P, i.e. ( ) niPPi ...,,1),()(Re max =λ≤λ . 
Proof: )(max PsI +λ  is the spectral radius of the 
nonnegative matrix PsI + , where iips ≥ , ni ,,1"= .  
Lemma 5. Consider an arbitrary square matrix Q and an 
essentially nonnegative matrix of the same size P, such 
that PQ≤ . Then (a) )()())(Re( maxmax PQQi λ≤λ≤λ , 

ni ,,1…= ; (b) )()()(
||||||||||||

PQQ
ppp ∆∆∆ µ≤µ≤µ , for any 

positive diagonal matrix ∆  and for any Hölder norm p. 
Proof: (a) It results from Theorem 8.1.18 in (Horn 
and Johnson, 1985). (b) For any ∆  positive diagonal, 

PQ≤  implies ∆∆≤∆∆≤∆∆ −−− PQQ 111  that yields 

)()()( 1
||||

1
||||

1
|||| ∆∆µ≤∆∆µ≤∆∆µ −−− PQQ ppp , since 

any Hölder norm p is monotonic.  
Lemma 6. Consider an arbitrary square matrix Q. 
For any positive diagonal matrix ∆  and for the 
Hölder norms 1=p  and ∞=p , there exists the 

equality )()(
||||||||

QQ
pp ∆∆ µ=µ . 

Proof: It results from the expressions of the measures.  



     

Lemma 7. Let P be an essentially nonnegative 
matrix. If )(max Pr λ> , for any Hölder norm p there 
exists a positive diagonal matrix },,{diag 1 nδδ=∆ … , 

such that rPPP
pp <µ=∆∆µ≤λ ∆

− )()()(
||||

1
||||max .    

Proof: First, consider the situation (i) when P is 
nonnegative. If E is a square matrix with all its 
entries 1, then )(max EP ε+λ  as a function of 0≥ε  is 
continuous and nondecreasing, according to Theorem 
8.1.18 in (Horn and Johnson, 1985). If )(max Pr λ> , 
we can find an 0*>ε  such that rEP ≤ε+λ )*(max . 
On the other hand, the matrix EP *ε+  is positive 
and there exist its right and left Perron eigenvectors 

0][ 1 >= T
nvvv … , 0][ 1 >= T

nwww " . From (Stoer 
and Witzgall, 1962), if 1/1/1 =+ qp  ( 1=p  meaning 

0/1 =q , ∞=p  meaning 1/1 =q ), for the positive 

diagonal matrix }/,,/{diag /1/1/1
1

/1
1

p
n

q
n

pq wvwv "=∆  we 

can write )*(||)*(|| max
1 EPEP p ε+λ=∆ε+∆− . We also 

have pp EPP ||)*(|||||| 11 ∆ε+∆<∆∆ −− , since any 
Hölder norm p is monotonic. Consequently, 

rPP p<∆∆≤λ − ||||)( 1
max . Similarly we develop the 

proof for situation (ii) when P is essentially 
nonnegative, by considering 0>s  such that PsI +  is 
nonnegative. Note that when P is irreducible, the 
positive diagonal matrix ∆  can be built directly from 
the right and left Perron eigenvectors, yielding 

)()( 1
||||max ∆∆µ=λ − PP p .  

The following results exploit the DIESp conditions 
formulated in terms of matrix measures via matrix 
majorization applied to ),( txA , ),( txJ . 
Theorem 3. If there exist a vicinity }0{U  of the EP {0} 
and a matrix S Hurwitz stable, such that at least one 
of the following two matrix inequalities is fulfilled: 
(a) StxAtUx ≤∈∀∈∀ + ),(,},0{ R , (17) 

(b) StxJtUx ≤∈∀∈∀ + ),(,},0{ R , (18) 
then {0} is locally DIESp for any Hölder norm p. 
Proof: (a) For any Hölder norm p, Lemma 7 applied to 
the matrix S ensures the existence of a positive diagonal 
matrix D and of a constant 0<r  such that 

0)(
||||

<<µ rSDp
. At the same time, from Lemma 5b) we 

have +∈∀∈∀ RtUx },0{  )()),((
||||||||

StxA DpDp
µ≤µ , 

for any Hölder norm p. Thus, we can apply the first part 
of Theorem 1. (b) The proof is similar to part (a).  

Remark 3. If inequalities (17) or (18) hold for 
nx R∈∀ , Theorem 3 provides sufficient conditions for 

the global DIESp, of EP {0} for any Hölder norm p.  

Remark 4. The usage of Lemma 7 for the essentially 
nonnegative matrix S in the proof of Theorem 3 
provides a concrete procedure for finding both the 
positive diagonal matrix D and the constant 0<r .  

Remark 5. Theorem 3 can also offer sufficient 
conditions for the robustness analysis of the DIESp 
with respect to some uncertainties affecting the 
expression of the vector function nnf RRR →× +:  
that defines the dynamics of system (1).  

Although Theorem 2 provides a necessary and sufficient 
condition for local DIESp based on A(0,t) = J(0,t), 
sometimes matrix majorization can be more convenient. 
Theorem 4. If there exists a matrix S Hurwitz stable 
such that the following matrix inequality: 
 StJtAt ≤=∈∀ + ),0(),0(,R  (19) 
is fulfilled, then the EP {0} of system (1) is locally 
DIESp for any Hölder norm p. 
Proof: Reasoning as in the proof of Theorem 3, we 
show there exists a positive diagonal matrix D such 
that +∈∀ Rt , ( ) ( ) 0),0(),0(

||||||||
<µ=µ tJtA DpDp

. 

Then we apply the sufficiency part of Theorem 2.  
Theorem 5. If there exists +∈R*t  such that 

 *),0(*),0(),0(),0(, tJtAtJtAt =≤=∈∀ +R , (20) 
then the Hurwitz stability of the matrix 

*),0(*),0( tJtA =  is (a) sufficient for the local DIESp 
of the EP {0}, for any Hölder norm p; (b) necessary 
and sufficient for the local DIESp of the EP {0}, for 
the Hölder norms p = 1 and p = ∞. 
Proof: (a) It is a direct consequence of Theorem 4. 
(b) According to Theorem 2, for each of the Hölder 
norms p = 1, p = ∞, there exists a positive diagonal 
matrix D , such that 0*)),0((

||||
<µ tADp

. Lemma 6 

allows writing 0)*),0(()*),0((
||||max <µ≤λ tAtA Dp

.  

Theorem 6. If there exists +∈R*t  such that 

 *),0(*),0(),0(),0(, tJtAtJtAt =≤=∈∀ +R , (21) 
then the Hurwitz stability of the matrix 

*),0(*),0( tJtA =  is necessary and sufficient for the 
local DIESp of the EP {0}, for any Hölder norm p. 
Proof: Sufficiency: It is a consequence of Theorem 5, 
since, in this case *),0(*),0( tAtA = . Necessity: For 
any Hölder norm p, Theorem 2 ensures the existence 
of a positive diagonal matrix D, such that 

( ) ( ) 0*),0(*),0(
||||max <µ≤λ tAtA Dp

.   

Remark 6. All our procedures for DIESp analysis 
need testing if an essentially nonnegative matrix is 
Hurwitz stable, or, equivalently, if it is a -M matrix.  
Remark 7. Theorem 3 can be regarded in terms of 
system comparison theory in the sense that matrix S 
defines the dynamics of a linear system used as 
comparison system for (1). If nx∀ ∈R , t +∀ ∈R , 

( , )A x t S≤  and S−  is an M matrix, then a classical 
result for differential systems (e.g. Michel and Wang, 
1994, pp. 271) concludes that the EP {0} of system 
(1) is globally ES. Under the same hypothesis, our 
Theorem 3a) guarantees a more refined property, 
namely the global DIESp of the EP {0}, for any 
Hölder norm p.   



     

5. DIESP OF SOME CLASSES OF SYSTEMS 

In this section we will briefly illustrate the 
applicability of our results in analyzing the DIESp for 
some classes of systems. We will also show that the 
framework developed by us for the DIESp is able to 
incorporate, as particular cases, results reported by 
different works dealing with ES and/or ISs. 

5.1. DIESp of Linear Systems 
We analyse the global DIESp as a system property. 

5.1.1. Time-Variant Systems. Consider the system: 
 )()()( txtAtx =� , )(tA  continuous. (22) 
Corollary 1. System (22) is DIESp iff there exist a 
positive diagonal matrix D and a constant 0<r  such that: 
 +∈∀ Rt , rtADp

≤µ ))((
||||

. (23) 

Proof: It is a consequence of Theorem 2.  

Corollary 2. Denote by ),( 0ttΦ  the transition matrix 
of system (22). System (22) is DIESp iff there exist D 
positive diagonal and a constant 0<r  such that: 
 +∈∀ R0,tt , 0tt ≥ , )0(

0 ||),(|| ttrD
p ett −≤Φ . (24) 

Proof: Sufficiency: If (24) is true, then +∈∀ R0,tt , 

0tt ≥ , ||(||||)(|| 0
)0( txetx ttr −≤  and use the sufficiency 

part of Proposition 3. Necessity: From the necessity 
part of Proposition 3, we have +∈∀ R0,tt , 0tt ≥ , 

)0(

0

00

0||)0(||
0 ||)(||

||)(),(||
sup||),(|| ttr

D
p

D
p

Dptx

D
p e

tx

txtt
tt −

≠
≤

Φ
=Φ .  

Remark 8. The ES of system (22) means +∈∀ R0,tt , 

0tt ≥ , )0(
0 ||),(|| ttrkett −≤Φ , with 1≥k , for any norm 

|||| , whereas DIESp means 1≡k  for the norm D
p|||| .  

The following Corollaries result from Theorems 4 - 6. 

Corollary 3. System (22) is DIESp for any Hölder norm 
p if there exists a Hurwitz stable matrix S such that: 
 +∈∀ Rt , StA ≤)( .  (25) 
Corollary 4. If there exists +∈R*t  such that 

 +∈∀ Rt , *)()( tAtA ≤ ,  (26) 

then *)(tA  Hurwitz stable is (a) sufficient for the 

pDIES  of (22), for any Hölder norm p; (b) necessary 
and sufficient for the DIESp of (22), for ∞= ,1p  .  

Corollary 5. If there exists +∈R*t  such that 

 +∈∀ Rt , *)()( tAtA ≤ ,  (27) 
then *)(tA  Hurwitz stable is necessary and sufficient 
for the DIESp of (22), for any Hölder norm p.   

5.1.2. Time-Invariant Systems. Consider the system: 
 )()( tAxtx =� . (28) 
The next  results are derived from Corollaries 1 - 5. 

Corollary 6. System (28) is DIESp iff there exist D 
positive diagonal and a constant 0<r  such that: 

 0)()( 1
||||||||

<≤µ=µ − rADDA pDp
.  (29) 

Remark 9. For the Hölder norm p=2, (29) means a 
Lyapunov inequality defining the diagonal stability of 
the matrix A (Kaszkurewicz and Bhaya, 2000), 

0)(2)()( 212121 ≤−+ −−− DrADDAT , 0<r . This 
fact has motivated us to regard inequality (29) as a 
generalized Lyapunov inequality that allows introducing 
the concept of pDIES  for any Hölder norm p.   
Remark 10. The usage of the vector norms in 
defining ISs (with general forms) for system (28) is 
proposed in (Kiendl et. al, 1992). Since the ISs are 
regarded as independent of time, those results do not 
express a link between the measure of A and the 
decreasing rate of the ISs, r, as formulated in (29).  
Corollary 7. System (28) is DIESp iff there exist D 
positive diagonal and a constant 0<r  such that: 
      +∈∀ R0,tt , 0tt ≥  )0()0( |||| ttrD

p
ttA ee −− ≤ .  (30) 

Corollary 8. A  Hurwitz stable (or A−  an M 
matrix) is (a) sufficient for the DIESp of (28), for any 
Hölder norm p; (b) necessary and sufficient for the 
DIESp of (28) for the Hölder norms ∞= ,1p .   

Remark 11. Corollary 8b) gives a remarkable algebraic 
interpretation to inequality (29) with ∞=p  ( 1=p ): the 

n generalized Gershgorin's disks of A and A , written 
for rows (columns), coincide, and they are located in the 
region 0Re <≤ rs  of the complex plane. Moreover 
Corollary 8b) accommodates as DIES∞  the symmetrical 
case of the componentwise exponential asymptotic 
stability of system (28) investigated in (Voicu, 1984), 
(Hmamed and Benzaouia, 1997).  
Corollary 9. If the matrix A is essentially 
nonnegative, then the Hurwitz stability of A (or -A an 
M matrix) is a necessary and sufficient condition for 
the DIESp of system (28), for any Hölder norm p.   

5.1.3. Interval Matrix Systems. Consider the system: 
    )()( tAxtx =� , }|{ +−× ≤≤∈=∈ AQAQAA nnI R . (31) 

Corollary 10. Select the matrix IAA ∈*  satisfying  
 IAA∈∀ , *AA≤ .  (32) 
The Hurwitz stability of *A  is (a) sufficient for the 
DIESp of the interval matrix system (31) for any 
Hölder norm p; (b) necessary and sufficient for the 
DIESp of system (31) for the Hölder norms ∞= ,1p . 
Proof: (a) It results from Theorem 3. (b) For each of 
the Hölder norms ∞= ,1p , there exist D  positive 
diagonal and a constant 0<r , such that rADp

≤µ *)(
||||

. 

Lemma 5b) yields rAA Dp
≤µ≤λ )*()*(

||||max .  

Remark 12. The Hurwitz stability of *A  was proposed 
as an easy-to-apply sufficient condition for testing the 
standard ES of interval systems, e.g. (Chen, 1992), 
(Sezer and Šiljak, 1994). Corollary 10a) shows that the 
discussed hypothesis ensures more refined properties.  
Remark 13. Corollary 10b) for DIES∞ provides the 
same necessary and sufficient condition as formulated 



     

in (Pastravanu and Voicu, 2004) for the symmetrical 
componentwise exponential asymptotic stability.   

Corollary 11. If there exists IAA ∈* , such that 
 IAA∈∀ , *AA≤ , (33) 
then the Hurwitz stability of the matrix *A  is a 
necessary and sufficient condition for the DIESp of 
the interval matrix system (31) for any Hölder norm p. 
Proof: Sufficiency: It results from Theorem 3. 
Necessity: For an arbitrary Hölder norm p, there exist 
D  positive diagonal and a constant 0<r , such that 

rADp
≤µ *)(

||||
. We also have *)(*)(

||||max AA Dp
µ≤λ .  

5.2. DIESp of Recurrent Neural Networks  
Consider the nonlinear system  
 ))(()()( txWgtBxtx +=� , (34) 

where },,{diag 1 nbbB "= , 0<ib , ni ,,1…= , nnW ×∈R , 

and )(: 1 nnn Cg RRR ∈→ , ))(())(( txgtxg iii = , with 

(0) 0ig =  and 0 ( )i i ig x L′≤ ≤ , n
ix R∈∀ , ni ,,1…= . 

This type of systems characterizes the dynamics of 
the Hopfield neural networks without delay, 
described with respect to the EP {0}. 

5.2.1. Global DIESp of Hopfield Networks 
Corollary 12. Define the matrices nnW ×∈R~ , whose 
entries are },0max{~

iiii ww = , ni ,,1…= , ||~
ijij ww = , 

ji ≠ , nji ,,1, …= , and },,{diag~
ni LL "=Λ . If the 

matrix Λ+=Π
~~~ WB  is Hurwitz stable, then the EP{0} of 

system (34) is globally DIESp for any Hölder norm p. 
Proof: nx R∈∀ , 1 1( ) diag{ ( ), , ( )}n nJ x B W g x g x′ ′= + "  

Π=Λ+≤
~~~WB  and apply Theorem 3b) with Π=

~S .  
Remark 14. Theorem 3.8c) in (Fang and Kincaid, 
1996) uses the same inequality as ours, i.e. Π≤

~)(xJ , 
but only for the analysis of the global ES.   
Remark 15. Our Corollary 12 for DIES∞ provides the 
same sufficient condition as formulated in (Matcovschi 
and Pastravanu, 2004) for the symmetrical 
componentwise exponential asymptotic stability.   

5.2.2. Local DIESp of Hopfield neural networks 
Corollary 13. Define the matrices nnW ×∈Rˆ , whose 
entries are iiii ww =ˆ , ni ,,1…= , ||ˆ ijij ww = , ji ≠ , 

nji ,,1, …= , and 1diag{ (0), , (0)}ng gΛ ′ ′= " . The 

Hurwitz stability of the matrix Λ+=Π WB ˆˆ  is (a) 
sufficient for the local DIESp of the EP {0} of (34) for 
any Hölder norm p; (b) necessary and sufficient for the 
local DIESp of the EP {0} of (34) when ∞= ,1p . 

Proof: 1
ˆ ˆ(0) diag{ (0), (0)}nJ B W g g B WΛ Π′ ′= + = + ="  

and apply Theorem 4 with Π= ˆS .  

Corollary 14. The EP {0} of (34) is DIESp iff there 
exist D positive diagonal such that 0)(

||||
<Λ+µ WBDp

. 

Proof: Apply Theorem 2 for Λ+= WBJ )0(   

Remark 16. As expected, the sufficient condition in 
Corollary 13a) for local DIESp is weaker than the one 
in Corollary 12 for global DIESp, i.e. when Π̂  is 
Hurwitz stable, Π

~  may be not. This is because 
Π≤Π
~ˆ  implies )~()ˆ( maxmax Πλ≤Πλ  - see Lemma 

5a). In its turn, the condition in Corollary 14 is 
weaker than the condition in Corollary 13a), for 

∞≠ ,1p , since ))0(())0((
||||||||

JJ DpDp
µ≤µ  for any 

positive diagonal matrix D - see Lemma 5b).   
 

6. CONCLUSIONS 

The concept of DIES brings a refinement in the 
qualitative analysis of the dynamical systems because 
it expresses the link between the classical ES and 
different types of ISs. Matrix measures represent the 
instruments able to capture information about the 
both properties, ES and the existence of ISs. To 
simplify the exploitation of these instruments, we 
also formulate some results based on matrix 
comparisons. The developed framework offers a 
deeper interpretation for the usage of the algebraic 
tools in exploring the system stability. The paper also 
presents specialized and relevant results derived for 
some classes of linear and nonlinear systems, which 
are frequently encountered in automatic control. 
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