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Abstract: In this paper we describe an application of a robust identification approach to
a turbofan engine. The approach combines classical time-data system identification via
prediction error models and the so-called model error modeltheory. The model error
model approach provides guidelines for the characterization of the model uncertainty
stemming from the nominal system identification and fits naturally in the robust fault
detection and isolation framework forH∞-based algorithms.Copyrightc©2005 IFAC
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1. INTRODUCTION

A driving economic force in the aerospace industry,
particularly commercial airlines, is the use of aircraft
engine anomaly and fault detection & isolation (FDI)
schemes to improve their reliability and optimize (re-
duce) their maintenance schedules. The current FDI
state-of-the-art in the industry involves empirical tech-
niques (e.g. neural networks and clustering (Uluyol,
O.et al., 2003; Kim, K.et al., 2004)) and model-based
techniques (least-squares estimation (Gorinevsky, D.
et al., 2002)). All these approaches provide analytical
redundancy using a model of the system obtained by
system identification or first-order principles. An im-
portant component in system identification is the esti-
mation of model uncertainty descriptions and bounds.

Typically, the uncertainty characterization is per-
formed in a heuristic manner using experimental data
and knowledge of the system. An alternative approach
is the so-called ‘robust identification’ which can be
based on an statistical framework (correlation analy-
sis of the residuals (Ljung, L., 1987; Reinelt, Wet
al., 2002)) or a deterministic framework (Smith, R.
and Doyle, J., 1992). The latter framework hinges in
the representation of the model uncertainty and the
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noise error in terms of linear fractional transforma-
tions (LFT).

In this paper, an application of a robust identification
approach to a Honeywell turbofan engine is presented.
The robust engine model, to be used for FDI pur-
poses usingH∞-optimization techniques, is obtained
by applying prediction error model identification algo-
rithms (Ljung, L., 1987) to a set of engine flight data
provided by a Honeywell airline customer. The bias
error, or model uncertainty, arising from the nominal
system identification is initially characterized by the
model error model approach (Ljung, 1999) in terms of
linear weights.

2. THEORY

The identification approach used combines parametric
identification for the nominal and fault models (based
on classical prediction error theory) and uncertainty
characterization (based on model error model theory).
This combination of nominal and model error model
identification is considered a robust model identifica-
tion approach (Ljung, 1999; Reinelt, Wet al., 2002)
and fits naturally in the robust fault detection and iso-
lation framework ofH∞-based algorithms.

2.1 Nominal Model Identification

In the control field, system identification is understood
to be a process by which a dynamic model is obtained
from measured input and output data. The identified
model is selected from a family of models and is



described by a finite set of parameters and a structure
(the relation between the parameters). In order to ob-
tain a good and reliable model, the designer must pay
attention to several aspects: choice of an appropriate
input/output data set, selection of the model structure
and order, and thorough validation of the resulting
model (Ljung, L., 1987).

Parametric models are selected in this paper for the
structural identification stage while correlation and
frequency response models (non-parametric models)
are used as analysis tools to gain insight on the engine
model. The nominal identification algorithm used is
based in amodel-batchevaluation approach: a set
of candidate structures are selected and then evalu-
ated using different orders and delays. The three main
model structures chosen are: auto-regressive with ex-
ogenous input (ARX), output error (OE), and a general
predictive model (PEM). Continuous-time, closed-
loop engine data provided by a partner airline in Hon-
eywell’s Predictive Trend Monitoring (PTM) project
is used for identification and validation purposes.

2.2 Model Error Model Identification

The concept of the model error model (MEM) intro-
duced in reference (Ljung, 1999) allows a very defined
separation of the residual into variance (noise error)
and bias (modeling uncertainty) errors. The model
error model provides as well with an alternative test
to the classical residual validation approach. In refer-
ences (Ljung, L., 2001; Reinelt, Wet al., 2002) this
MEM concept is used to provide frequency-domain
characterizations of the model uncertainty for the pur-
poses of control-oriented model validation. The ap-
proach used in those references provide a natural fit
with the robust control design framework. In this pa-
per, this natural fit is used within the robust fault detec-
tion and isolation framework by using the model error
model as an initial uncertainty weight.

There are no restrictions on the identification approach
used for the nominal model or the model error model.
Furthermore, the identification of the latter is not af-
fected by the method or assumptions used to obtain
the nominal model. The only information required for
MEM identification is the residual estimatesε(t) ob-
tained using a (possibly different) set of output/input
measurements. An algorithm and guidelines to calcu-
late the model error models for an identified nominal
system can be found in (Ljung, 1999; Reinelt, Wet
al., 1999; Reinelt, Wet al., 2002).

As suggested in reference (Reinelt, Wet al., 2002),
a simple approach to calculate an additive uncer-
tainty weight from the uncertainty regions obtained
using the nominal and MEM models is simply to
calculate the lower error boundγ(iω) that bounds
the uncertainty region,∆a(iω), such that{Go(iω) +
∆a(iω) / ∆a(iω) ≤ γ(iω)}. Constant and first-order
approximations are recommended to decrease the total
order of theH∞ FDI filter to be synthesized later.

3. TURBOFAN ENGINE MODEL

The turbofan engine under consideration is a two-
spool, high bypass engine composed of fan section,
gas producer module, combustor/turbine module and
accessory gearbox.

A dynamic, open-loop, black-box nonlinear simula-
tion model is available together with engine continuous-
time closed-loop data. The simulation model has four
main inputs: the first three can be considered asdis-
turbances(total air temperature,TAT Celsius, Mach
numberMn, and pressure altitude,Alt feet), and the
fourth input is the command signal (fuel flow,W f
lbs/hr). There are three output channels: fan speedN1
in % r.p.m, high-pressure (core) speedN2 % r.p.m.,
and exhaust gas temperatureEGT in Celsius. An elec-
tronic control unit (ECU) regulates the amount of fuel
flow used to control the fan speed by means of regula-
tion of N2.

Additional input channels to the simulation model ac-
count for faults and aircraft/engine bleed. The fault
considered,HPTf , characterizes a high pressure tur-
bine (HPT) deterioration due to leading edge erosion
or tip clearance change (i.e. distance between the tur-
bine blades and the turbine encasing). It is measured
as a dimensionless number.

4. NOMINAL AND FAULT MODEL
IDENTIFICATION

This section describes the identification results for
the nominal model and the fault model. The ap-
proach presented in Section 2 is used to identify an
LTI Multiple-Input-Multiple-Output (MIMO) nomi-
nal model formed by three (one for each output) LTI
Multiple-Input-Single-Output (MISO) models. This
nominal MIMO model is augmented by a MIMO fault
model (formed also by three MISO models) which
characterizes theHPTf fault effects on the engine
outputs.

The operational envelope of interest is the cruise flight
regime, hence the signals for identification and vali-
dation are obtained by combining four different cruise
data sets for each signal. Figure 1 shows the input data
for the identification signal.
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Fig. 1. Identification Signal Input Data.

The large deflections observed are mainly the result
of the data sets connection. If these discontinuities
were to be considered too severe for the identification,
the data could be pre-filtered. In the present case, the
discontinuities are left to artificially introduce some



nonlinear behavior that might arise from sudden re-
duction of speed during the cruise regime (i.e. the pilot
can always maintain altitude while reducing speed by
using the inter-play between the thrust and the eleva-
tors).

For each of the three prediction error models used
(ARX, OE and PEM) different orders and delays are
tested until a satisfactory fit is obtained. A primary
concern is to obtain relatively low-order models since
this influences the final order of theH∞ FDI filter.
The fit criterion is a combination of quantitative and
qualitative measures. There are three quantitative mea-
sures used: the Akaike’s Information Theoretic Crite-
rion (AIC), the Final Prediction Error (FPE), and the
percentage of output variation explained by the model
simulation (PCT) (Ljung, L., 1987). Together with
these criteria, the classical residual analysis, time-
domain comparisons, and frequency-domain estima-
tion, i.e. empirical transfer functions (ETFE) and spec-
tral estimate (SPA), are used to qualitatively evaluate
the models.

4.1 Nominal Model Identification Results

This subsection presents the identification of the three
fault-free Multiple-Input-Single-Output (MISO) mod-
els using engine data obtained from the Predictive
Trend Monitoring (PTM) database. The inputs for
all the models are the engine disturbance inputs
(TAT,Mn, andAlt) and the control engine input (W f).
The outputs for each of the three models areN1, N2
andEGT respectively.

Table 1 shows the structure, order of the coefficients,
and delays for each of the MISO models. The ter-
minology follows that of reference (Ljung, L., 2002).
Numbers within brackets indicate the order of the four
input channels for that coefficient (a single number
means all channels have the same order).

Table 1. Structural nominal MISO models.

Model Struc. na nb nc nd nf nk
MISO N1 OE 0 [1] 0 0 [1] [0]
MISO N2 ARX 5 [5] 0 0 [0] [0]
MISO EGT OE 0 [1] 0 0 [1] [1]

For the ARX model, a bandpass Butterworth filter
with a frequency band of[10e−5 0.5] rad/s is used to
focus in the low-mid frequency region. An example
of the quantitative results obtained is given by the fit
criteria for the MISON1 model using the identifi-
cation signal:FPE = 1.90873e−01,AIC = −1.65614,
andPCT = 90.53235 %, which indicates a very good
fit. Similar results (with a minimumPCT≈ 80%) are
obtained for the other two models.

Figure 2 provides the time simulation comparison
between the validation signal (solid) and the simulated
output (dashed) for the MISON2 model. The plot
shows good agreement. Similar results are obtained
for the other models with theEGT model showing
some level of bias.

Figure 3 shows the frequency response comparison
(i.e. ETFE and SPA obtained from the data and the
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freq. response of the identified model) for the MISO
N2 model. One of the qualitative criteria is to obtain
acceptable fit for the low-mid frequency region. The
ETFE shows a large phase discrepancy around the one
radian region. This discrepancy will have undesirable
consequences on the achievable robustness of the di-
agnosis filter designed with this model.
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Fig. 3. Frequency analysis comparisons, MISON2.

The classical residual analysis shows falsification in
the MISO N1 model by the validation signal while
the other models pass the residual test with only oc-
casional small cross-correlation in the first few lags
for theAlt andW f channels.

Time simulations with forty-two different cruise flight
data sets yields acceptable comparisons. Nevertheless,
the EGT channel presents a larger bias - probably
caused by control feedback in the data. This bias can
be seen in Table 2, which gives the mean (MEAN)
and standard deviation (STD) between the simulated
LTI MIMO model, formed by the combinations of the
three MISO models, and the data for all the flights.

Table 2. Statistical properties for 42 cruise
flights.

N1 N2 EGT
MEAN 0.03004 0.02706 1.98002
STD 0.15655 0.04701 2.28696

In summary, a 13 order LTI nominal engine MIMO
model is identified with good time-domain and ac-
ceptable frequency-domain fits but with some cross-
correlation problems and phase discrepancies.

4.2 Fault Model Identification Results

An identification similar to that for the nominal model
above is used to obtain a MIMO LTI model of the



HPT fault effects (i.e. three MISO LFT models but in
this case with five input channels: the previous four
plus the fault input). Since no faulty data sets are
available, the ‘black-box’ engine simulation model is
used in combination with flight data sets to obtain the
required input/output faulty measurements.

The identification and validation signals are each
formed by using a different flight data set and a differ-
ent ‘pure’ fault signal injected in the simulation model.
The fault signals are selected to be an initial ramp fol-
lowed by a pseudo-random signal in order to represent
the slow degradation of the fault followed by abrupt
breakage (i.e. incipient and abrupt faults). Figure 4
shows the ‘pure’ fault signal used for identification.
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Fig. 4. Fault identification signal.

The same identification procedure as for the nominal
model is followed except that only ARX and OE
models are tested. Table 3 shows the final order and
structure selected.

Table 3. Structural fault LTI MISO models.

Model Struc. na nb nf nk
MISO N1 OE 0 [1 1 1 2 2] [1 1 1 2 2] [0]
MISO N2 ARX 1 [1] [0] [0]
MISO EGT ARX 1 [1] [0] [0]

Good time simulation comparisons are obtained for
the identified fault models, Figure 5 shows the most
divergent case (i.e. the fault validation signal for the
fault MISO N2 model). The plot shows the residual
formed by subtracting the no-fault case for the same
flight data, i.e. it shows only the fault effects.
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Fig. 5. Time response comparison, MISOHPTf to N2.

As before, frequency and residual analyses were per-
formed. It is desirable as well to obtain good fit for the
low-mid frequency region while no emphasis is placed
on the residual tests. The reason for not placing em-
phasis on residual tests is that closed-loop flight data
and a designed fault signal are injected in an open-loop
model (hence, we expect high levels of correlation
between inputs).

The LTI MIMO fault model identified has nine states
and, when augmented with the 13 states nominal
MIMO model, good nominal and fault time simula-
tions are obtained.

5. ROBUST MODEL IDENTIFICATION

In this section, the model error models (MEM) asso-
ciated with the nominal models identified in the pre-
vious section are presented. For each identified MISO
nominal model there exist one MEM (i.e. a total of
three models corresponding to the number of outputs
in the system). As established earlier, the purpose of
these model error models is to provide an alternative
test to the classical residual validation and to provide
initial characterizations of the model uncertainty for
the application of the robust residual generation algo-
rithm.

5.1 Model Error Model

Model error models should be more flexible than the
identified model on which they are based in order to
capture the possible non-linearities and dynamics that
are not adequately represented by the nominal model.
A Box-Jenkins general parametric model provides this
flexibility of design. Furthermore, due to the closed-
loop nature of the data and the interdependencies of
the inputs, a MISO identification (with the same four
inputs as for the nominal model) is used. A SISO
identification using the fuel flow as the driving input
was also tried with much less success. The same
identification and validation signals applied to the
previous nominal model identification (see Section 4)
are used to identify the MEMs.

Table 4 shows the order of the coefficients and delays
for each of the MISO MEM models. The differences
among the orders of the input channels for the same
MEM are immediately noticeable. These differences
illustrate the more difficult task that the MEM iden-
tification presents. Indeed the ouput percentage fit is
around 20 % for most of the validation signals tested.

Table 4. Structural MISO MEM models.

Model na nb nc nd nf nk
MEM N1 0 [2 5 3 2] 4 4 [5 5 5 5] [2 2 0 2]
MEM N2 0 [1 1 1 4] 1 1 [4 4 4 4] [2 1 2 1]
MEM EGT 0 [1 1 1 4] 2 2 [1 1 1 4] [1 1 1 0]

Figure 6 shows theMn andAlt cross-correlation for
theEGT MEM model using the validation signal. The
case shown in the figure marginally satisfies the resid-
ual test for three standard deviations, but it is also the
worst case obtained. The other channels and models
pass the test with some cross-correlation stemming
fromW f for the validation signal.

Now we turn our attention to the alternative nomi-
nal model validation test that the model error model
provides. In Section 4.1 it was noted that the residual
test was not passed for the nominal MISON1 model
using the validation signal, also some initial cross-
correlation issues were identified in theAlt,WF chan-
nels for the other models. References (Ljung, 1999;
Reinelt, W et al., 2002) mention that the falsified
nominal model is still of use if additional information
with respect to the uncertainty is obtained. In Figure
7, the non-symmetric region (shaded band) and the
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Fig. 6. Auto and cross-correlation, MEMEGT (band
of 3 standard deviations).

nominal model (solid line) for theN1 model, specif-
ically the Alt channel, is shown. It is clear that the
nominal model is falsified since it is not completely
included within the uncertainty region. Indeed, this
happens for theAlt andMn of all the models (except
the Alt channel in theEGT model) which seems to
indicate this test is more stringent than the classical
residual test. The conclusion is that care should be
exercised for these two channels at frequency regions
approximately between[0.03 → 10] radians for the
robust residual generation. Furthermore, for theN2
model, as was noted earlier, large phase discrepan-
cies occur around the one radian region, see Figure 3.
The MEM uncertainty characterization reflected this
by using larger peaks of the uncertainty frequency
band around the[1→ 15] radians region (specially in
the Mn channel). This also highlights a limitation of
the MEM uncertainty characterization whereby phase
information is only indirectly considered in the defin-
ition of the uncertainty bands.
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Figure 8 provides the symmetric region for the same
model and channel. As expected by design, the non-
symmetric uncertainty region and the nominal model
are covered by the symmetric band. This region is
more conservative than the non-symmetric, but it can
now be used for uncertainty modeling in the frequency
region.

5.2 Uncertainty Characterization

As discussed in Section 2.2, additive uncertainty
weights are calculated for the uncertainty regions. The
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H∞-norm of the uncertainty region is used to obtain
constant bounds for some of the channels, while first
order fits (obtained using the commanddrawmagfrom
(Balas, G.J.et al., 1998)) are used for some other
channels. These weights are used in the robust residual
generation stage as an initial characterization of the
uncertainty. Figure 9 provides an example of a first
order fit for the fuel flow channel of theEGT model.
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Table 5 gives the values of the constant fits for each
of the models and channels. Notice that the largest
influences are registered in the Mach Number channel
for all the three MISO MEM models. This is expected
since this channel has the largest gain in the system.
Also, note that the values for the core speed channel
N2 are the smallest of each plant input row. This
agrees with the time simulation and classical residual
results from the nominal model identification and the
MEM validation which showed that this model was
seemingly the best of the three.

Table 5. Constant bound on MEM uncer-
tainty region of nominal Model.

N1 N2 EGT
TAT 0.2330 0.0219 0.7263
Mn 20.8582 6.6457 61.1725
Alt 0.0227 0.0045 0.0982
Wf 0.0049 0.0022 0.0495

6. H∞ FDI SIMULATION RESULTS

In this section some results of the FDIH∞ filter
obtained using the LTI MIMO model and the previous



uncertainty characterization are shown, see reference
(Marcos, A., 2004).

Figure 10 shows the time simulation performed using
the complete (fault plus nominal) LTI MIMO model
identified in this paper and the detection filter. A
continuous-time flight data serie is used together with
a simulated fault signal. It is observed that the fault is
adequately detected even for relatively small (incipi-
ent) faults and for abrupt faults. The detection time is
around 100 seconds, with remarkably good rejection
properties.
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Figure 11 shows the behavior of the detection filter
when applied to the open-loop nonlinear simulation
model of the engine. It is seen again that theH∞ FDI
filter is able to identify the high-pressure turbine fault,
although there are obvious coupling issues with some
of the disturbances. These results indicate the need for
using a residual evaluation to provide bounds on the
fault estimate in order to improve the false rate.
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7. CONCLUSIONS

In this paper, we presented an application of a ro-
bust identification approach to a Honeywell turbofan
engine for the cruise regime. LTI MIMO parametric
models were identified for the nominal and faulty en-
gine cases. Recent developments on model validation
concepts were also used, i.e. model error models were
used to provide initial characterizations on the mod-
elling uncertainty and to gain understanding of the
shortcomings of the nominal identified models. The
robust model was used to design an FDIH∞ filter
which has good robustness and performance proper-
ties for the LTI MIMO models but suffers from some
disturbance rejection shortcomings for the nonlinear
engine model due to phase uncertainty not included in
the uncertainty characterization.
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