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Abstract: Integrity is a critical requirement for aerospace navigation systems. In this paper 
integrity issues are coped with a new FDI technique implemented by a snapshot RAIM 
algorithm based on position domain tests. The approach consists of the joint 
exploitation of all the possible Least Squares (LS) solutions of the GPS linear 
estimation problem under a single fault on a pseudorange measurement. The 
loci described by the different LS position solutions by varying the fault size 
and the faulty satellite are investigated. The exact non linear dependence of the 
loci from the fault size is considered. No linear approximation is used. This 
results in a new criterion and algorithm for the faulty satellite isolation. The 
effectiveness of the proposed method in the isolation of faulty satellite has been compared 
with a classic FDI method and demonstrated by Montecarlo simulations based on real data. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The use of GPS positioning in an aerospace 
navigation system depends on its capability in 
fulfilling the Required Navigation Performance 
(RNP), as stated by the International Civil Aviation 
Organization (ICAO), in terms of accuracy, 
continuity, integrity, availability. Integrity is the RNP 
parameter that has a direct impact on safety because 
it refers to the level of confidence that can be relied 
on the information of position (ICAO, 1995; 
RTCA/DO-236A, 2000). As it is well known, GPS 
has the advantage of an high accuracy positioning but 
suffers the drawback of high disturbance 
vulnerability (e.g. jamming, multipath) as well as 
sometimes inadequate time to alarm to manage 
possible failure situations. Integrity can be studied 
with methods developed for Fault Detection and 
Isolation (FDI). A large literature exists where 
integrity monitoring schemes and FDI algorithms for 
GPS are proposed and analyzed (Van Graas, 1996; 
Brenner, 1995; Lee, 1995). The purpose of FDI 
algorithms is to detect and isolate, eventually 
exclude, a possible fault with a prescribed probability 
of missed detection and without exceeding a 
maximum false alarm rate. FDI for GPS is essentially 
based on the availability of redundancy in the 
information used to compute the navigation solution. 
The redundancy in GPS positioning can result from 

considering a number of satellite signals greater than 
that strictly necessary and/or can be obtained from 
other sensors (e.g. inertial navigation systems). 
Hence, the FDI algorithms can be classified into two 
main groups: 1) snapshot algorithms, 2) history-
based algorithms. The formers are generally based on  
least-square methods that process set of data sampled 
at the same time (Van Graas, 1996), while the latter 
make use of multiple Kalman filters fed with 
different innovations (Brenner, 1995). Moreover, the 
FDI algorithms can be classified between range-
based and position-based methods, depending on the 
kind of test statistic they adopt for the detection 
function. Range-based methods work in the 
pseudorange domain, that is the measurement space: 
they are able to detect the occurrence of a fault in the 
signal-in-space according to the above mentioned 
probabilities. Range-based methods follow the 
procedures developed for parity-space or residuals 
FDI (Brown, 1988; Van Graas, 1996; Patton 2000) 
Alternatively, the position-based methods use the 
spread of the position solutions compatible with the 
available measurements in order to detect a possible 
failure situation. The most widely known position-
based test statistic function is based on the so-called 
“Solution Separation Method” (Brenner, 1995; 
Young, 2002). While the equivalence between range 
and position-based methods has been demonstrated 
(Lee, 1995; Young 2002), nevertheless a subtle 



difference holds between them: a range-based 
algorithm is capable to detect a fault in GPS signals. 
A position-based algorithm can detect a failure in the 
navigation solution: this seems to better agree to the 
ICAO requirements in the sense that they are 
primarily concerned on the impact of a fault on the 
navigation solution (the navigation failure and its 
detection) rather than on the fault itself (and its 
detection).. The concept, the solution separation 
method is based on, is the definition of a threshold 
for the spread of the position sub-solutions computed 
by removing a satellite signal one at a time from the 
overall measurement set. In case of a faulty 
measurement, the culprit affects all the computed 
positions but one and then the position spread serves 
as a test statistic for detection. In this paper, a 
different perspective from the classical snapshot 
position-based FDI algorithm is proposed. The 
algorithm is based on the observation that LS method 
can be thought as an identification scheme suitable to 
find a set of parameters (i.e. the three position 
coordinates) that relates the pseudorange vector to 
the geometric satellite-user unit vectors by means of 
linear equations. As will be clear in the following, 
five different LS schemes for each hypothesis on the 
faulty satellite can be considered in order to find the 
linear relationship parameters. These five different 
LS schemes, in case of a faulty measurement, 
provide different sets of parameters going away one 
from the other with a non linear growing law 
depending on the magnitude of the fault and on the 
GPS linearization point. Moreover, in the noiseless 
case, only if the hypothesis on the faulty satellite is 
correct, the corresponding set of five loci present a 
common point. A new algorithm is devised by 
assuming that this property approximately holds in 
the noisy case. Hence, the faulty satellite is chosen 
corresponding to the set of loci characterized by the 
minimal distance. The good results of the algorithm 
have been highlighted by comparisons with the 
classic FDI range-based method performed by means 
of Montecarlo simulations based on real GPS data. 
 
 

2. THE GPS MEASUREMENT MODEL  
 
The mathematical model of the GPS relates the 
measured user/receiver-to-satellite ranges, known as 
pseudoranges, to the user position coordinates. It is 
described by a set of non linear equations that can be 
easily linearized around a reference point (Parkinson 
1988). The influence of various type of disturbances 
and the presence of possible faulty measurements can 
be easily taken into account by the following 
algebraic, linear model: 
 
 ρf= + +Hp �ρ ρ  (1) 
 
Where p is 4-dimension vector made of the three 
position coordinates respect to the reference position 
and the receiver clock bias; ρ is a N-dimension 
vector of the measured pseudorange for each in view 
GPS satellite; H is a Nx4 matrix whose rows are the 
cosine directors between each GPS satellite and the 

user receiver together with a 1 in the fourth position 
for the clock bias, that is 
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�ρ is a N-dimension vector of the disturbances (noise, 
atmospheric and multipath errors) affecting the 
measurement; ρf  is a N-dimension vector of possible 
faults affecting the measurements. 
 

1.1 Hypothesis on fault fρ and matrix H 
 
In this paper an only-one per time satellite 
measurement fault hypothesis is assumed, in fact 
multiple GPS signal faults are extremely improbable. 

Assumption 1 The fault can be modeled as an error 
that adds up to the fault-free pseudorange 
measurement related to a certain satellite, that is 
f kα= eρ   where α  is a real scalar representing the 

amplitude of the fault;  k is an index of the faulty 
signal. k ranges from 1 to N; ek is a N-dimension 
vector with a 1 in the kth position and 0 otherwise 

Of course, both k and α  have to be estimated by the 
FDI process. Moreover when dealing with real data, 
matrix  has usually full rank and in order to have 
isolation of the faulty satellite , so that the 
following hypothesis is introduced. 

H
5N >

Assumption 2 Matrix has a number of rows 
and satisfies  

H
5N > ( ) 4rank =H

In order to avoid, as it will be seen in the following, 
rather pathological cases corresponding to multiple 
solutions, a further assumption it is introduced. 

Assumption 3 Matrix H and vector  p fulfill the 
relation ( )k iλ α α≠ −Hp e e , , , :iλ α∀
( )k iλ α α−e e   10N×≠

1.2 Classic residual-based FDI process. 
 
In order to have an estimation of the fault by way of 
classical FDI method, the vector , representing 
an arbitrary assumed fault on satellite i

iαe
th, can be 

subtracted by both the members of equation (1) 
leading,  by Assumption 1, to 
 
 iα α− = + + −e Hp e e�ρ ρ k iα

iα

 (2) 
 
By defining  , with the further 
assumption that  is a vector white noise 
characterized, without loss of generality, by a 
covariance matrix , a statistically 

unbiased estimation  of p can be obtained by 
the least square solution of equation (2), i.e.: 

( ) :i
c α = − eρ ρ

�ρ

2
Nρ ρσ= IΣ

( )LS
i αp

 
( ) ( )LS i

i c kα α+ + += = + + −p H p H H e�ρ ρ iαe (3) 
where + denotes the pseudo-inverse matrix operator. 
Note that  (3) is the LS solution corresponding to the 
hypothesis that a fault of size α is present on the ith 

 



satellite. The residual vector associated to 
(3) is 

( )LS
i αres
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Equation (4) shows that if the assumed faulty satellite 
coincides with the true faulty one, i.e. i ,  and α 
equates the amount of true fault 

k=
α , in case of 

, the residue 0=�ρ ( )
2LS

i αres  is equal to zero. 
Moreover, in the noisy case, ,  the residues  
have a non central chi-square pdf  with (N-4) degrees 
of freedom. Their mean value is given by 

0≠�ρ
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where E is the expected value operator. It is worth 
observing that the expected value of the residue 
reaches its minimum when i = k and α = α . For 
these reasons, the pair i and α  minimizing the actual 
residue is the one candidate to identify the faulty 
measurement and gives also an estimate of the size 
α and of the position p. Equation (2) can be rewritten 
in a manner that will be useful in the subsequent 

paragraph 1
T

kα α⎡ ⎤ = − − +⎢ ⎥⎣ ⎦H p e e�ρ i . The 

structure of H is as follows  
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3. EIV ESTIMATION FOR THE CASE 
WITHOUT FAULT 

 
With reference to (6), the case with 0α α= =  is 
considered, that is only the noise affects the data and 
no fault is present. For this case, the EIV framework 
is defined by the following assumption on the noises 
affecting the columns of H . 

Assumption 4 . 

Where § can be either  

§ § §ˆ , ( 1, ,i i ih h h i N= + =� … )

, , , ,x y z b ρ

Assumption 5  The noises   have zero expected 
value and are mutually uncorrelated,  and 

uncorrelated from noiseless data 

§
ih�

, §i∀

ĵhℵ , . ,j∀ ℵ

 With the previous assumptions our data model is 
often called in statistics literature as Errors-in 
Variables (EIV) model.  In this way, all the variables 
are treated symmetrically.   

Remark 1 The errors  reflect the influence which 
may come from stochastic disturbances, errors of 
measurement, nonlinear effects and more generally 
from anything that is not analyzed or analyzable.  

§
ih�

Remark 2 According to model (7),  with 

equal to , while with  equal to  is 
the pseudorange noise. It follows that it seems 
useless to suppose that the whole set of columns of 

§ 0ih =�

§ , , ,x y z b §
ih� § ρ

H  is affected by errors. The reason is that in the EIV 
framework it is possible to compute five LS solutions 
by projecting a column of H on the iperplane 
spanned by the remaining columns. In the following 
it will be shown how to use these further solutions in 
order to isolate the faulty satellite.  

If Assumption 4 and Assumption 5 hold and no fault 
is present on pseudoranges, matrix H can be 
decomposed as follows ˆ= +H H H� , where Ĥ , 
H� are the noiseless and the noise matrices defined 
analogously to H . The noisy data do not fulfill a 
linear relation and a solution, can be found only by 
an identification scheme. Kalman has shown that in 
the EIV framework previously described, it exists a 
whole family of solutions corresponding to a simplex 
in the space of the solutions. The vertices of this 
simplex are the 5 different LS solutions  

,  given by the following relations by 
assuming 

LSnx
( 1, ,5n = … )

0α α= = in  5H
 

 jk m j k m
⎡ ⎤= ⎢ ⎥⎣ ⎦X H H H HA A  (7) 

  

 ( ) 1T T
jk m jk m jk m jk m jk m

−=P X X X XA A A A A  (8) 
 

 ( )kerLSn
jk m jklm n

⎡ ⎤= ⎢ ⎥⎣ ⎦z X PA H  (9) 
 
where  denotes the nnH th column of H , 

, while , ,   are the remaining 
vectors.  (the n
( )1, ,5n = … j k A m

LSnx th LS solution obtained by 
projecting the nth column on the remaining ones) can 
be obtained by normalizing (note that the 
coefficient of   is 1). For example , is given  

LSnz
5H 5LSx

( )5
1234 1234 5kerLS ⎡ ⎤= ⎢ ⎥⎣ ⎦z X P H , 

5 5
5

/LS LS LS=x z z 5 . Where 5
5

LSz  is the 5th 

element of . See (Guidorzi, 1992; Kalman, 
1982) for further details.  The other infinite solutions 
belonging to the  simplex are called the Frisch 
solutions, and constitute the entire set of solutions 
fulfilling Assumptions 1 and 2. Among them, a well 
known solution is the Total Least Squares one. So the 
LS solutions are only a subset of a larger family of 
solutions corresponding to different assumptions on 

5LSz

 



the errors in the variables. These assumptions have 
been called by Kalman prejudices.  

Remark 3  The EIV framework is useful when all the 
variables can be affected by errors. This can be the 
case of the presence of ephemeris errors. In the GPS 
problem usually only is computed because 
ephemeris errors are negligible with respect to 
pseudorange noise. Therefore, among Frisch 
solutions this is the only one which is unbiased. For 
this reason, the computation of other Frisch solutions 
could seem surprising or useless. The answer is that, 
under faulty conditions, as demonstrated in the next 
paragraph, the vertices of the simplex move 
highlighting the presence of a fault. 

5LSx

 
4. EIV FDI 

 
In this paragraph a procedure for the isolation of the 
faulty satellite is described. This procedure can also 
be used to determine a position and a fault size 
estimate. In this work only the isolation capability of 
the algorithm is considered. In order to determine a 
consistent criteria to isolate the faulty satellite, the 
noiseless but faulty case is previously considered. 
Next the noisy case will be considered. This two step 
methodology to analyze EIV model is used 
analogously to the identification of dynamic model 
(Castaldi, 1996,1999).  
 
1.3 Noiseless case 
 
Consider now the faulty but noiseless case 
characterized by the presence of f kα= eρ  but with 

. For this case under the assumption 
previously stated, it is possible to define the 
following procedure in order to isolate the faulty 
satellite and to exactly determine the position and the 
size of the fault. 

0=�ρ

Remark 4 It is worth observing that by means of 
relation (6) and the presence of  the fault, a parameter 

, in general different from zero, is introduced. So 
that,  with the exception of the classical least square 
LS5, ,  and 

. In order to shorten notation this 
dependence will be omitted in the following 
Procedure 1 and Theorem 1 . 

α

( )jk m jk m α=X XA A ( )jk m jk m α=P PA A

( )5 5 α=H H

Procedure 1 

1. For a given value of α , if , 
compute the n

( ) 4jk mrank =X A
th LS solution with the hypothesis 

of fault of size α  on the ith satellite by mean of 
the following relation  
 

 ( ) (kerLSn
i jk m jα )klm n

⎡ ⎤= ⎢ ⎥⎣ ⎦z X PA H  (10) 
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x z

z
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2. If  compute the n scheme 

solution by augmenting vector 

( ) 3jk mrank =X A

( )ker jk mX A  with 
a zero in the nth position 

 
3. For every n s , ( , compute the 

distance  in the position space 
between the position estimates given by n

≠ ), 1, ,5n s = …
( )LSnLSs

id α
th and 

sth  LS schemes 
 

( ) ( ) ( )
2

LSnLSs LSn LSs
i i id α α= −x x α

)

 (12) 
 
4. Compute the total distance  
 
  (13) ( ) ( ), , 1, ,5LSnLSs

i i
n s

d d n sα
≠

= =∑ …

 
5. Compute the satellite ith and the fault size α  

corresponding to the minimal total distance, i.e. i 

and α  satisfying  
 
  (14) ( )(

,
min ii

d
α

α

 
The following Theorem 1 shows that, when dealing 
with the noiseless case, the minimal total distance is 
equal to zero if and only if  i  and k= α α= , 
hence allowing the isolation  of the faulty satellite. 

Theorem 1 With reference to the noiseless case, i.e. 
, the total distance , defined in (13), is 

equal to zero if and only if  and 
0=�ρ ( )id α

i k= α α= .  

Proof . If: in the noiseless case with i  and k=
α α= , vectors in (6) are collinear and by means of 
(11), if , or by step 2 in Proc. 1, 

in case of  ,  it is possible to 
compute the solution corresponding to each scheme. 
This solution coincides with the actual kernel of , 

( ) 4jk mrank =X A

( ) 3jk mrank =X A

H

1
T⎡ ⎤⎢ ⎥⎣ ⎦p , hence  ( )( ) ( )

,
min 0i ki

d d
α

α α= =   

Only if: it is straightforward to verify that if  by 
assuming  and/or i k≠ α α≠  and by means of 
Assumption 3, it is  and 

. 
( ) 4jk mrank =X A

( )( )
,
min 0ii

d
α

α ≠

Remark 5 Note that by means of Assumption 2 
Assumption 3, the minimal rank of jk mX A  is 3. This 
is the case in which one or more entries of  are 
exactly equal to zero and  and 

p
i k= α α= . In this 

case, the solution corresponding  to n scheme is 
given by augmenting vector (ker )jk mX A  with a zero 
in the nth position. 

Remark 6 Note that the distance defined in (12) can 
be restricted to the tree dimensional position domain 
by using the first three elements of every solution 

. The results given by Theorem 1, 
obviously, still hold.  

( )LSn αx

 



The situation corresponding to the noiseless case 
with , i k= α α=  and a vector  with every 
entries different from zero, is depicted in Figure 1. In 
this figure, in the position domain, the five loci, 
described by the first three elements of 

p

( )
1,2,3

LSn αx ,  are reported. As 

demonstrated in (Castaldi, 2004) the loci 

( 1, ,5n = … )

( )
1,2,3

LSn αx   are segment of 

iperbolas and  

( 1, , 4n = … )

( )5
1,2,3

LS αx  is a straight line. By 

means of Theorem 1, they present a common point 
corresponding to the actual position 1,2,3p  

Remark 7  In Figure 1, the straight line corresponds 
to the classical least square solution LS5 as α  varies. 
If i  and k= α α=  and , if the linearization 
point is characterized by some components equal to 
zero, some iperbolas may degenerate in straight line. 
In fact, it can be easily shown that if the j

0=�ρ

th element 
of  is equal to zero, then p ( )

1,2,3
LSj αx becomes a 

straight line.  

 

Figure 1. Noiseless case with  and i k= α α= . 
Loci present a common point corresponding to 
actual position  1,2,3p  (denoted with a circle). 

 

 
 
Figure 2. Noiseless case with i  and/or k≠ α α≠  

The loci do not have common a point.   
 

 
 

Figure 3. Noisy case with i  and k= α α= . Loci 
approximately present a common point. 

 

Figure 4. Noisy case with i  and/or k≠ α α≠ . 
Loci present do not have a common point, even 
approximately. 

 
5.2 Noisy case 
 
For the noisy case, Procedure 1 can still be used in 
order to isolate the faulty satellite (and to estimate 
the fault size and the actual position). In this case 

 even by choosing i  and ( )( )
,
min 0ii

d
α

α ≠ k=

α α= , due to the presence of  . The 
statistical properties of this consistent criterion will 
be investigated by montecarlo simulation in the next 
section. In particular, in this work, will be 
investigated the isolation properties of the procedure. 
Fig. 2,3,4 show the other possible cases. 

0≠�ρ

Remark 8 Investigating real time capabilities of 
procedure 1 is beyond the aim of this methodological 
work and will be investigated in a further work. 
However, MATLAB tests performed in next section 
require a low computational burden: 0.093 sec CPU 
time/run on mobile P4 3.2GHz.  
 

5. RESULTS 
 
In this section, the results of some tests carried on in 
order to assess the performance of the described FDI 

 



 

⎤p

algorithm are presented. The aim of the tests is to 
evaluate how the algorithm behaves in presence of 
different levels of noise and faults. The goal of the 
algorithm is to detect and isolate the faulty satellite 
from measurements corrupted by noise. As a 
consequence, the tests have been run by using both 
real and simulated data. In fact, real satellite 
ephemeredes have been  collected by a ground fixed 
NOVATEL® GPS geo-referenced receiver sited near 
Forlì airport: these data, together with the GPS 
receiver coordinates,  have been used in order to 
form the H observation matrix. Moreover, exact 
pseudorange values have been computed from the 
satellite-receiver distance and simulated noise with a 
known level of standard deviation has been added to 
them. In addition, simulated values of fault over a 
single pseudorange have been injected. The 
observation matrix H is obtained by means of a 
linearization around a point far 10 meters, in each 
direction, from the actual point where the receiver is. 
That is, the noiseless part of the measurements have 
been generated by multiplying H for the coordinate 
vector ⎢ ⎥⎣ ⎦ . The fourth element 
of p, the clock bias, is irrelevant respect to the 
linearization process and adds the same way to all the 
measurements: therefore it does not affect the 
detection and exclusion process whichever value is 
chosen for it. The linearization point has to be a near, 
previously computed fault-free position. In this case 
the non-linearity errors are negligible and no fault 
affects the H matrix. The latter requirement is not 
stringent because the linearization point can be 
chosen simply as the last computed position that has 
successfully passed the previous FDI test. For each 
pair of fault/noise sigma level, 100 Montecarlo 
simulations have been run. The numbers of times the 
classic FDI algorithm as well as the proposed one 
have correctly detected and isolated the fault and the 
responsible satellite have been counted for each set 
of 100 simulations. As expected, the simulations 
show that the best results are achieved  when the 
fault is greater then the noise level. In fact, in this 
cases, the FDI algorithm easily finds the culprit 
satellite because the fault stands out over the noise. 
Similarly, worst results come out when the fault is 
covered and confused below the noise level. 

T
10 10 10 10⎡=

Moreover, as table 1 shows, the simulations indicate 
that the performances of the FDI proposed algorithm 
always surpass or equal to those of the classic FDI 
method. 
 
Table 1 Successful FDI for classic/proposed methods 
over 100  trials in different fault and noise conditions 
 
Fault [m]  Noise sigma levels [m] 
   2.5 5 10 
 2.5  22/34 16/31 14/23 
 5  34/56  22/36 16/26 
 10  82/99 34/58 22/29 
 20  100/100  82/93 34/44 
 30  100/100 100/100 58/63 
 
In particular, the best improvements of the proposed 
FDI algorithm emerge when the fault value is smaller 
than the noise sigma and the detection is, therefore, 
harder (see upper-right cells of table 1). 
 
 
 

6. CONCLUSIONS 
 
In this paper, the enhanced level of information 
provided by the joint exploitation of all the LS 
solutions of the position estimation problem under 
faulty conditions has been used. This has allowed for 
the design of a robust new snapshot position-based 
FDI algorithm. The performances of the proposed 
algorithm have demonstrated better robustness 
property in isolating the faulty satellite respect to the 
classical FDI approach.  
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