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Abstract: This paper is concerned with discontinuous output feedback stabilization
of a class of nonholonomic systems in a port-controlled Hamiltonian form. First,
in order to obtain a dynamic feedback, an integrator is added to the system via
a generalized canonical transformation. Second, we clarify an equivalence between
asymptotic stability of a state feedback system and that of the corresponding
output feedback system. An output feedback stabilization method is derived based
on this equivalence. Furthermore, some numerical examples show the effectiveness
of our technique. Copyright c©2005 IFAC
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1. INTRODUCTION

Hamiltonian control systems (van der Schaft 1986,
Nijmeijer and van der Schaft 1990) are the sys-
tems described by Hamilton’s canonical equa-
tions which represent general physical systems.
Recently port-controlled Hamiltonian systems are
introduced as a generalization of Hamiltonian sys-
tems (Maschke and van der Schaft 1992). They
can represent not only ordinary mechanical, elec-
trical and electro-mechanical systems, but also a
class of nonholonomic systems (Maschke and van
der Schaft 1994, Khennouf et al. 1995) which can
not be stabilized by any continuous time-invariant
controllers. The special structure of physical sys-
tems allows us to utilize the passivity which they
innately possess and a lot of fruitful results were
obtained so far. These methods are so called pas-
sivity based control.

One of the advantages of passivity based control
is output feedback control, see e.g. (Ortega et al.
1998) for Euler-Lagrange systems and extended
for Hamiltonian systems in (Stramigioli et al.
1998), also a more general result can be found

in (Ortega et al. 1999). It is usually difficult to
stabilize a nonlinear system using output feedback
because there is no efficient way of designing
a state observer of nonlinear systems. Utilizing
the intrinsic passive property of physical systems,
however, it is easy to stabilize the system by only
using the information of output.

On the other hand, when we control a mechan-
ical systems in practice, the velocity signals are
not always measured. This means that the per-
formance of the feedback system can be poor
when the velocity signals are given by difference
approximations of the position signals. In partic-
ular, in the case where discontinuous feedbacks
are employed, even stability can be lost because
of the the approximation error. In order to avoid
these problems, the framework of output feedback
control is needed. In addition, in the case where
initial cost of the mechanical systems should be
emphasized, the framework is also important with
respect to the number of sensors.

This paper is devoted to output feedback sta-
bilization of a class of nonholonomic Hamilto-



nian systems. We derive a discontinuous output
feedback compensator for nonholonomic Hamilto-
nian systems. First, we refer to a state feedback
stabilization of the systems (Fujimoto and Sugie
2001). Second, a framework of dynamic exten-
sion in order to obtain a dynamic compensator
for nonholonomic Hamiltonian systems is derived.
Third, an equivalence between stability of a state
feedback system and that of the corresponding
output feedback system is clarified. Furthermore,
a gain-tuning guideline is proposed to improve
transient behavior. Finally the effectiveness of the
proposed method is demonstrated via some nu-
merical examples.

2. NONHOLONOMIC HAMILTONIAN
SYSTEMS

A port-controlled Hamiltonian system with non-
holonomic velocity constraint is a system with the
following state-space realization (van der Schaft
2000)


[
q̇
ṗ

]
=

[
0 J12(q)

−J12(q)T J22(q, p)

]


∂H

∂q

T

∂H

∂p

T


+

[
0

G(q)

]
u

y =G(q)T ∂H

∂p
(q, p)T

(1)

where q ∈ Rn is position, p ∈ Rm is momentum
and u, y ∈ Rm are input and output, respec-
tively. J12 is a full column rank matrix, J22 is
a skew-symmetric matrix, H = (1/2)pT M(q)−1p,
M(q) > 0 is a symmetric matrix, G(q) is a nonsin-
gular matrix, and J22(q, 0) ≡ 0 holds. Note that
this n + m-order system is a reduced system of
ordinary 2n-order Hamiltonian system.

Here, we refer to a state feedback stabilization
of (1) using generalized canonical transformations
(Fujimoto and Sugie 2001) . These transforma-
tions are natural generalization of the canonical
transformations which are well-known in classical
mechanics and preserve the structure of the port-
controlled Hamiltonian systems.

Theorem 1 (Fujimoto and Sugie 2001) Consider
the port-controlled Hamiltonian system (1) which
is converted by a generalized canonical transfor-
mation so as to have J12 matrix as

J12 =

[
I2

qT
12S2

]
S1, detS2 > (trS2/2)2, detS1 �= 0 (2)

where q = (qT
12, q3)T , q12 = (q1, q2)T . Choose

a positive definite function U(‖q12‖, q3) which is
smooth for q12 �= 0 and satisfies 1

1 Th derivatives of U is design parameters, that is, defined
to be used to controller.

∂U(s, q3)

∂s

∣∣∣
s=0

= lim
s→+0

∂U

∂s
(q3 �= 0) (3)

∂U(s, q3)

∂s

∣∣∣
s=0

= 0 (q3 = 0) (4)

−∞ < lim
s→0

∂U(s, q3)

∂s
< 0 (q3 �= 0) (5)

q12 �= 0 ⇒ ∂U

∂q
�= 0. (6)

Then the following feedback with C > 0 renders
the state converge to the origin.

u = −Cy − G−1JT
12

∂U

∂q

T

− G−1J22M−1p (7)

The examples of the function U which stabilizes
(1) are already given in the literature (Fujimoto
and Sugie 2001) as follows,

U =
1

2
qT q +

|q3|3
(‖q12‖ + |q3|)2

(8)

and (Nakamura et al. 2003). Fig.1 depicts the
shape of the function (8).

In the right-hand side of (7), the first term and the
third term depend on the momentum p. However,
in practice, the velocity signal q̇ , which is required
to compute p, is not always measured. In addition,
as the system scale becomes larger, it becomes
more difficult to identify the parameters of inertial
matrix M(q) accurately. In the next chapter, we
consider the stabilization without measuring the
momentum p.
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Fig. 1. Shape of function U

3. OUTPUT FEEDBACK STABILIZATION

This section is devoted to the main result of out-
put feedback stabilization of nonholonomic Hamil-
tonian systems. First, it is shown how to derive a
dynamic compensator using generalized canonical
transformations. Second, the equivalence between



the asymptotic stability of the state feedback sys-
tem and that of the corresponding output feed-
back system is clarified for nonholonomic Hamil-
tonian systems with the derived compensator. Fi-
nally, an output feedback compensator is derived
based on the equivalence and Theorem 1.

3.1 Dynamic extension

Consider the system (1) again and suppose that
we can only measure the position q. We add the
integrator r ∈ Rn to the system:



[
q̇
ṗ
ṙ

]
=

[
0 J12 0

−JT
12 J22 0

0 0 0

]



∂H

∂q

T

∂H

∂p

T

∂H

∂r

T


+

[
0 0
G0
0 I
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u
uo

]

[
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yo

]
=


GT ∂H

∂p

T

∂H

∂r

T




(9)

whose Hamiltonian is

H =
1

2
pT M−1p. (10)

Here r is the state of the compensator, however
is not connected to the system (1) yet. The
following lemma connects the dynamics of the
original system and that of r-integrator via a
generalized canonical transformation.

Lemma 1 Consider the system (9) with the
Hamiltonian (10) without loss of generality. Then
the generalized canonical transformation

H̄ =H(q, p, r) +
1

2
(q − r)T R(q − r)[

q̄
p̄
r̄

]
=

[
q
p

q − r

]
[

ȳ
ȳo

]
=

[
G−T 0

0 −I

][
y
yo

]
+

[
0

Rr̄

]
[

ū
ūo

]
=

[
G 0

0 −I

][
u
uo

]
+

[
−JT

12Rr̄
0

]
(11)

transforms the system (9) into the following port-
controlled Hamiltonian system



[
˙̄q
˙̄p
˙̄r

]
=
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0 J12 0

−JT
12 J22 −JT

12

0 J12 0

]



∂H̄

∂q̄

T

∂H̄

∂p̄

T
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T


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ȳ
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
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∂H̄

∂p̄

T

∂H̄

∂r̄

T




(12)

whose Hamiltonian is

H̄ =
1

2
p̄T M−1p̄ +

1

2
r̄T Rr̄ (13)

where R > 0 is any positive definite matrix.

Proof of Lemma 1. The proof is straightfor-
wardly obtained from a direct calculation.

3.2 Output feedback stabilization

We will prove the equivalence between the asymp-
totic stability of the state feedback system in
Theorem 1 and that of the corresponding output
feedback system constructed in Lemma 1.

Theorem 2 Consider the systems Σs and Σo:

Σs




[
˙̄q
˙̄p

]
=

[
0 J12

−JT
12 J22

]
∂H̄

∂q̄

T

∂H̄

∂p̄

T


+

[
0
G

]̄
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ȳs =GT ∂H̄

∂p̄

T

(14)

Σo




[
˙̄q
˙̄p
˙̄r

]
=

[
0 J12 0

−JT
12 J22 −JT

12

0 J12 0

]



∂H̄

∂q̄

T

∂H̄

∂p̄

T

∂H̄

∂r̄

T


+

[
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I 0
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][
ū
ūo

]

[
ȳ
ȳo

]
=




∂H̄

∂p̄

T

∂H̄

∂r̄

T




(15)

where H̄ = (1/2)p̄T M−1p̄ + (1/2)r̄T Rr̄.

Then the following two conditions are equivalent
under the assumption of the existence and unique-
ness of the trajectories of both systems.
(i)The equilibrium set of the closed-loop system of
Σs and the compensator

ūs = −Csȳs − JT
12

∂U

∂q̄

T

(16)

is the only origin and asymptotically stable, where
Cs > 0 is any positive definite matrix.
(ii)The equilibrium set of the closed-loop system
of Σo and the compensator

[
ū
ūc

]
=

[
−JT

12

∂U

∂q̄

T

−Coȳc

]
(17)

is the only origin and asymptotically stable, where
Co > 0 is any positive definite matrix.

Note that ȳ of Σo depends on p but is not used
for the compensator (17).

Proof of Theorem 2. (i)⇒(ii) First of all, we
clarify equilibrium sets of the both closed-loop
systems. The equilibrium set of the closed-loop
system of Σs and (16) is

Ωs = {(q̄, p̄)
∣∣p̄ = 0, JT

12

∂U

∂q̄

T

= 0}. (18)



The equilibrium set of the closed-loop system of
Σo and (17) is

Ωo = {(q̄, p̄, r̄)
∣∣p̄ = 0, r̄ = 0, JT

12

∂U

∂q̄

T

= 0}. (19)

It is trivial that Ωo is the origin if and only if Ωs

is the origin.

In addition, suppose that the origin of the closed-
loop system of Σs and (16) is asymptotically
stable. As for the closed-loop system of Σo and
(17), let H̃(t) = H̄(t) + U(t), then ˙̃H(t) =
−r̄T RT CoRr̄ ≤ 0 holds.

Here, we focus on a set Ω0
o = {(q̄, p̄, r̄)|r̄ = 0}

which has the following vector field at each point:

[
˙̄q
˙̄p
˙̄r

]
=




J12M−1p̄

−JT
12

∂U

∂q̄

T

−
(

JT
12

∂(M−1p̄)

∂q̄

T

− J22M−1

)
p̄

J12M−1p̄


 .

(20)

In the case of p̄ �= 0, ˙̄r �= 0 holds because J12 is
a full column matrix. In the case of p̄ = 0, ˙̄p �= 0
holds except the origin because Ωo is the origin.
This means that Ω0

o\{0} is not an invariant set.

Thus, the semi-definiteness of ˙̃H and the definite-
ness of H̃ imply that the origin of the closed-loop
system of Σo and (17) is asymptotically stable.

(i)⇐(ii) This can be proved in a similar way to
the case (i)⇒(ii). (Q.E.D.)

Theorem 2 implies that we can derive output
feedback stabilizing compensators using the state
feedback ones in Theorem 1. This means that Σo is
stabilized by using any function U which stabilizes
Σs in Theorem 1.

The explicit expression of the output feedback
stabilizing compensator is




ṙ = CoR(q − r)

u = −G−1JT
12

(
R(q − r) +

∂U

∂q

T
)

. (21)
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Fig. 2. Example

Note that this compensator does not depend on
any dynamical parameters of (1).

4. NUMERICAL EXAMPLES

4.1 Stability

The well known “rolling coin” example is consid-
ered here. Let X-Y denote the orthogonal coordi-
nates of the point of contact of the coin and the
horizontal plane. Let q1 denote the heading angle
of the coin, and (q2, q3) the position of the coin
in X-Y plane. Furthermore let p1 be the angular
velocity with respect to the heading angle q1, p2

be the rolling angular velocity of the coin, u1 and
u2 be the acceleration with respect to p1 and p2,
respectively. See (Fujimoto and Sugie 2001) about
the details of the coin system.

The state feedback stabilization of this example
is reported in (Fujimoto and Sugie 2001). We now
apply the proposed output feedback stabilization
method based on Theorem 1 and 2. We choose the
function U of (21) as (8) and all the parameters
as unity for simplicity.
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Fig.3 shows the response of q from the initial
conditions q(0) = (0, 0, 1), p(0) = 0. In this figure,
solid, dashed and dashed-dotted lines denote q1,
q2 and q3, respectively. Fig.4 shows the response
in X-Y plane from the same initial condition. In
this case, Co = 3I3, R = I3. The turns of the
coin are automatically generated and every state
converges to the origin. These figures show the
effectiveness of the proposed method.

4.2 Transient behavior

For comparison, we show results of the state
feedback stabilization method in Theorem 1. We
choose the same function U and Cs = 3I2. Fig.5
shows the response in X-Y plane from the initial
conditions q(0) = (0, 0, 1), p(0) = 0. This figure
and Fig.4 point out the importance of improve-
ment of the transient behavior.

However a gain-tuning guideline is not clear so
far. Thus, we start from the discussion in linear
systems case.

4.2.1. Gain-tuning guideline Consider an ordi-
nary second-order linear system:
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Fig. 6. Response of q (Co = 1, R = 5)

[
q̇
ṗ

]
=

[
0 1

−K 0

][
q
p

]
+

[
0
1

]
u (22)

and the output feedback stabilizing compensator
by the proposed method

{
ṙ = −CoRr + CoRq
u = Rr − Rq

. (23)

Note that the function U is included in the spring
constant K in this case.

Let us regard Co as a controller, then a loop
transfer function

CoR(s2 + K)

s(s2 + K + R)
(24)

has the poles and zeros on the imaginary axis.
This means the existence of the poles whose real
part converges to zero even if we make Co too
large or too small. Even though let us regard R
as a controller, a loop transfer function does not
have the zeros on the imaginary axis.

It is shown that dominant poles have non-zero
imaginary part and that the optimal gain Co
which minimizes the real part of dominant poles
is given as

Clinear =

√
K

R
+

1

2
√

K
. (25)

which corresponds to the least oscillation. Here,
we propose a gain-tuning guideline that (25) is
chosen as the initial gain.

4.2.2. Numerical examples and discussion In
the case of the initial values q(0) = (0, 0, 1)T ,
p(0) = (0, 0)T , we show the result of gain-tuning
of R, Co. First, the settling time becomes smaller
as R is chosen larger, however, does not change so
when R is more than 5. Second, the first term
of (8) corresponds to K = 1 and the second
term converges to zero as the state leaves the set
q12 = 0. Thus, we choose (K, R) = (1, 5) which
gives an initial gain Clinear = 0.7I3.
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Figs.6,7 and 8 show the response of q in Co =
I3, 3I3, (1/3)I3, respectively. The highest tran-
sient performance is achieved in the case of Co =
I3 which is the closest to 0.7I3. This result qualita-
tively corresponds to that of the above linear sys-
tem. This shows that our initial choise of Co based
on (25) is reasonable. Fig.9 shows the response in
X-Y plane from the same initial conditions and
also from q(0) = (1, 1, 1)T , p(0) = (0, 0)T . In com-
parison with Fig.4, the validity of the proposed
guideline is confirmed.

5. CONCLUSION

This paper was devoted to output feedback
asymptotic stabilization of a class of nonholo-
nomic systems in a port-controlled Hamiltonian
form. First, it was shown how to derive the dy-
namic compensator using generalized canonical
transformation. Second, the equivalence between
the stability of the state feedback system and that
of the corresponding output feedback system was
clarified. Third, the discontinuous output feed-
back stabilizing compensators for the nonholo-
nomic Hamiltonian systems were derived based
on the equivalence. Furthermore, the gain-tuning
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Fig. 9. Response in X-Y plane (Co = 1, R = 5)

guideline was proposed to improve the transient
behavior. Finally, some numerical examples show
the effectiveness of our technique. The authors be-
lieve that this is the first result of output feedback
stabilization of Hamiltonian systems with non-
holonomic constrains using discontinuous feed-
backs. Applications of the proposed method to
more general Hamiltonian systems will be inves-
tigated in the future work.
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