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Keywords: Chua’s circuit, output regulation, chaos communication, chaotic
behaviour, nonlinear control systems.

1. INTRODUCTION

In this paper we study the problem of re-
ducing to zero the tracking error for a Chua’s
circuit (Matsumoto and Komuro, 1985), (Chua
and Matsumoto, 1986), in presence of a deter-
ministic disturbance due to a magnetic coupling
through the circuit inductor. It is a practical
problem whenever resonant circuits are used, as
in today high integrated systems where a lot
of signal sources work together in close proxim-
ity. In fact, from an applicative point of view,
the Chua’s circuit has assumed a big interest
in the field of chaos communications (Dedieu
and Ogorzalek, 1997), (Fradkov, 1997), (Suykens
and Chua, 1997), (Boutat-Baddas and Tauleigne,
2004) where such circuits are used in modula-
tion and demodulation schemes, along with other
circuits capable of generating chaos (Cuomo and
Strogatz, 1993). Consequently, any practical im-
plementation would require to share the same
available circuit area, resulting in close proximity
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operation and high probability of unwanted signal
coupling among circuits. Due to the simplicity of
the electrical network which realizes the Chua’s
circuit, this is the preferred network used to check
the effectiveness of any control theory applied to
chaos. In fact, the simplest form of Chua’s circuit
only requires an operational amplifier for the ac-
tive circuit, plus some few passive components.

The problem of chaos synchronization plays an
important role in chaos communication research
area, as well as the chaos tracking problem we
address in this paper, since it translates in a
synchronization problem. We apply the regulator
theory for nonlinear systems (Isidori, 1995) in
order to synchronize two chaotic Chua’s circuits,
which is one of the fundamental request in chaos
communication. Among the others, two simple
methods are used in chaos communication: the
“Masking Technique” and the “Parameter Modu-
lation” (Frey, 1993), (Cuomo and Strogatz, 1993).
In the “Masking Technique” the information, with
a small amplitude, is added to the chaotic signal;
the small amplitude is required to not alter the
chaotic signal spectrum. This signal is then trans-
mitted to the receiver. Here, a similar chaotic cir-
cuit is located, which synchronizes to the chaotic



regime of the incoming signal. At this point, a
difference is made between the synchronized re-
ceiver chaotic signal and the incoming signal, and
in such a way the information is extracted from
the received signal and available to the user. In
the “Parameter Modulation” a parameter of the
transmitter, for example a resistor, is modulated
in binary mode, and the whole signal is transmit-
ted to the receiver. Here a similar chaotic circuit
has the same parameter used in the transmitter
(the resistor) fixed to one of the two possible
values: the two chaotic circuits then synchronize
when the received signal comes with the same
information of the parameter value (the resistor
value) used in the receiver, and stay unsynchro-
nized when such parameters have different values.
This synchronous and asynchronous states are
used to recover the digital information transmit-
ted.

Various control techniques have been imple-
mented for Chua’s circuit. Among the others,
we recall the adaptive–robust control via fuzzy
approach (Chang, 2001) in order to face system
uncertainties and external disturbances, the linear
control (Puebla and Cervantes, 2003) for design-
ing a simple tracking controller for Chua’s cir-
cuit which takes into account plant uncertainties
and external disturbances, digital control (Xu and
Shieh, 1996) in order to apply an analog controller
via a digital microprocessor, the sliding mode
approach (Boutat-Baddas and Tauleigne, 2004)
for secured data transmission based on chaotic
synchronization and observability singularity.

In this work we consider a Chua’s circuit to
be controlled and a second Chua’s circuit which
generates the reference to be tracked. Moreover,
we consider on the Chua’s circuit to be controlled
the presence of a deterministic disturbance due
to a magnetic coupling through the circuit in-
ductor. By solving an output regulation problem,
we determine a control law, based only on the
knowledge of the circuit’s state, which allows the
tracking of the desired reference output while re-
jecting the disturbance.

The paper is organized as follows. In Section 2
the mathematical model of the Chua’s circuit is
presented and the regulation problem is formu-
lated. In Section 3 the output regulation problem
for the Chua’s circuit is solved. In Section 4 some
simulation results are shown. Brief comments con-
clude the paper.

2. MATHEMATICAL MODEL OF CHUA’S
CIRCUIT AND PROBLEM SETTING

The Chua’s circuit is shown in Figure 1. It
consists of a parallel resonant circuit L–C2 cou-

pled through a resistor R to a parallel of a ca-
pacitor C1 and an active nonlinear element Rnl.
Such a nonlinear element, often named Chua’s
diode, can be characterized by the cubic function
i(v1) = c̄1v1 + c̄3v

3
1 (Zhong, 1994), where v1 is the

voltage at the ends of the C1 capacitor and i the
current passing inside the nonlinear element, and
c̄1 < 0, c̄3 > 0 are constants. Alternatively, one
could use for the nonlinear element a piece–wise
linear function. Here we considered a third degree
polynomial since it is more realistic, because it
corresponds to an element which is eventually
passive. So, this function does not introduce in the
model unrealistic behaviors due to the presence of
initial states from which the system trajectories
would tend to infinity.

The driven Chua’s circuit is analytically rep-
resented by the following system

ẋ1 = µ1

(
− (1 + c1)x1 + x2 − c3x

3
1

)
− µ2u

ẋ2 = µ3(x1 − x2)− µ4x3

ẋ3 = µ5(x2 − vd)

e = x2 − vr

(1)

where x1 = v1, x2 = v2 is the voltage at the ends
of C2, x3 = iL is the current in the inductance L,
and where we have set

c̄1 = c1
µ1

µ2

, c̄3 = c3
µ1

µ2

.

Note the presence of the current generator u.
In (1) e denotes the tracking error between v2

and an appropriate reference voltage vr. Finally,
note the presence of a disturbance signal vd acting
on the inductance current dynamics. In (1) the
parameters are defined as follows

µ1 =
1

RC1

, µ2 =
1

C1

, µ3 =
1

RC2

µ4 =
1

C2

, µ5 =
1

L
.

The control problem is to track the prescribed
signal vr while rejecting the disturbance vd. Both
these signals are supposed to be modelled. More
precisely, we want that the output x2 of the con-
trolled Chua’s circuit tracks a signal vr generated
by another (autonomous) Chua’s circuit, shown in
Figure 2 and with the following dynamics

ẇ1 = θ1

(
− (1 + g1)w1 + w2 − g3w

3
1

)

ẇ2 = θ3(w1 − w2)− θ4w3

ẇ3 = θ5w2

ẇ4 = ωw5

ẇ5 = −ωw4

vr = w2

vd = w4

(2)



where g1 < 0, g3 > 0,

θ1 =
1

ReCe1

, θ2 =
1

Ce1

, θ3 =
1

ReCe2

θ4 =
1

Ce2

, θ5 =
1

Le

.

Note that (2) is nonlinear, autonomous, and
can be put in the form

ẇ = s(w). (3)

These dynamics generate the disturbance vd as
well. For this reason the exogenous input w is also
called the extended disturbance, meaning that it
contains the desired output function to be tracked
and the undesired disturbance to be rejected.
Both determine an error to be asymptotically ze-
roed. The disturbance vd is supposed here simply
sinusoidal and of fixed frequency. More complex
cases than that considered with the exosystem (2)
can be considered in the same way, at the expense
of more complex dynamics.

An important characteristic that (2) has to
meet, in view of the study of the steady state of
the plant (1), is that the input which corresponds
to this steady state and which is determined on
the basis of the exogenous variable w must be
persistent in time. In fact in this way we do
not consider inputs decaying asymptotically to
zero and we can speak of steady state response,
depending on the specific system characteristics
and not on its particular initial state. Another
obvious requirement is that w be bounded. In
order to have persistent inputs it is usual to
require the property of Poisson stability. A point
w0 is Poisson stable if the solution w(t) of (3) is
defined for all time t and, for each neighborhood
U0 of w0 and for each real T > 0, there exist t1 >
T and t2 < −T such that w(t1), w(t2) ∈ U0. This
means that the solution w(t) passes arbitrarily
close to w0 for arbitrarily large times in the future
and in the past. Clearly the condition of Poisson
stability required for the points of a neighborhood
U0 implies that any control law u = γ(w), with
γ(0) = 0, can not converge asymptotically to zero.

The formulation of the considered control
problem perfectly fits the regulation theory (Isidori,
1995), (Byrnes and Isidori, 1997). In this set-
ting (1) is the plant to be controlled, and (2) is
the so–called exosystem which generates the ref-
erences and the disturbances acting on the plant.

The formulation of the output regulation prob-
lem is the following (Isidori, 1995).

Output Regulation Problem. Given a non-
linear system ẋ = f(x,w, u) with output e =
h(x,w), and a Poisson stable exosystem ẇ = s(w)
with bounded trajectories, find a mapping α(x, w)
satisfying

(S) the origin of ẋ = f(x, 0, α(x, 0)) is asymptot-
ically stable in the first approximation;

(R) the solution (x(t), w(t)) of

ẋ = f(x,w, α(x,w))

ẇ = s(w)

for any initial condition (x0, w0) in a neigh-
borhood U of (x,w) = (0, 0), is such that
lim

t→∞
h(x(t), w(t)) = 0.

In the next Section we will solve the Regula-
tion Problem for the Chua’s circuit.

3. REGULATION OF THE CHUA’S CIRCUIT

The following result gives sufficient conditions
for the existence of a solution to the regula-
tion problem (Isidori, 1995), (Byrnes and Isidori,
1997).

Proposition 1. Let

A =
∂f

∂x

∣∣∣∣∣
(0,0,0)

B =
∂f

∂u

∣∣∣∣∣
(0,0,0)

.

The output regulation problem is solvable if and
only if the pair (A,B) is stabilizable and there
exist mappings xss = π(w) and uss = γ(w), with
π(0) = 0 and γ(0) = 0, defined in a neighborhood
W0 of the origin, satisfying the so–called regulator
equations

∂π(w)

∂w
s(w) = f

(
π(w), w, γ(w)

)

0 = h
(
π(w), w

) (4)

for all w ∈ W0.

The mapping xss = π(w) represents the steady
state zero output submanifold and uss = γ(w) is
the steady state input which makes invariant the
steady state zero output submanifold.

First, it is easy to check the controllability of
the pair

A =



−µ1(1 + c1) µ1 0

µ3 −µ3 −µ4

0 µ5 0


 , B =



−µ2

0
0


 .

Then, we determine the solution of the regu-
lator equations, which in our case are written as
follows



∂π1(w)

∂w
s(w) = µ1

(
− (1 + c1)π1(w) + π2(w)

− c3π
3
1(w)

)
− µ2γ(w)

∂π2(w)

∂w
s(w) = µ3

(
π1(w)− π2(w)

)
− µ4π3(w)

∂π3(w)

∂w
s(w) = µ5

(
π2(w)− d(w)

)

0 = π2(w)− r(w)

with r(w) = w2, d(w) = w4, and

s(w) =




θ1

(
− (1 + g1)w1 + w2 − g3w

3
1

)

θ3(w1 − w2)− θ4w3

θ5w2

ωw5

−ωw4




.

First, one considers that the tracking error is zero
for

π2(w) = w2.

Then, from the third equation one determines

π3(w) =
µ5

θ5

w3 +
µ5

ω
w5.

Moreover, from the second equation one works out

π1(w) =
θ3

µ3

w1 +

(
1− θ3

µ3

)
w2

− θ4

µ3

(
1− µ4

θ4

µ5

θ5

)
w3 +

µ4µ5

ωµ3

w5.

Therefore, the steady state zero output manifold

π(w) =
(

π1(w) π2(w) π3(w)
)T

remains de-
termined.

Finally, from the first equation one gets the
steady state input which makes π(w) invariant

γ(w) = a1w1 + a2w2 + a3w3 + a4w4 + a5w5

+ b1w
3
1 − µ3c3π

3
1(w)

where

a1 =
θ3

µ3

(θ3 − µ3 − µ1 + θ1 − µ2c1 + θ2g1)

a2 =
−θ2

3 + (µ2c1 + µ3 + µ1 − θ1)θ3

µ3

+
−µ4µ5 + θ4θ5 − µ2c1µ3

µ3

a3 =
(µ3 − θ3)θ5θ4 − (µ2c1 + µ1)(µ4µ5 + θ5θ4)

µ3θ5

a4 =
µ4µ5

µ3

a5 = −µ4µ5
µ1 + µ2c1

ωµ3

b1 =
θ3g3θ2

µ3

.

Finally, the control law which solves the output
tracking problem is

u = γ(w) + K
(
x− π(w)

)
(5)

which contains a term proportional to x − π(w).
When this term vanishes since the plant trajec-
tories approach to the steady state manifold, the
control tends to the steady state input γ(w).

4. A SIMPLE OBSERVER FOR THE
DISTURBANCE

The control law (5) needs the knowledge of the
components w4, w5 of the exosystem, correspond-
ing to the disturbance vd = w4 and its derivative.
In practical applications even the measurability of
the disturbance is an unrealistic hypothesis. All
the more reason this is valid for its derivative. In
order to bypass this problem two possibilities can
be considered: the first is to solve the so–called
output regulation problem from the error, namely
to build a dynamic controller based only on the
signal e; the second is to construct an observer for
the disturbance components w4, w5. The obsta-
cle in the first possibility consists of solving the
immersion of the control (5) with a nonlinear ex-
osystem. This is still an open problem, in general
cases, and in the present case it does not seem
easily solvable.

Therefore, we built a simple reduced–order ob-
server considering the following system, deduced
from (1), (2)

ẋ3 = −µ5w4 + µ5x2

ẇ4 = ωw5

ẇ5 = −ωw4

z = x3

where z = x3 is seen as the measured output and
x2 the input to the output’s dynamics.

Considering as desired eigenvalues to assign to
the reduced–order observer the solutions of

p∗(λ) = λ2 + k1λ + k0

k0, k1 > 0, standard passages lead to the following
reduced–order observer

ξ̇ =

( −k1 ω

−k0

ω
0

)
ξ +



−k0 + k2

1 + ω2

µ5

k0k1

ωµ5


x3

+

( −k1

−k0 + ω2

ω

)
x2

(
ŵ4

ŵ5

)
= ξ +




− k1

µ5

−k0 + ω2

ωµ5


 x3



where ŵ4, ŵ5 converge exponentially to w4, w5.
Hence, the control (5) can be substituted with the
following

u = γ(w1, w2, w3, ŵ4, ŵ5)

+ K
(
x− π(w1, w2, w3, ŵ5)

)
.

= γ(w) + a4(ŵ4 − w4) + a5(ŵ5 − w5)

−K




µ4µ5

ωµ3

0
µ5

ω


 (ŵ5 − w5).

5. SIMULATIONS

The simulations refer to the case of a Chua’s
system (1) is in chaotic regime when u = 0. This
happens for instance with the following parameter
values

µ1 = 5.128 104, µ2 = 6.667 107, µ3 = 6.575 103

µ4 = 8.547 106, µ5 = 58.666

and with c1 = −9.769 10−4, c3 = 2.801 10−6. The
plant initial conditions have been set equal to

x1(0) = 10−3, x2(0) = 0, x3(0) = −10−3.

As far as the exosystem is concerned, in the
first case we suppose to consider a reference be-
havior of the Chua’s circuit corresponding to the
so–called period–2 orbit. Hence the parameters of
the exosystem (2) have been fixed equal to

θ1 = µ1, θ2 = µ2, θ3 = 5.233 103

θ4 = 6.803 106, θ5 = 74.468

and g1 = −9.231 10−4, g3 = 1.603 10−4. For
the disturbance we considered vd = D sinωt, with
ω = 21.99 103 rad/s and D = 0.05 V. Finally, the
exosystem initial conditions have been set equal
to

w1(0) = x1(0), w2(0) = x2(0), w3(0) = x3(0)

w4(0) = 0.05, w5(0) = 0.05.

The matrix A + BK has been rendered
Hurwitz by means of the gain matrix K =(

0.031 2.368 4.468
)
, which sets the eigenval-

ues in λ1 = −1.1283 106, λ2 = −9.301 105,
λ3 = −1.090 103.

In Figure 3 it is reported the voltages x2

and the reference w2, respectively in solid and
dotted lines. The tracking is accurate, as shown in
Figure 4 where the tracking error e is shown, and
the solid line covers the dotted one. It is possible
to note that the tracking error has a value less
than 5.0 10−4 V after only 2 ms.

The second case simulated refers to a situation
of interest in chaos communication synchroniz-
ing problems. In this case both the plant and
the exosystem are in chaotic regime, with the
same disturbance considered in the first case. The
plant’s parameters and initial conditions are those
of the first case. Also the exosystem’s parameters
and initial conditions are equal to the plant ones,
namely θi = µi, wi(0) = xi(0), i = 1, · · · , 5,
but c1 = −9.769 10−4, c3 = 2.801 10−6, g1 =
−9.409 10−4, g3 = 2.701 10−6. The gain matrix is
now K =

(
0.315 23.684 44.682

)
and sets the

eigenvalues in λ1 = −2.048 107, λ2 = −5.125 105,
λ3 = −1.112 103. In Figures 5, 6 we report x2, w2,
and the tracking error e, respectively. Also in this
case the tracking error quickly converges to zero
while the disturbance is rejected.

6. CONCLUSIONS

In this paper we present a solution to the
tracking problem for a Chua’s circuit, in presence
of a disturbance due to a magnetic coupling in the
circuit inductor. We solve the problem applying
the regulation theory, finding a solution to the reg-
ulator equations and building a simple reduced–
order observer in order to avoid the need of the
disturbance measurements. The simulation results
show the effectiveness of the proposed control.
This result can be applied in the field of chaos
communications, where such a tracking problem
is of relevant interest. The result presented in this
paper is a first step towards a complete solution
of the tracking problem for such a circuit. In fact,
other issues important in practical applications,
such as the robustness of the proposed solution,
should be addressed, and constitute the subject of
future work.
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