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Abstract In this paper, a basic property that a Liapunov-Krasovskii functional must have when
used for studying the stability of time delay systems under Carath¶eodory conditions is studied.
This property concerns the equality, almost everywhere, of the upper right-hand Dini derivative
of the Liapunov-Krasovskii functional evaluated at the solution, and of the Liapunov-Krasovskii
derivative (computed by using everywhere the system dynamics) evaluated at the solution and at
the forcing input. Su±cient conditions for that property are provided. Copyright @ 2005 IFAC.
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1. INTRODUCTION

In this paper, time invariant functional dif-
ferential equations, forced by measurable, lo-
cally essentially bounded inputs, are consid-
ered (the parallel delayed case of system 5
in Angeli et. al., 2000). The importance
in applications of the equations here consid-
ered is well known (see Burton, 1985, Hale
and Lunel, 1993, Kolmanovskii and Myshkis,
1999, Niculescu, 2001, Gu et al., 2003). It
is assumed that the function involved in the
dynamics and the input are such that the
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Carath¶eodory conditions are veri¯ed. As well
known, a functional di®erential equation, un-
der Carath¶eodory conditions, admits an abso-
lutely continuous solution which satis¯es such
an equation almost everywhere on a maximal
right-open time interval (see Kolmanovskii
and Myshkis, 1999, Section 2.4, pp. 100).
When using Liapunov-Krasovskii functionals
for studying the stability of functional di®er-
ential equations in this general case by the Li-
apunov's second method, the following two as-
sumptions must be introduced:
A1) the Liapunov-Krasovskii functional, eval-
uated at the solution of the system, returns a
locally absolutely continuous time function;
A2) the upper right-hand Dini derivative of
such absolutely continuous time function is
equal, almost everywhere, to the Liapunov-



Krasovskii functional derivative (computed by
using everywhere the functional di®erential
equation, without knowing the solution) evalu-
ated at the solution and at the forcing input.
The assumption A1 must be introduced be-
cause otherwise the non positivity, almost ev-
erywhere, of the upper right-hand Dini deriva-
tive of the time function obtained by evaluat-
ing the Liapunov-Krasovskii functional at the
solution is not su±cient for such time func-
tion to be non-increasing (as proved by the fa-
mous counter example of the devil's staircase).
The assumption A2 must be introduced in or-
der to get the utility of the Liapunov's second
method for practical use, which stands upon
the fact that it does not require the knowledge
of the solution.
As far as the assumption A1 is concerned, it
can be taken care of in the choice of Liapunov-
Krasovskii functionals by the facts that a lo-
cally Lipschitz function of an absolutely con-
tinuous function returns an absolutely contin-
uous function, and that the integral of a con-
tinuous function (the initial conditions of the
functional di®erential equation are assumed
continuous) returns an absolutely continuous
function. In the delayless case, since euclidean
spaces are considered, the locally Lipschitz
property of the Liapunov function is su±cient
for the assumption A1 to hold.
As far as the assumption A2 is concerned, the
Theorem 4.2.3, pp. 258 in (Burton, 1985) (due
to Driver, 1962), states that, when the func-
tion describing the (time varying) functional
di®erential equation is continuous and locally
Lipschitz with respect to the state argument,
and the Liapunov-Krasovskii functional is lo-
cally Lipschitz, then such assumption holds
(moreover the equality claimed in A2 holds
everywhere). Note that the hypothesis of con-
tinuity of the function describing the delay dif-
ferential equation would involve, for the sys-
tems studied here, the hypothesis of continuity
of the input, which in general is not possible to
introduce when disturbances are considered.
On the basis of the Theorem 4.2.3 in (Burton,
1985), conditions for the assumption A2 to
hold without assuming continuity of functions
involved in the system equations are studied
here. The Carath¶eodory conditions are in-
stead assumed.
It is shown here that the locally Lipschitz
condition of the Liapunov-Krasovskii func-
tional, and a further condition, besides the
Carath¶eodory and locally Lipschitz ones, on
the function describing the system dynamics
and on the input function are su±cient for A2
to hold.
Such further condition, which appears to be

very simple and natural, is the following: al-
most everywhere, the Lebesgue mean of suit-
able functions of the input converges to zero
as the interval of integration decreases to zero.
Moreover it is proved that: if for any func-
tion describing the dynamics of the system,
any input function and any initial state, the
upper right-hand Dini derivative at zero of
the Liapunov-Krasovskii functional evaluated
at the solution of the system is given by a
function (which is de¯ned uniquely by the
functional) of the initial state and of the
right-hand Dini derivative at zero of the so-
lution, then no further condition, besides
Carath¶eodory ones, is needed for the system
in order to have the assumption A2 to hold.
The theorems here developed are useful for
studying the Input-to-State Stability (ISS)
of time delay systems (see Teel, 1998)
on a Liapunov-Krasovskii framework. The
Carath¶eodory environment here proposed is
common, for instance, when considering the
ISS with respect to measurable, locally essen-
tially bounded disturbances.

2. PRELIMINARIES

Let us consider the following nonlinear time-
delay system

_x(t) = f (xt; u(t)); t ¸ 0; a:e:;

x(¿ ) = »0(¿ ); ¿ 2 [¡¢; 0];
(1)

where x(t) 2 Rn, u(t) 2 Rm is the input
function, n;m are positive integers, for t ¸ 0
xt : [¡¢; 0] ! Rn is the standard function
(see Section 2.1, pp. 38 in Hale and Lunel,
1993) given by xt(¿) = x(t + ¿), ¢ is the
maximum involved delay, f is a function from
C([¡¢ ;0];Rn)£Rm to Rn, C ([¡¢; 0]; Rn) de-
notes the set of the continuous functions which
are de¯ned on [¡¢; 0] and take values in Rn ,
»0 2 C ([¡¢; 0];Rn). Without loss of general-
ity we suppose that f (0; 0) = 0, thus ensuring
that x(t) = 0 is the trivial solution for the un-
forced system _x(t) = f (xt ; 0) with zero initial
conditions. Multiple discrete non commensu-
rate as well as distributed delays can appear
in (1).
The symbol j ¢ j stands for the Euclidean norm
of a real vector, or the induced Euclidean norm
of a matrix. A function u is said to be essen-
tially bounded if ess supt¸0 ju(t)j < 1. We
indicate the essential supremum norm of an
essentially bounded function with the symbol
k ¢ k1. For given times 0 · T1 < T2, we
indicate with u[T1;T2 ) : [0;+1) ! Rm the



function given by u[T1;T2)(t) = u(t) for all
t 2 [T1; T2) and = 0 elsewhere. An input u
is said to be locally essentially bounded if, for
any T > 0, u[0;T ) is essentially bounded. A
function w : [0; b) ! R, 0 < b · +1; is
said to be locally absolutely continuous if it
is absolutely continuous in any interval [0;c],
0 < c < b. L2([¡¢; 0];Rn) is the space
of square Lebesgue integrable functions from
[¡¢; 0] to Rn.
The following standard hypothesis (see Hale
and Lunel, 1993, Kolmanovskii and Myshkis,
1999) is assumed throughout the paper:
Hp0) The function f : C ([¡¢; 0];Rn)£Rm!
Rn and the input function u : R+ ! Rm are
such that the function

g : C([¡¢ ;0];Rn)£ R+ ! Rn (2)
given, for (Á; t) 2 C([¡¢; 0];Rn) £ R+,
by g(Á; t) = f (Á; u(t)), is bounded on any
bounded set U ½ C([¡¢; 0];Rn)£R+ (the set
C([¡¢; 0];Rn) being endowed with the supre-
mum norm), and satis¯es the Carath¶eodory
conditions in C([¡¢; 0];Rn)£R+.

Remark 1. As is well known, from the hy-
pothesisHp0 it follows that the system (1) ad-
mits a unique solution on a maximal interval
[0; b), 0 < b · +1, which is (componentwise)
locally absolutely continuous and, if b < +1,
is unbounded in [0; b) (see Section 2.6, pp. 58
in Hale and Lunel, 1993, and Sections 2.2 and
2.4, pp. 96, 100 in Kolmanovskii and Myshkis,
1999).

In the following, the continuity of a functional
V : C([¡¢; 0];Rn) ! R+ is intended with
respect to the supremum norm. Given a con-
tinuous functional V : C([¡¢; 0];Rn) ! R+ ,
the derivative D+V of the functional V is de-
¯ned by (see Burton, 1985, De¯nition 4.2.4,
pp. 258)

D+V (Á; v) = lim sup
h!0+

1
h

(V (Á?h)¡ V (Á)) ; (3)

where Á?h 2 C ([¡¢; 0];Rn ) is given by

Á?h(s) =
½

Á(s + h); s 2 [¡¢;¡h];
Á(0) + f (Á; v)(h+ s); s 2 (¡h; 0];

(4)
The functional D+V is generalized because it
can take in¯nite values (see Kolmanovskii and
Myshkis, 1999, pp. 205), it is computed by
using the system equations without knowing
the solution.

3. MAIN RESULTS

Theorem 2. Let the function u in (1)

be measurable and locally essentially bounded.
Let V : C ([¡¢; 0];Rn ) ! R+ be a contin-
uous functional. Let the function f and the
function u in system (1) and the functional V
satisfy the following hypotheses:
HS1) 8Ã 2 C([¡¢; 0];Rn), there exist a
neighborhood of Ã and a locally bounded func-
tion KÃ : Rm ! R+, such that, 8Á1; Á2 in
that neighborhood, 8v 2 Rm, the inequality
holds

jf (Á1; v)¡ f (Á2;v)j · KÃ(v)kÁ1 ¡ Á2k1 ;

HS2) there exists a function

P : Rm £Rm ! R+ (5)

such that:
i) 8Ã 2 C([¡¢; 0];Rn), there exists a positive
real MÃ such that, 8v1; v2 2 Rm, the inequal-
ity holds

jf (Ã; v1) ¡ f (Ã; v2)j · MÃP (v1; v2); (6)

ii) the input function u satis¯es, for almost all
t 2 R+,

lim sup
h!0+

1
h

Z t+h

t
P (u(s); u(t))ds = 0; (7)

HS3) 8Ã 2 C([¡¢; 0], there exist a neigh-
borhood of Ã and a function LÃ, such that,
8Á1; Á2 in that neighborhood, the inequality
holds

jV (Á1) ¡ V (Á2)j · LÃkÁ1 ¡ Á2k1 : (8)

Let x(t) be the locally absolutely continuous
solution of system (1) in a maximal interval
[0; b). Let w : R+ ! R be the function de-
¯ned by w(t) = V (xt). Let D+w be the upper
right-hand Dini derivative of w, that is

D+w(t) = lim sup
h!0+

w(t + h)¡ w(t)
h

: (9)

Then, almost everywhere,

D+w(t) = D+V (xt; u(t)); t 2 [0; b):
(10)

Proof. Let xt be the function obtained from
the solution x(t) of (1) as usual. Let t? 2
[0; b). Let us consider the following system
with unknown variable x̂



_̂x(t) = f (xt?; u(t? )); t ¸ t?;

x̂t?(¿) = xt? (¿); ¿ 2 [¡¢; 0];
(11)

Let x̂(t), t ¸ t?, be the solution of system (11)
and let x̂t be the function obtained from x̂(t)
as usual. From (3) (4) it follows that

D+V (xt?; u(t?)) = lim sup
h!0+

V (x̂t?+h)¡ V (xt?)
h

(12)
From (12), from (9) i.e. from

D+w(t?) = lim sup
h!0+

V (xt?+h)¡ V (xt)
h (13)

and from the equalities
V (xt?+h) ¡ V (xt)

h
=

V (xt?+h)¡ V (x̂t?+h)
h

+

+
V (x̂t?+h)¡ V (xt?)

h
;

(14)

it follows right by the de¯nition of limsup
that, in order to prove the theorem, it is su±-
cient to prove that, for almost all t? 2 [0; b),

lim sup
h!0+

jV (xt?+h)¡ V (x̂t?+h)j
h

= 0: (15)

From the hypotheses HS1, HS2, HS3, since
the functions t ! xt, t ! x̂t are continuous
(see Lemma 2.1, pp. 40, in Hale and Lunel,
1993), it follows that, for su±ciently small h <
¢,
jV (xt?+h)¡ V (x̂t?+h)j ·
· Lxt?kxt?+h ¡ x̂t?+hk1 ·
· Lxt? sup

µ2[¡¢;0]
jxt?+h(µ)¡ x̂t?+h(µ)j =

= Lxt? sup
µ2[¡h;0]

jxt?+h(¡h) +

+
Z t?¡µ

t?
f (xs ;u(s))ds¡ xt?+h(¡h)¡

¡
Z t?¡µ

t?
f (xt?; u(t?))ds

¯̄
¯̄
¯ ·

· Lxt? sup
µ2[¡h;0]

Z t?¡µ

t?
jf (xs; u(s))¡

¡ f (xt?; u(t?))jds ·

· Lxt?
Z t?+h

t?
jf (xs; u(s)) ¡ f (xt?; u(s))+

+ f (xt?; u(s))¡ f (xt?; u(t?))jds ·

· Lxt?
Z t?+h

t?
Kxt? (u(s))kxs ¡ xt?k1ds+

+ Lxt?
Z t?+h

t?
Mxt?P (u(s); u(t?))ds

(16)

Since the function u is locally essentially
bounded, the function Kxt? is locally bounded,
the function t ! xt is continuous, it follows
that

lim sup
h!0+

1
h

Z t?+h

t?
Kxt? (u(s))kxs ¡ xt?k1ds = 0:

(17)
From the hypothesis HS2 it follows that, for
almost all t? 2 [0; b),

lim sup
h!0+

1
h

Z t?+h

t?
Mxt?P (u(s); u(t?))ds = 0;

(18)
and the theorem is proved.

Remark 3. As far as the hypothesis HS2
is concerned, note that, if

P (v1; v2) = jv1 ¡ v2j; (19)

then (7) becomes

lim sup
h!0+

1
h

Z t+h

t
ju(s)¡u(t)jds = 0; a:e:

(20)

Theorem 4. Let V : C([¡¢; 0];Rn) ! R+

be a continuous functional. Let there exist a
functional DV : C([¡¢; 0];Rn) £ Rn ! R
such that, for any function f , input u and ini-
tial condition »0 in (1), the following proposi-
tion holds true: if the solution x(t) of system
(1) admits ¯nite right-hand derivative at zero,
then the following equality holds

lim sup
h!0+

V (xh)¡ V (»0)
h

=

DV

µ
»0; lim

h!0+

x(h)¡ x(0)
h

¶
:

(21)

Let w : R+ ! R be the function de¯ned by
w(t) = V (xt). Let D+w be the upper right-
hand Dini derivative of w (see (9)).
Then, almost everywhere,

D+w(t) = D+V (xt; u(t)); t 2 [0; b):
(22)

Proof. Let Á 2 C ([¡¢; 0];Rn ), v 2 Rm.
Let us consider the following system with un-
known variable x̂

_̂x(t) = f (Á; v); t ¸ 0;

x̂(¿ ) = Á(¿); ¿ 2 [¡¢; 0];
(23)



Let x̂(t), t ¸ 0, be the solution of system (23)
and let x̂t be the function obtained from x̂(t)
as usual. From (3) (4) it follows that

D+V (Á; v) = lim sup
h!0+

V (x̂h)¡ V (Á)
h

(24)

Since the equality (21) holds for any f , u, »0,
from (24) and (21) the equalities follow

D+V (Á; v) = DV

µ
Á; lim

h!0+

x̂(h)¡ x̂(0)
h

¶
=

DV (Á; f (Á; v))
(25)

Since the system (1) and the functional V are
time invariant, the equality (21) holds for any
f , u, »0, and the solution x(¢) admits almost
everywhere in [0; b) ¯nite right-hand deriva-
tive, the equality

D+w(t) = DV

µ
xt ; lim

h!0+

x(t + h)¡ x(t)
h

¶

(26)
holds almost everywhere in [0; b). Since, for
almost all t 2 [0; b),

lim
h!0+

x(t + h)¡ x(t)
h

= f (xt; u(t)) (27)

it follows that, for almost all t 2 [0; b),

D+w(t) = DV (xt ; f (xt ; u(t))) = D+V (xt ; u(t))
(28)

Remark 5. In order to check the hy-
potheses of Theorem 4 it is not necessary to
check whether the solution admits ¯nite right-
hand derivative at zero. For instance, the well
known Liapunov-Krasovskii functional

V (Á) = ÁT (0)QÁ(0)+
Z 0

¡¢
ÁT (¿)SÁ(¿); (29)

with Q; S symmetric positive matrices, satis-
¯es the hypotheses of Theorem 4. In this case

DV

µ
»0; lim

h!0+

x(h)¡ x(0)
h

¶
=

»T0 (0)S»0(0)¡ »T0 (¡¢)S»0(¡¢)+

2»T0 (0)Q lim
h!0+

x(h)¡ x(0)
h

(30)

Remark 6. As far as the delayless case

_x(t) = f(x(t); u(t)); t ¸ 0; a:e: (31)

is concerned, when f is continuous and the in-
put u is continuous, then the Theorem 4.3,
App. I, in (Rouche et al., 1977) (due to
Yoshizawa, 1966), states that locally Lips-
chitz Liapunov functions yield that the as-
sumption A2 (in a form equivalent for the
delayless case) holds. In the case that only
Carath¶eodory conditions are assumed, results
parallel to the ones shown here for the de-
layed case hold true. If locally Lipschitz Li-
apunov functions are used, then the assump-
tions A1 and A2 hold true, provided that the
hypotheses HS1, HS2 (rewritten substituting
C([¡¢ ;0];Rn) with Rn) are satis¯ed. How-
ever, when the Liapunov functions are chosen
continuously di®erentiable (see Sontag 1989,
Lin et al., 1996, Sontag, 1998, Sontag, 2000,
Angeli et al., 2000), no further hypothesis, be-
sides Hp0 (rewritten in the equivalent form for
the delayless case), is needed for system (31),
in order to have A1 and A2 to hold.

4. CONCLUSIONS

In this paper, a basic property that a
Liapunov-Krasovskii functional must have
when used for studying the stability of time
delay systems under Carath¶eodory conditions
is studied. Time invariant time delay sys-
tems forced by measurable, locally essentially
bounded inputs are considered. This property
consists of the equality, almost everywhere,
between the upper right-hand Dini derivative
of the time function obtained by evaluating
the Liapunov-Krasovskii functional at the so-
lution, and of the Liapunov-Krasovskii deriva-
tive (computed by using everywhere the sys-
tem dynamics), evaluated at the solution and
at the input. Su±cient conditions on the
Liapunov-Krasovskii functional, on the func-
tion involved in the system dynamics and on
the input are given such that this property
holds.
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