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Abstract: In this paper robust control of discrete time linear systems in presence of
unmatched uncertainties is considered. Discrete time Variable Structure Control
is used, and the presence of the sector, always affecting this control approach,
is avoided by means of Switching Control. This latter is based on a suitable
partition of the parameter space, while each single controller is based on Discrete
time Variable Structure Control. It is worth noticing that the proposed approach
does not depend on the duration of the sampling interval, hence it works both for
sampled data system and for "pure” discrete time systems Copyright© 2005 IFAC.
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1. INTRODUCTION

Continuous time Variable Structure Control (VSC),
or Sliding Mode (SM) control, has been exten-
sively studied since the early 1950’s (Utkin, 1992)
(De Carlo et al., 1988) (Edwards and Spurgeon,
1998). As well known, the most significant aspect
of VSC is its robustness to parameter variations
and external disturbances. However, implementa-
tion problems, always present in real applications
of VSC, can lead to unacceptable performances.

An answer to these problems can be the use of
Discrete time Variable Structure Control (DVSC),
as recognized in (Young et al., 1999). A number of
approaches have been presented in the last years,
based on DVSC (Furuta, 1990) (Furuta, 1993)
(Gao et al., 1995) (Corradini and Orlando, 1997 a)
(Corradini and Orlando, 1997b) (Bartoszewicz,
1998) (Emelyanov et al., 1995) (Guo and Zhang,

2002) (Yu and Chen, 2003). However, the main
hindrance of DVSC is that a perfect invariance
to uncertainties cannot be achieved as in the
ideal continuous-time sliding mode: in fact, when
uncertainties are present, a ”quasi”-sliding mode
can be achieved outside of a region (sector) whose
width can depend on parameter variations or dis-
turbances (Gao et al., 1995). Inside the sector the
discrete time sliding mode can be imposed only
approximately: in (Furuta, 1993) adaptive control
is used; in (Corradini and Orlando, 1997b) uncer-
tainties are approximated by using the concept
of Time Delay Control; in (Bartoszewicz, 1998) a
reduction of the sector is obtained with respect to
(Gao et al., 1995). In (Emelyanov et al., 1995) the
presence of the sector is avoided for sampled linear
systems, provided that short sampling intervals
are considered.



In this paper, the approach described in (Emelyanov

et al., 1995) is modified and coupled with switch-
ing control, in order to guarantee robust stability
in the presence of unmatched parameter varia-
tions and nonlinear disturbances. It is worth notic-
ing that the proposed control law does not depend
on the sampling interval duration, i.e. it works also
for inherently discrete time systems, and ensures
the asymptotic stability of the considered plant
with no approximation and without sector. As
in (Emelyanov et al., 1995), an asymptotically
stable subspace of the state space is made in-
variant by the control law, which guarantees also
that the trajectories starting outside the invariant
subspace are asymptotically stable. The proposed
DVSC controller has been inserted in a switching
control architecture, in order to be able to im-
pose the conditions ensuring the existence of the
invariant subspace regardless of the uncertainties.
The parameter space is partitioned in different hy-
perspheres, centered in different nominal values.
A supervisor switches among a number of fixed
controllers, one for each hypersphere.

The paper is organized as follows. In Section 2
some preliminaries and the problem statement are
reported. The robust control law for each hyper-
sphere of the partition is presented in Section
3, while Section 4 contains the switching logic.
Simulation results have not been reported for the
sake of brevity.

2. PROBLEM STATEMENT

An uncertain discrete time single input linear
system is given:

x(h+1) = Al@)x(H) + Bipu(h) + st 1)

1
where x(k) € R" is the state vector, u(k) € R
is the input vector, B(p) : Rl — R" is the
input to state vector, A(p) : R — R ig
the state matrix, and z(x(k),p,k) : R? x R x
Z — R represents nonlinear uncertainties of the
system. The [-vector of uncertain parameters p =
[p1,...,m)7 takes values in the Q-box C R,
defined by P = {p : p; € [p;,p/],i =1,...,1},
p; , pi being known bounds. It is assumed that:

~

Assumption 2.1. The linear system (A(p), ﬁ(p))
is controllable Vp € P.

Partition the parameter space P in v hyperspheres

PO, jes def {1...v}, with v arbitrary finite

integer. Each hypersphere PU) is centered in a
nominal value p(). Defining Ap = p — p¥), the

j-th hypersphere is given by:
PY ={peP:lap][<r?, r0) >0}, jes.
(2)

Parameters vector p'/) and scalars (9 are such
that the v hyperspheres PU) constitute a com-
plete covering of P. Moreover, as will be explained
in the following, suitable values of 7(9) and v will
be chosen in order to satisfy conditions necessary
for synthesizing the control law.

As in (Emelyanov et al., 1995), for each pt) € P,
a change of coordinates x(k) = M@s(k) exists
such that system (1) is transformed as follows:

si(k+1) = [AY + G (Ap)| s1(k) + [AF) +

+ G (Ap)| s2(k) + 2 (s(k), p, )

sa(k+1) = [AF) + GF (Ap)| s1(k) + [A5)+

+ G (Ap)] 53(k) + 9 (P)u(k) + Z2(s(k), P, b)
(3)

where:
o s(k) = [si(k)7s2(K)]". si(k) € R,
s2(k) € R

o AW AW AP AY) are blocks of [MW)] ™!
A(p®) M)

o [07d9(p)]"
R;

. Gﬁ) (Ap), ng)(Ap) are the unmatched lin-
ear uncertainties while Gé]l) (Ap), Gé]; (Ap)
are the matched linear uncertainties ;

o Zy(s(k),p, k), 7z1(s(k),p,k) are the nonlin-
ear matched and unmatched uncertainties,
respectively.

— [M(j)]*l B(p), d9)(p) €

The following assumptions hold Vp € PU), j € S:

Assumption 2.2. Variable dV)(p) is given by:
d9)(p) = d9) [1 + b9 (Ap)], dV) 4f J(p@) be-
ing the nominal value and h) (Ap) satisfying:

lim 7Y (Ap) =AY (0) =0, 1+ A (Ap) £ 0.
p—pl)
(4)

Without loss of generality, it can be assumed:
1+ hU)(Ap) >0 Vp € PU).

Assumption 2.3. Uncertainties Ggf (Ap), G%) (Ap),

Gg{)(Ap), G%(Ap) are continuous functions
such that:

lim |G (Ap)|| = |G (0] = 0, k.1 =1,2
p—pY
(5)

The problem considered is to find a switching
control law stabilizing plant (3) (hence, plant (1))
Vp € P. The control scheme is composed of: i)
a family of v controllers, corresponding to the
partition of P in v hyperspheres, such that the j-
th controller can stabilize plant (3) Vp € PY); ii)
a suitable switching logic able to choose the right
controller, i.e. to identify the hypersphere the true
parameter p belongs to. Hence, the above problem



can be formalized as follows. For system (3), in
each hypersphere P, j € S, the control law
u9 (s(k)) is introduced (Emelyanov et al., 1995):

. 1 .

u(k) = u (s(h)) & — KD s(k) +al? (k) (6)
where #(9) (k) will be determined in the following,
and KU is given by:

K0 = [A5) + kALY | Y + kDAY
, (7)
being ng) e R=Dx(n=1) 3 design matrix to be
determined in the following, too. Considering a
further change of coordinates: s2(k) = wa(k) —

ng)sl(k), and introducing (6) in (3), system (3)
becomes (Emelyanov et al., 1995):
(sik+1) = [AY) - APKY + AAY (ap)] -
si(k) + A + AAf (Ap)] -
wa (k) + 21 (s(k), p, k)

wa(k+1) = AAY (Ap)si (k) + AAY) (Ap)-
ws (k) + d9) [1 + B (Ap)] a9 (k)
\ + 2(s(k), p, k) + K21 (s(k), p, )
(8)
where AA (Ap) k,l = 1,2, are the transformed

uncertalntles

Control law (6) will be shown to stabilize system
(3) V¥p € PY. In order to stabilize (3) Vp €
P, the ’right controller’; i.e. the controller built
for the hypersphere corresponding to the ’true
parameter’ p, needs to be chosen among the v
elements of the family. This choice will be achieved
by the switching law j = j(k), taking values on
S. The time evolution of the signal j(k), i.e. the
transitions among the different controllers in the
family, is determined by:

J(k) = ¢(S(k),](k - 1))7

where ¢ : R x S — S is a transition function,
determined by a suitable switching logic. The
control problem is summarized below:

k>0 (9)

Problem 1. Find the state feedback controller
a9 (k) in (6) and the transition function (9) en-
suring the global asymptotic stabilization of (3),
i.e. of (1), independently on p € P.

3. THE CONTROLLER IN P()

In this section the control law (6) will be deter-
mined, in order to stabilize system (3) Vp € PU),
Since plant (1) is assumed to be controllable,

couple (Aﬁ),[&g)
in (Emelyanov et al., 1995). Therefore, the n — 1
cigenvalues of AY) — AWK can be assigned by
a suitable choice of ng ). Assume that they have

) is controllable, too, as shown

been assigned distinctly in the interval (0.5,1). A
non singular matrix N ¢ R(»=1Dx(n=1) can be
found, defining the change of coordinates: s1 (k) =
N w (k), such that, in the new coordinates ma-

trix, AG) = [NO] AR - APKY | NG s
a diagonal matrix, whose entries are the assigned
eigenvalues. Plant (8) is transformed as follows:

wi(k+1) = [Am + AAD(Ap)] wi(k)+

+ A% + AA (Ap)| wa(k) + 21 (w(k) p.K)
Y walk+1) = Aé?(Ap)vvl( ) + AAY) (Ap)-
wa(k) +d9 [14+ RO (Ap)] - P (k)+

+22(W( )vpa )

Ve

(10)
where: AU = dzag{ (”}, A9 e (05,1),1=1

.. (n = 1); AgQ) is the nominal block remaining
after transformation, AAY) (Ap), AAgJQ)(Ap),

AA%) (Ap), AA%) (Ap) are the transformed un-
certainties; z1 (w(k), p, k) and z2(w(k), p, k) rep-
resent nonlinear uncertainties after transforma-
tion. Assume that:

Assumption 3.1. z1(w(k),p, k) and zo(w
are continuous functions, and :

||Z1(W(k),p,k')|| < |’w2(k')|<1(Ap), (11)
|z2(w(k), p, k)| < [[w(k)||¢2(Ap)

with (3 (Ap), (o(Ap) continuous too, and:
lim ¢ (Ap) =0, lim G(Ap)=0 (12)
p—p{)

p—pl)

(k) p. k)

To explain the rationale followed during controller
design, a short description of the steps to be
performed will be given below.

I First, conditions on the partition of P will
be given, in order to synthesize the control
law. In other words, it will be shown that it
is possible to choose the partition, i.e. ()
and v, such that some conditions, necessary
for controller synthesis, are satisfied in each
PU, jeS.

IT Then, a particular stable subspace will be
introduced for system (10).

IIT Finally, stabilization will be guaranteed mak-
ing the above stable subspace invariant for
each p € PY, j € S, and ensuring that tra-
jectories starting outside the invariant sub-
space are steered to zero.

The following considerations hold for step I.
e Due to (12),
G@p)l ¢’ le@pl g’ (13)

Vp € PU), with C_fj), _éj) arbitrarily small.
e Since AU = diag {)\l(j) }, )\l(j) € (0.5,1),
also matrix AU) —1I,, ; is stable, with || A() —

7 can be found, such that:



I,_1]| < 0.5. Due to Assumption 2.3, /) can
be found such that Vp € PU):

IAY) + AAY (Ap)|| < 1
IIAY) + ALY (Ap) —1,_1]| < 0.5

Asa consequence:

(14)

() def () 4 AAD)
o max {IIA0) + AAD p)l I} <1
(15)
() der () ()
P = ept) {”A +AaAT@pt o
—I,-1]]} < 0.5
Due to Assumption 2.2, it is possible to define
i © min - [1+80Ap)], il E
pePl)
max [1+ A (Ap)], such that:
peP)
0< 1/)572 (1+h(] (Ap)) < 1/) , Vpe pl)
(17)
AC)
Define also: ¢ 4 W From (4)
and (17), it follows:
< ‘m b =
0<$ <1, Jim =0 (18)
Since pS) < 0.5, a design parameter (%),

0 < v < 0.5, can be introduced such that:
@) — péj) > 0. Moreover, due to (18), a
suitable partition can be chosen such that:
Y < 0.5 . Summing up, it can be assumed
that the following inequalities hold:

<7(J)<05

0<py
19
{0<¢<w>§o.5 (19)

Because of (15), quantity 1 — p(]) is strictly
positive. Define the positive scalar a¥):

a9 % min L—p
(A e + 7). 0
(]) 5
(Aﬁz maz + ) }
with:
Alf e max | AT + AAZ Ap)]| (21)

Introduce the design parameter a¥) < @¥),
Due to (12) and (13), it is always possible to
choose 7(9) such that:

() 4 )

oDy 4 Ag maz T QA3 ot
G+ D] -0l +1] < (1 = 7D)at?
(22)
with ¢ > 1/)5) and:
A maa < max | AAT) (Ap)].

22,max

Ay AAS) (Ap)]|-
Eéé” 55 (Ap)||

As far as step I is concerned, consider the follow-
ing subsystem, describing the dynamics of wy (k):

wi(k+1) = [A(j) + AAY) (Ap)} w1 (k)+
+ [ + AL (Ap)| wa(k) + 21 (w(k), B, K)
(23)
If wo(k) = 0, system (23) is stable, since eigen-

values of A) + AAY) (Ap) are stable Vp € P,
For wy (k) # 0, consider the subspace:

G(al) E {w(k) € B : [wa(k)| < al?|[wi (B)]|}
and the theorem (Emelyanov et al., 1995):

Theorem 3.1. If ws(k) € G(a), with o) <

—, subsystem (23) is still stable,
ie. hm lw1(k)|] =0 Vp € PY).
k—o0

Using Theorem 3.1, the stabilization of (10) (step
III) can be split into two different phases:

1) The control law is first synthesized in or-
der to make G(a/)) an invariant subspace
Vp € PU). In other words, the control law
should guarantee that w(k) € G(al)) =
w(k + 1) € G(aW)), Vyp € PU. In this
way, for all the initial states belonging to
G(a?), lim ||w;(k)|| =0, due to Theo-

k— o0
rem 3.1. Hence, kl;rgo |wa (k)| = 0. In fact, if
w(k) € G(aD), |wy(k)| < aW|[wi(k)||-
Therefore, system (10) is asymptotically sta-
ble Yw(0) € G(aW)), Vp € PU),

2) Finally, it is shown that the developed con-
troller also guarantees that Yw(0) ¢ G(a)),
w(k) is asymptotically stable Vp € P;.

For phase 1), consider the two Theorems below:

Theorem 3.2. (Emelyanov et al., 1995) Consider
system (10), with p € P\Y). Suppose that w(k) €

G(a9), and define w(k) = ||w2(( ;II Aw(k) =
w(k+1) —w(k). I
a) sgn(w(k)) - Aw(k) <0;
b) |[Awi(k)[| < ~[lwi(k)][;
) |Awy(k)| < (1 —y)a||wy(k)]];

where v € (0,1), then G(a)) is an invariant
subspace for system (3.1), i.e. w(k+1) € G(al)).

Theoremn 8.3. Consider system (10) and subsys-
tem (23). If p € PY), the control law:

20 gy = _w2(k) a-sgnfwa(R)] TGy G)

R = ) [+

FAG e + VAR + & (14 @) wa (R) |
(24)



with a¥) < @), 4 satisfying (19), ¢ > TR

ensures that G(a/)) is an invariant subspace.

Proof. It will be shown that (24) satisfies condi-
tions a)-c) of Theorem 3.2 Vp € PU). Consider
first condition b), with » = ~():
Wik +1) = wi(k)|| <7 |[wa (k)|
ie.
1A + G (ap) — L] wi(h) + [A%+
G (Ap)] wa (k) + 21 (w(k), B, k)| <59 [wi ()|
(25)
Since w(k) € G(a), [wy(k)] < al|jwi(k)]].
Therefore, considering also (21), (15), (11) and
(13), inequality (25) is verified if:
(o5 + a0 (A2, + )] Iwi ()]l <
<A [wr ()]
This latter inequality corresponds to:
j (4)
o) < V=0
A?Z),maz + Cl(])
which is verified, since at) < @),
Condition a), with v = ~U)_ is equivalent to
(Emelyanov et al., 1995):
sgn(ws (k) - Aws (k) + a9 5P| [wy (k)| < 0
which, replacing ws(k 4+ 1) (see (10)), becomes:

sgn(wa (k) - [AAS) (Ap)wi (k) + AAE) (Ap):
wy (k) +dY) (1 + 9 (Ap))a(k)+
+22(w(k), p, k)] = [wa (B)] + a9y [wi (k)] < 0

Taking the worst case condition, and considering
that w(k) € G(a¥)), one has:
sgn(ws (k))dY (1 + Y (Ap))a(k) — ws (k)|+

+G 1+ a)] - Iwa (k)| < 0

which, replacing @(k) with (24), becomes:

1+ DA . .
s (k)| l% — 1| + [AF) s + 0

AL s + 0D+ G (1 +a)] - Jlwa (8)]

{1 —q- [1 + h(j)(Ap)]} <0

1+ 1Y) (Ap)
Vitha

sidering the worst case condition, one has:

[1 - ‘Wféin] ' I:Aé?mam + a(j) Ag];,max
£E 1] <0

Since |wa (k)| —1| <0, and con-

+ali)y0)

Due to the assumption on ¢, the above inequality
is always verified.

Consider now condition c), with v = 7(9):

AAF) (Ap)wi(k) + AAF (Ap)uws (k) +
+22(w(k), P, k)dD) [1+ 09 (Ap)] a9 (k)+
—ws(k)| < (1 =~D)|wa (k)|
Replacing control law (24) and considering the
worst case condition, one has:
q- ,QZJ’I(’).’QI.T ’ I:a(j)’y(j) + Aé?mam
&+ aD)] - liwi W)+ [0+
+AY o+ aDAY) 1+ a(j))] :

+aDAY)

22, max

21,mazx 22, mazx

Jwi(®)]] < (1= 7)al? |lwi (k)|

(26)
According to (19), (26) is satisfied if:
a(j)'y(j) + Aé?mam + a(j)Ag];,max_*—
W1+ [g-ull +1] € (1- 49
(27)
which is true, due to (22). A

Theorems 3.1 and 3.3 guarantee that plant (10) is
asymptotically stable for all the initial states be-
longing to G(a'?)). The following Theorem states
that asymptotic stability is ensured also for initial
states not belonging to G(a!/)), i.e. phase 2).

Theorem 3.4. Consider system (10) when w(k) ¢
Gla), ie. |[wi(k)]] < hwa (k)] ¢ p € PO,

a(d)
control law (24) ensures that: klim |lwa (k)] =0
— 00

The Proof, omitted for the sake of brevity, can
be derived following the lines of an analogous
Theorem in (Emelyanov et al., 1995).

When |ws (k)| vanishes in subplant (23), ||wy (k)|
vanishes too, since matrix AW + AAU)(Ap)
has stable eigenvalues, due to the partitioning
criterion adopted. Hence: kll)n;o [|w(k)|| = 0.

4. THE TRANSITION FUNCTION

The purpose of this section is the definition of
a suitable transition function (9) governing the
switching among the finite family of controllers S.
The transition function has to ensure both system
asymptotic stabilization and that the switching
ends after a finite time. Since the controller asso-
ciated to PU) has been designed to ensure that at
least one of the following conditions is verified:

w(k—1) € GaV) = w(k) € G(a))  (28)
|wa (k)| < |wa(k — 1)] (29)

the switching logic will be based on the boolean
variable defined below:



H = [(w(k “1)e G(a(j))) AND (w(k) €
G(a9))] OR (s (k)| < w2 (k = 1))

(30)
as stated in the following Theorem.

Theorem 4.1. Consider the system described by
(10) with p € P, and assume that a family
of controllers has been found according to (6)
and (24). Initialize j = 1, and consider boolean
expression (30), with j € {1...v}. The following
transition function implementing a ”prerouted”
switching policy:

oy = Jak) o if H _
i(k) = {j(k)+1 otherwise F =1V (31)
ensures that: i) the switching stops after a finite
time interval, and ii) the closed loop system is
globally asymptotically stable Vp € P.

Proof. The proof directly follows from the results
of Sections 2 and 3. Basically, the rationale fol-
lowed by the switching policy consists in exclud-
ing those controllers not satisfying both condition
(28) and (29). Consider a time instant k and set
j = 1. Assume first that p € P;. The application
of (6) and (24) guarantees that either condition
(28) or (29) is verified, due to the fact that the
control law u)(s(k)) has been designed as to
satisfy the above conditions V p € P;. It follows
that condition H is always true, no switching can
occur, and the global asymptotical stability of the
system is guaranteed. Now assume that p € P,
[ > 1, hence p ¢ P;, and that no overlapping
occurs between P; and F,. In this case, a violation
of both conditions (28), (29) will necessarily occur,
otherwise the first configuration would be a stabi-
lizing one. When instability is detected, a switch-
ing occurs towards the next configuration j = 2,
and u®(s(k)) is applied. Arguments similar to
those used before can be applied, producing I — 1
subsequent switching until the 'correct’ controller
is found. When finally u®)(s(k)) is applied, it
of course ensures the system global asymptotical
stabilization by construction.

The above discussion implicitly proves that the
switching ends after a finite time. Since the num-
ber of the controllers, v, is finite, the condition
p € P; for some j € 1...v will be verified in a
finite time interval. After such an interval, control
law u)(s(k)) is applied, and one can conclude
that lim ||w(k)|| = 0. A
k—o0

Remark 1. The transition function consists sim-
ply in skipping a controller if none of the con-
ditions (28), (29) is verified, otherwise in main-
taining the current configuration. Switching logic
given by (31) guarantees that the ”right” con-

troller is found in at most v steps, since the
adopted partition is a complete covering of P.

5. CONCLUSIONS

In this note state feedback discrete time VSC is
used for the robust stabilization of discrete time
linear systems in presence of unmatched uncer-
tainties. The presence of the sector is avoided by
means of Switching Control. As a future devel-
opment, an output feedback controller with the
same characteristics could be considered, using
e.g. the approach described in (Edwards and Spur-
geon, 1998) for continuous time systems.
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