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Abstract: This paper describes a model predictive control strategy to tackle the inventory 
control problem in Supply Chains. The problem is formulated as a receding-horizon 
optimization problem and the market demand is considered an external unknown 
disturbance. The behaviour of the Supply Chain is modelled by discrete time difference 
equations, both the control variables and the output variables are constrained to satisfy 
suitable bounds. Quantitative performance indices are introduced and the effects of the 
choice of the control parameters are discussed. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
In the continuous attempt to reduce production costs, the 
attention has shifted, in the last ten years, from 
assembly-line automation and machine automation to the 
government of logistics costs and to the control of the 
coupled dynamics of supply chains. In that situation, the 
use of control and system theory methodologies in 
supply chain management is gaining interest and it 
appears to be capable of providing useful insights and 
results. Works in this direction are, e.g, those of 
Forrester (1961), Towill (1992), (1994) and Tzafestas 
and Kapsiotis (1994), that address, under various 
hypothesis, the inventory control problem in supply 
chains. Here, an approach in the same spirit is developed 
and a possible methodology for tackling inventory 
control problems in a supply chain is proposed, working 
under constraints on the production levels and assuming 
to have uncertain information on the market demand 
over a finite time horizon.  
The basic idea employed consists, first, in solving an 
optimization problem over the finite horizon 0 0[ , ]t t T+ , 
using a prediction of the system behaviour. The 
functional considered in the optimization problem 

depends on the difference between the actual inventory 
level (the output of the system) and a desired set point 
and, possibly, on the relative control effort, namely on 
the incremental variation of the production level (the 
control variable). The market demand acts as a partially 
unknown disturbance, since we assume that a prediction 
of its value on 0 0[ , ]t t T+  is available. After solving the 
optimization problem over 0 0[ , ]t t T+ , the optimal value 
of the control at time 0t , namely 0( )u t , is applied and 
the horizon is moved one step forward. Then, the 
optimization process is repeated on 0 0[ 1, ( 1) ]t t T+ + + . 
This allows us in particular to update the information on 
the market demand and to take into account the error 
made in predicting it. This scheme follows that of the 
classical Model Predictive Control (MPC) (Garcia, et al., 
1989; Morari, et al., 1994), mainly developed in the area 
of industrial control to facilitate dealing with constraints 
and to contrast the effect of unknown disturbances in a 
closed-loop fashion. 
Although in inventory control problems variables often 
take only integer values (as they measure lots of good), 
we let them vary in , in order to reduce the 
computational burden required to solve the optimization 



     

problem. It should be noted, however, that conceptually 
the approach here developed can be applied to the case 
in which all variables are constrained to take only integer 
values. In that case, obviously, it would be necessary to 
employ a different algorithm to solve, on the integer, the 
optimization problem. 
The aim of our study is to analyse the dependency of the 
convergence and the robustness properties of the 
described MPC technique on the parameters that appear 
in the chosen cost function. Since no theoretical results 
can be invoked in order to clarify this issue, extensive 
simulations in various conditions were performed. As a 
result, the control method is shown to be capable of 
assuring satisfactory performances. In particular, the 
actual inventory level, on one side, is forced to match a 
given set point and the amplification effect of the 
disturbance through the various levels of the supply 
chain, on the other side, is drastically reduced. In the 
end, the ability to regulate the inventory levels may be 
exploited for reducing the set point with economic 
benefits and without incurring in backlogs of demand.  
The remainder of the paper is organized as follows. 
Section 2 introduces the notation used, it describes the 
model of the Supply Chain and states the Inventory 
Control Problem (ICP). Section 3 gives a brief 
introduction to the Model Predictive Control (MPC) and 
its application to the Inventory Control Problem. Section 
4 shows numerical example of the application of the 
MPC to the ICP. Section 5 summarizes the ideas 
presented in the paper. 
 

2. PROBLEM DESCRIPTION 
 

The model considered in this paper describes a pull-
system, driven by the market demand. The model 
architecture consists of L  interconnected levels, which 
represent various business units (echelons) of a Supply 
Chain. All units are modelled in a similar way, as 
processes characterized by a constant lead-time, whose 
output represents an inventory level. The Supply Chain 
is vertically integrated, in the sense that each business 
unit is the only customer of the unit in the level beneath 
it and, at the same time, it is the only supplier of the unit 
in the level above it. In other words, this means that the 
control variable of each unit acts as a disturbance on the 
unit in the level beneath it. The customer for the first 
level is the market, that drives the whole system by 
means of its demand. The last, lower level does not have 
a supplier in the chain.  
Formally, the system described above is represented by 
the following set of equations: 
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where: 
 
L +∈  is the number of business units   (echelons) 

( )iy t ∈  is the inventory level of the i-th echelon at 
time t , in the following ( )y t  will denote the 

vector [ ]1( ) ( ),..., ( ) T
Ly t y t y t=  

( )iu t ∈  is the order to produce made by the i-th 
echelon at time t  and received by the (i+1)-
th echelon, in the following ( )u t  will denote 

vector [ ]1( ) ( ),..., ( ) T
Lu t u t u t=  

( )m t +∈  is the market demand at time t  

iϑ ∈       is the lead-time for the i-th echelon 

,l h
i iy y ∈ are, respectively, the lower bound and the 

upper bound on the inventory level of the i-th 
echelon,  in the following ly  will denote the 

vector 1 ,...,
Tl l l

Ly y y⎡ ⎤= ⎣ ⎦ and hy  will denote 

the vector 1 ,...,
Th h h

Ly y y⎡ ⎤= ⎣ ⎦  

,l h
i iu u ∈ are, respectively, the lower bound and the 

upper bound on the replenishment capacity of 
the i-th echelon,  in the following lu  will 

denote the vector 1 ,...,
Tl l l

Lu u u⎡ ⎤= ⎣ ⎦  and hu  

will denote the vector 1 ,...,
Th h h

Lu u u⎡ ⎤= ⎣ ⎦  

 
Remark that in (1) ( )u t  is viewed as the control variable 
and ( )y t  is viewed as the output variable. Moreover, it 
should be noted that ( )m t can assume negative values, 
because it is necessary to represent the returned goods.  
 With the notation introduced above, it is possible to 
state the following problem. Given: 
 
- a system Σ  described by equations of the form (1) ; 
- the constraints on ( )y t and ( )u t of the form (2) and 

(3) ; 

- T  functions )|(ˆ),...,|1(ˆ 1 tTtmttm T ++  that 
predict, respectively, the market demand at time 
t i+ , for 1,...,i T= , on the basis of information 
available at time t ; 

- L  set points *
iy , 1,...,i L= , for the inventory levels of 

the different echelons, in the following *y  will 

denote the vector * * *
1 ,...,

T

Ly y y⎡ ⎤= ⎣ ⎦
 

 
the Inventory Control Problem (ICP) consists in 
finding ( ), 0u t t ≥  which minimize the expression  

2*

0
( )

t
y t y

+∞

=

−∑  

(4) 
 



     

Several study (Towill, et al., 1992; Towill and Del 
Vecchio, 1994) show that an inventory control policy, 
based only on the actual inventory level and the desired 
inventory level, could generate the amplification of the 
market demand. The  oscillations of the market demand 

( )m t , that disturb the first level of the Supply Chain, 
generate a control sequence 1( )u t with oscillations of 
greater amplitude, that disturb the second level of the 
Supply Chain. This effect spreads from the first to the 
last level of the Supply Chain and it is very disturbing 
for the production system, because great oscillations on 
the production do not allow the plant to work at full 
capacity. So the control sequence ( ), 0u t t ≥ minimizing 
(4) has also to avoid or to reduce the amplification 
effect. 
 
3. MODEL PREDICTIVE CONTROL APPROACH TO 

THE ICP 
 
In this paragraph we briefly describe how the Model 
Predictive Control (MPC) method (Garcia, et al., 1989; 
Morari, et al., 1994) can be applied to the Inventory 
Control Problem.   
In the MPC approach, the control action is computed by 
solving an optimization problem over a finite horizon, 
using a prediction of the system behaviour. The 
computed optimal control is applied at the next time 
instant  and the optimization process is repeated, using a 
new, updated prediction of the system behaviour.  
In our situation, namely in dealing with the ICP defined 
above, the functional J  employed in the optimization 
process takes the following form 
 

2 2

1 1

ˆ( | ) * ( 1)
P M

j j
J y t j t y u t j

= =

= Γ + − + Λ∆ + −⎡ ⎤⎣ ⎦∑ ∑  

(5) 
 
where : 
 
- )|(ˆ tjty + denotes a prediction of the output of Σ , 

namely of the vector of inventory levels, at time 
t j+ , made at time t  by exploiting the predicting 
functions 1ˆ ˆ( 1 | ),..., ( | )Tm t t m t T t+ + ; 

- ( ) ( 1) ( )u t u t u t∆ = + − represents the incremental 
variation of the control variable ( )u t , it is assumed 
that ( 1) 0u t j∆ + − = for ( )1j M− ≥ ; 

- { }1,..., Ldiag γ γΓ = and { }1,..., Ldiag λ λΛ = are matrices 
of weights; 

- P  and M  are, respectively, the prediction horizon and 
the control horizon. 

 
Clearly, the prediction horizon P  cannot be greater than 
T , the number of predicting functions, while, P  has to 
be greater than M  (recall that ( 1) 0u t j∆ + − = for 

( )1j M− ≥ ). 
 

The application of the MPC procedure can be described 
as follows: 
 
       1.  at time t  solve the optimization problem 

{ }( ),..., ( 1)
min

u t u t M
J

+ −
, with constraints (2)  and (3) ; 

       2.  feed ( )u t to the system 
       3.  iterate with 1t t= +   
 
The performances of the above procedure depend, of 
course, on the choice of the parameters Γ , Λ , P  and 
M .  
We choose the parameters Γ  and Λ the following 
structure: { }1,..., Ldiagγ γ γΓ = and { }1,..., Ldiagλ λ λΛ =  
where 1,..., Lγ γ and 1,..., Lλ λ are fixed by economic 
consideration on the relative value of each level of the 
Supply Chain, while γ  and λ , in particular the ratio 
γ λ , are parameters that have to be tuned in order to 
achieve the performances and the robustness proprieties 
desired. Also the parameters P  and M  are connected, 
to avoid great error on the output prediction we choose 
the control horizon close to the prediction horizon 
(

[ ]1,...,
max ii L

P M ϑ
∈

= + )    

In presence of an estimation error 
)|(ˆ)()|( titmitmtie i +−+=  on the market 

demand general rules for tuning the controller 
parameters cannot be derived by theoretical results, that 
are still missing (Bemporad and Morari, 1999). 
Simulations are commonly employed for analysing the 
behaviour of the controlled system and for tuning the 
control parameters Γ , Λ , P  and M  (Bemporad and 
Morari, 1999; Gallestey, et al., 2003).  
Here, we propose the use of two quantitative indices for 
evaluating the performances of the above procedure: 
- the mean square regulation error E , defined by  

0

2

1 0

1 ( ( ) *)
ftL

i i
i t tf

E E y t y
t t= =

= = −
−∑ ∑  

(6) 
where 0 , ft t⎡ ⎤⎣ ⎦ is an interval of interest; 

- the amplification index  G , defined by 

0 0

0 0

[ , ] [ , ]

1 [ , ] 1 [ , ] 1

max ( ) min ( )

max ( ) min ( )
f f

f f

L t t i t t i
i

i t t i t t i

u t u t
G G

u t u t= − −

−
= =

−∑  

(7)  
where 0 , ft t⎡ ⎤⎣ ⎦  is an interval of interest. 

The mean square regulation error measures the ability of 
the control methods to regulate each component of the 
output, that is each inventory level, to the chosen set 
point. The amplification index measures the propagation 
of the oscillations in the market demand through the 
various levels of the supply chain. It is well known that, 
in regulating the inventory level, oscillations may 
dramatically increase and cause ultimately the practical 
failure of a control policy. Beside limiting E , therefore, 
one is usually interested in reducing G . The fact that 



     

both indices are evaluated over an interval 0 , ft t⎡ ⎤⎣ ⎦  takes 
in particular into account the scarce interest for the 
transient behaviour in 0t t≤ ,  which cannot be regulated 
due to the intrinsic delays of the system.  
 

4. SIMULATION RESULTS 
 
To test the MPC method on the inventory control of a 
supply chain, several simulations were performed. The 
simulation were performed varying the uncertainty on 
the estimation of the market demand, to evaluate the 
robustness of the method, and modifying the controller 
parameters, i.e. the length M  of the control horizon and 
the ratio γ λ , to tune the control action on the basis of 
the quantitative indices E  and G . The simulations were 
performed for a supply chain consisting of three levels, 

3L = , and characterized by constant lead-times iϑ , 
given respectively by 1 2ϑ = , 2 4ϑ = , 3 3ϑ = . The 
constraints (2)  and (3)  has been chosen as 
0 ( ) 2000iy t≤ ≤  and 0 ( ) 300iu t≤ ≤  for 1,...,i L= . The 

set points were fixed as * 1000iy =  for 1,...,i L= . The 
market demand ( )m t  is a random bounded signal, 

100 ( ) 200m t− ≤ ≤  whose estimation is ˆ ( )m t . 
The equations of the system are the following: 

 
1 1 1

2 2 2 1

3 3 3 2

( 1) ( ) ( 2) ( )
( 1) ( ) ( 4) ( )
( 1) ( ) ( 3) ( )

y t y t u t m t
y t y t u t u t
y t y t u t u t

+ = + − −⎧
⎪ + = + − −⎨
⎪ + = + − −⎩

 

(8)  
0 ( ) 2000, 0, 1,2,3iy t t i≤ ≤ ≥ =  

(9) 
0 ( ) 300, 0, 1,2,3iu t t i≤ ≤ ≥ =  

(10) 
* 1000, 1, 2,3iy i= =  

(11) 
 
Table 1 reports the best values for the parameters of the 
controller on the basis, respectively of E  and G , and 
the values of the indices, at different level of error on the 
estimation of the market demand.  The estimation error 
is quantify by  

 

( )
1

1 ( | ) max ( ) min ( ) 100
P

tti
err e i t m t m tP

=

⎧ ⎫⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑  

(12) 
 

Figure 1 and Figure 2 show the regulation results, 
respectively, in presence of  low and high estimation 
error on the market demand. Each figure is composed by 
three graphs, the first one represents the output of the 
three levels of the system, the second graph shows the 
input feed to the system at each one of the three levels, 
the third graph shows both the real demand and the 

predicted demand used in the simulation. Both in Figure 
1 and in Figure 2 after a transient due to the delays of the 
system the outputs stay close to the set point and the 
demand oscillation does not propagate in the inputs . The 
relatively large oscillations on the output are due to the 
market demand, that to be realistic shows great and 
quickly variations in time, and on the error in its 
prediction. 
 

Table 1 controller parameter and performance indices 
  

err  EM  Eγ λ  (10 ^ 3)E  GM  Gγ λ  G  

10% 20 70 2.05 40 70 426 
20% 80 15 2.22 40 85 250 
30% 45 65 3.22 100 70 247 
40% 90 35 2.04 90 65 274 
50% 80 20 4.17 90 75 266 
60% 30 90 3.97 45 100 190 
70% 25 50 5.45 80 85 165 
80% 65 25 5.55 75 95 184 
90% 15 80 8.74 100 100 215 
100% 45 50 10.66 35 95 208 
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Fig. 1. Inventory and order levels for the three echelons 

of the Supply Chain in presence of 10% of error on 
the prediction of the market demand 
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Fig. 2. Inventory and order levels for the three echelons 

of the Supply Chain in presence of 100% of error 
on the prediction of the market demand 



     

Figure 3 and Figure 4 show the dependencies of E  on 
the controller parameters M  and γ λ , in presence of 
low and high estimation error on the market demand.  

 
Fig. 3. Values of the quantitative index E , varying the 

controller parameters, in presence of  10% of error 
on the prediction of the market demand 

 

 
Fig. 4. Values of the quantitative index E , varying the 

controller parameters, in presence of  100% of error 
on the prediction of the market demand 

 
 

 
Fig. 5. Values of the quantitative index G , varying the 

controller parameters, in presence of  10% of error 
on the prediction of the market demand 

 
 
Fig. 6. Values of the quantitative index G , varying the 

controller parameters, in presence of  100% of error 
on the prediction of the market demand 

 
While, Figure 5  and Figure 6 show the dependencies of  
G  on the controller parameters M  and γ λ , in 
presence of low and high estimation error on the market 
demand. 
Since there is a trade-off between regulation of the 
output and reduction of the amplification of demand 
oscillation, it is important to remark that both E  and G  
increase (denoting worse performances) their values as 
prediction error on the market demand goes higher but 
this does not influence the qualitative ways in which 
they depend on the controller parameters. This is useful 
to choose the controller parameters, in order to achieve  
the desired performances. 
 

5. CONCLUSION 
 
In conclusion MPC methods prove to be suitable to 
dealing with the Inventory Control Problem in presence 
of un certainty on the market demand. The introduction 
of quantitative indices allows us to analyze the 
performances in relation to the chosen control 
parameters and, in principle, to tune the controller. 
Further study will concern the case of more complex 
structure on the supply chain and uncertain lead-times. 
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