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1. INTRODUCTION

Repetitive processes are a distinct class of 2D
systems of both system theoretic and applications
interest. The essential unique characteristic of
such a process is a series of sweeps, termed passes,
through a set of dynamics defined over a fixed
finite duration known as the pass length. On
each pass an output, termed the pass profile, is
produced which acts as a forcing function on, and
hence contributes to, the dynamics of the next
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pass profile. This, in turn, leads to the unique
control problem for them in that the output
sequence of pass profiles generated can contain
oscillations that increase in amplitude in the pass-
to-pass direction.

To introduce a formal definition, let α < +∞ de-
note the pass length (assumed constant). Then in
a repetitive process the pass profile yk(t), 0 ≤ t ≤
α, generated on pass k acts as a forcing function
on, and hence contributes to, the dynamics of the
next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Physical examples of repetitive processes include
long-wall coal cutting and metal rolling operations
(see, for example, (Rogers and Owens, 1992)).
Also in recent years applications have arisen where



adopting a repetitive process setting for analysis
has distinct advantages over alternatives. Exam-
ples of these so-called algorithmic applications
include classes of iterative learning control (ILC)
schemes (Amann et al., 1996) and iterative al-
gorithms for solving nonlinear dynamic optimal
control problems based on the maximum principle
(Roberts, 2000).

Attempts to control these processes using stan-
dard (or 1D) systems theory/algorithms fail (ex-
cept in a few very restrictive special cases) pre-
cisely because such an approach ignores their
inherent 2D systems structure, i.e. information
propagation occurs from pass-to-pass and along
the passes. In seeking a rigorous foundation on
which to develop a control theory for these pro-
cesses, it is natural to attempt to exploit struc-
tural links which exist between them and other
classes of 2D linear systems, such as the work
on H∞ and H2 based control systems design re-
ported, for example, in (Du and Xie, 2002).

A key distinguishing feature of repetitive pro-
cesses is that information propagation in one of
the independent directions, along the pass, only
occurs over a finite duration — the pass length.
Moreover, in this paper the subject is so-called
differential linear repetitive processes where the
dynamics along the pass are governed by a lin-
ear matrix differential equation. This means that
results for 2D discrete linear systems are not ap-
plicable.

The structure of these processes means that there
is a natural way to write down control laws for
them which can be based on current pass state or
output (pass profile) feedback control and feedfor-
ward control from the previous pass profile. For
example, in the ILC application, one such family
of control laws is composed of output feedback
control action on the current pass combined with
information ‘feedforward’ from the previous pass
(or trial in the ILC context) which, of course, has
already been generated and is therefore available
for use.

Previous work has established the basic feasibil-
ity of this general approach and provided some
algorithms for the design of control laws (see, for
example, (Galkowski et al., 2003)). The aim of this
paper is to consider the use of an H2 approach to
control law design to augment existing results us-
ing, for example, an H∞ setting. We begin in the
next section by giving the necessary background
results.

Throughout this paper, the null matrix and the
identity matrix with appropriate dimensions are
denoted by 0 and I, respectively. Moreover, M > 0
denotes a real symmetric positive definite matrix.

Similarly, M < 0 denotes a real symmetric nega-
tive definite matrix.

2. BACKGROUND

The state space model of a differential linear
repetitive process has the following form over
0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) =Axk+1(t) + Buk+1(t) + B0yk(t)
yk+1(t) =Cxk+1(t) + uk+1(t) + D0yk(t)

(1)

Here on pass k, xk(p) is the n × 1 state vector,
yk(p) is the m× 1 pass profile vector and uk(p) is
the l × 1 vector of control inputs.

To complete the process description, it is neces-
sary to specify the boundary conditions i.e. the
state initial vector on each pass and the initial
pass profile (i.e. on pass 0). The simplest possible
choice for these is

xk+1(0) =dk+1, k ≥ 0
y0(t) =f(t)

where dk+1 is n × 1 vector with known constant
entries and f(t) is the m× 1 vector whose entries
are known functions of t over 0 ≤ t ≤ α. For
the purposes of this paper, it is assumed that
dk+1 = 0, k ≥ 0.

The stability theory (Rogers and Owens, 1992)
for linear repetitive processes is based on an
abstract model in a Banach space setting which
includes all such processes as special cases. In
this setting, a bounded linear operator mapping a
Banach space into itself describes the contribution
of the previous pass dynamics to the current
one and the stability conditions are described in
terms of properties of this operator. Noting again
the unique control problem for these processes,
i.e. oscillations that increase in amplitude from
pass-to-pass (the k direction in the notation for
variables used here), the stability theory is based
on ensuring that such a response cannot occur.
This is achieved by demanding that the output
sequence of pass profiles generated {yk}k has a
bounded input bounded output stability property
defined in terms of the norm on the underlying
Banach space.

In actual fact, two distinct forms of stability
can be defined in this setting which are termed
asymptotic stability and stability along the pass
respectively. The former requires this property
with respect to the (finite and fixed) pass length
and the latter uniformly, i.e. independent of the
pass length. Asymptotic stability guarantees the
existence of a so-called limit profile defined as the
strong limit as k → ∞ of the sequence {yk}k

and for the processes under consideration here
this limit profile is described by a 1D differen-
tial linear systems state space model with state



matrix Alp := A + B0(Im − D0)−1C. Hence it
is possible for asymptotic stability to result in a
limit profile which is unstable as a 1D differential
linear system, e.g. A = −1, B = 0, B0 = 1 +
β, C = 1, D = 0, D0 = 0, where β > 0 is a real
scalar. Stability along the pass prevents this from
happening by demanding that the stability prop-
erty be independent of the pass length, which can
be analyzed mathematically by letting α →∞.

Several equivalent sets of conditions for stability
along the pass are known but here it is one
expressed in terms of the 2D transfer function
matrix description of the process dynamics, and
hence 2D characteristic polynomial, which is the
basic starting point. Since the state on pass 0
plays no role, it is convenient to re-label the state
vector as xk+1(t) 7→ xk(t) (keeping of course the
same interpretation). Also define the pass-to-pass
shift operator as z2 applied e.g. to yk(t) as follows

yk(t) := z2yk+1(t)

and for the along the pass dynamics we use the
Laplace transform variable s. Note here that it is
routine to argue that finite pass length does not
cause a problem provided the variables considered
are suitably extended from [0, α] to [0,∞] and we
assume that this has been done in what follows.

Let Y (s, z2) and U(s, z2) denote the results of
applying these transforms to the sequences {yk}k

and {uk}k respectively. Then the process dynam-
ics can be written as

Y (s, z2) = G(s, z2)U(s, z2)

where the 2D transfer function matrix G(s, z2) is
given by

G(s, z2) =
[
0 I

] [
sI −A −B0

−z2C I − z2D0

]−1 [
B
D

]

(2)
The 2D characteristic polynomial is given by

C(s, z2) := det
([

sI −A −B0

−z2C I − z2D0

])

and it has been shown elsewhere (Rogers and
Owens, 1992) that stability along the pass holds
if, and only if,

C(s, z2) 6= 0 (3)

in U(s, z2) := {(s, z) : Re(s) ≥ 0, |z2| ≤ 1}.
It also possible to use this 2D transfer function
matrix description to conclude that stability along
the pass requires each frequency component of the
initial profile (and hence on each subsequent pass)
to be attenuated from pass-to-pass. In 1D control
systems theory and design, the H2 norm of the
system, i.e. the average gain over all frequencies,
is a very powerful analysis and control law design
tool. Hence it is to be expected that a suitably
defined H2 norm on the 2D transfer function ma-
trix will play a similar role and the development

of this physically motivated idea is the subject of
this paper. We will also require the following result
(which allows for LMI based computations).

Introduce the Lyapunov function for these pro-
cesses as

V (k, t) = xT
k+1(t)P1xk+1(t) + yT

k (t)P2yk(t)

and associated increment

∆V (k, t) = ẋT
k+1(t)P1xk+1(t) + xT

k+1(t)P1ẋk+1(t)

+ yT
k+1(t)P2yk+1(t)− yT

k (t)P2yk(t)

where P1 > 0 and P2 > 0. Then we have the
following result whose proof is a routine extension
of results in, for example, (Galkowski et al., 2003).

Lemma 1. A differential linear repetitive process
described by (1) is stable along the pass if

∆V (k, t) < 0 (4)

We will also require the following result which
allows for LMI based computations.

Lemma 1. (Galkowski et al., 2003) A differential
repetitive process described by (1) is stable along
the pass if there exist matrices P1 > 0 and P2 > 0
such that the following LMI is feasible



−P2 P2C P2D0

CT P2 AT P1 + P1A P1B0

DT
0 P2 BT

0 P1 −P2


 < 0 (5)

Finally, we need the following signal space.

Definition 2. The L2 norm of the q × 1 vector
wk(t) defined over the real interval 0 ≤ t ≤ ∞ and
the integers 0 ≤ k ≤ ∞, written as {[0,∞], [0,∞]}
for ease of notation, is given by

‖w‖2 =

√√√√
∞∑

k=0

∫ ∞

0

wk(t)T wk(t) dt (6)

and wk is said to be a member of Lq
2{[0,∞], [0,∞]},

or Lq
2 for short, if ||wk||2 < ∞.

3. THE H2 NORM AND STABILITY

Using the 1D case as motivation, consider a single
input stable along the pass process (note again
that this can be analyzed mathematically by let-
ting the pass length α → ∞ ) and let the m × 1
vector g(k, t) denote the response to an impulse,
denoted by δ(k, t) applied at t = 0 on pass k.
Then, by invoking Parseval’s theorem in the along
pass direction on each pass and summing over the
pass index, the H2 norm is given by



‖G‖2 =
√
‖g(k, t)‖22 =

√√√√
∞∑

k=0

∫ ∞

0

gT (k, t)g(k, t)dt

(7)
To extend this definition to vector-valued inputs,
introduce

uh
k(t) = δ(k, t)eh

where eh is the l× 1 vector whose entries are zero
except for a unit entry in position h, 1 ≤ h ≤ l.
Then we have that

‖G‖2 =

√√√√
l∑

h=1

∞∑

k=0

∫ ∞

0

(gh)T (k, t)gh(k, t)dt

To determine gh(k, t), first introduce

ξh(k, t) =

[
ẋh

k+1(t)

yh
k+1(t)

]
, ζh(k, t) =

[
xh

k+1(t)

yh
k (t)

]

and

Â1 =

[
A B0

0 0

]
, Â2 =

[
0 0
C D0

]
, Ω=

[
B
D

]
, ΨT=

[
CT

DT
0

]

Then (for any value of α )

ξh(k, t) = (Â1+Â2)ζh(k, t) + Ωδ(k, t)eh

=

{
Ω̂h+Â2ζh(k, t), for k = 0, 0 ≤ t ≤ α

(Â1+Â2)ζh(k, t), for k > 0, 0 ≤ t ≤ α
0, otherwise

and

gh(k, t) = Ψζh(k, t) + Dδ(k, t)eh

=

{
D̂h+D0yh

k (t), for k = 0, 0 ≤ t ≤ α

Ψζh(k, t), for k > 0, 0 ≤ t ≤ α
0, for otherwise

where D̂h and Ω̂h denote h-th column of the
matrices D and Ω respectively.

The following is the first major result of this paper
and gives a sufficient condition for stability along
the pass together with an upper bound on the H2

norm of the 2D transfer function matrix.

Theorem 1. A differential linear repetitive process
described by (1) is stable along the pass and has
H2 norm bound γ > 0, i.e. ‖G‖2 < γ, if there
exist matrices P1 > 0 and P2 > 0 such that the
following LMIs hold



−P2 P2C P2D0

CT P2 AT P1+P1A+CT C P1B0+CT D0

DT
0 P2 BT

0 P1+DT
0 C −P2+DT

0 D0


<0

(8)
and

trace
(
αDT D + αBT P1B + αDT P2D

)

+ trace
(

ΨT P2Ψ
∫ α

0

f(t)f(t)T dt

)

+ trace
(

DT
0 D0

∫ α

0

f(t)f(t)T dt

)
<γ2

(9)

PROOF. It is straightforward to see that if (8)
holds then


−P2 P2C P2D0

CT P2 AT P1+P1A P1B0

DT
0 P2 BT

0 P1 −P2


+




0
CT

DT
0


[

0 C D0

]
<0

Also since the second term on the left hand side of
the above inequality is clearly non-negative defi-
nite, it follows immediately from (5) that stability
along the pass holds.

To establish the H2 performance, we use the
stability along the pass condition of Lemma 1,
i.e. (4), and introduce

∆V h(k, t) = (ẋh
k+1)

T (t)P1x
h
k+1(t)

+ (xh
k+1)

T (t)P1ẋ
h
k+1(t)

+ (yh
k+1)

T (t)P2y
h
k+1(t)

− (yh
k )T (t)P2y

h
k (t)

and note that

∆V h(k, t) = (ζh)T (k, t)
(
ÂT

1 P +PÂ1

+ÂT
2 RÂ2−R

)
ζh(k, t)

where

P =
[

P1 0
0 0

]
, R =

[
0 0
0 P2

]

If stability along the pass holds then

∞∑
k=0

∫ ∞

0

∆V h(k, t)dt =

∞∑
k=0

∫ α

0

∆V h(k, t)dt = 0 (10)

Furthermore, based (3) and (10) we have

∞∑

k=0

∫ ∞

0

∆V h(k, t) =
∫ α

0

Ω̂T
h (P +R)Ω̂hdt

+
∫ α

0

(ζh)T (0, t)ÂT
2 (P +R)Â2ζ

h(0, t)dt

+
∞∑

k=0

∫ ∞

0

(ζh)T (k, t)
(
ÂT

1 P +PÂ1

+ÂT
2 RÂ2−R

)
ζh(k, t)

Given (7), we also have that

‖G‖22 =
l∑

h=1

∞∑

k=0

∫ ∞

0

ghT (k, t)gh(k, t)dt

=
l∑

h=1

(∫ α

0

D̂T
h D̂hdt+

∫ α

0

(fh)T (t)DT
0 D0f

h(t)dt

+
∞∑

k=0

∫ ∞

0

ζhT (k, t)ΨT Ψζh(k, t)dt

)

and also, using (10),



‖G‖22 =
l∑

h=1

( ∞∑

k=0

∫ ∞

0

∆V h(k, t)dt

+αD̂T
h D̂h+

∫ α

0

(fh)T (t)DT
0 D0f

h(t)dt

+
∞∑

k=0

∫ ∞

0

ζhT (k, t)ΨT Ψζh(k, t)dt

)

(11)

Routine manipulations now show that (11) is
equivalent to

‖G‖22 =
l∑

h=1

(
αD̂T

h D̂h + αBT
h P1Bh + αDT

h P2Dh

+
∫ α

0

(ζh)T (0, t)ΨT P2Ψζh(0, t)dt

+
∫ α

0

(fh)T (t)DT
0 D0f

h(t)dt

+
∞∑

k=0

∫ ∞

0

(ζh)T (k, t)
(
ΨT Ψ + ÂT

1 P

+PÂ1 +ÂT
2 RÂ2 −R

)
ζh(k, t)dt

)

Further routine transformations now leads to

‖G‖22 =trace
(
αDT D + αBT P1B + αDT P2D

)

+ trace
(

ΨT P2Ψ
∫ α

0

f(t)f(t)T dt

)

+ trace
(

DT
0 D0

∫ α

0

f(t)f(t)T dt

)

+
∞∑

k=0

∫ ∞

0

ζT (k, t)
(
ΨT Ψ+ÂT

1 P +PÂ1

+ÂT
2 RÂ2 −R

)
ζ(k, t)dt

It now follows immediately from this last expres-
sion that (8) and (9) imply that ‖G‖2 < γ holds
and the proof is complete. ¥

Note that the H2 norm bound here can be min-
imized using the following linear objective mini-
mization problem

min
P1>0,P2>0

µ

subject to (8) and (9) with µ = γ2
(12)

4. STATIC H2 CONTROL

Some applications areas will clearly require the
design of control laws which guarantee stability
along the pass and also have the maximum possi-
ble disturbance attenuation (here as measured by
an H2 norm). Here we will show how to address
this question in an H2 setting, for which we now
give the relevant background.

The process state space model considered has the
following form over 0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) =Axk+1(t)+Buk+1(t)+B0yk(t)
+ B11wk+1(t)

yk+1(t) =Cxk+1(t)+Duk+1(t)+D0yk(t)
+ B12wk+1(t)

(13)

where wk+1(t) is an r×1 disturbance vector which
belongs to Lr

2 (i.e. the model of the previous
section with disturbance terms added to the state
and pass profile vector updating equations). Also
it is easy to see that stability along the pass for
such a process is governed by the 2D characteristic
polynomial condition of Section 2, i.e. by (3).

The control law employed is given by

uk+1(t) =
[
K1 K2

] [
xk+1(t)
yk(t)

]
(14)

where K1 and K2 are appropriately dimensioned
matrices to be designed. The corresponding closed
loop process state space model is

ẋk+1(t) =(A+BK1)xk+1(t)
+(B0+BK2)yk(t)+B11wk+1(t)

yk+1(t) =(C+DK1)xk+1(t)
+(D0+DK2)yk(t)+B12wk+1(t)

(15)

The problem considered here is as follows: for a
given γ > 0, find a control law of the form (14)
for the process (13) such that the closed loop
process is stable along the pass and the H2 norm
of the 2D transfer function matrix between the
disturbance vector and the current pass profile,
denoted here by Gd(s, z2) and computed by re-
placing

[
BT DT

]T
by

[
BT

11 BT
12

]T
in (2), is

bounded by γ, i.e. ||Gd||2 < γ — also termed the
H2 disturbance rejection bound.

The following result gives a solution to this prob-
lem together with an algorithm for designing the
control law.

Theorem 2. Suppose that a control law of the
form (14) is applied to a differential linear repet-
itive process described by (13). Then the result-
ing closed loop process (15) is stable along the
pass and has prescribed H2 disturbance rejection
bound γ > 0 if there exist matrices W1 > 0,
W2 > 0, N1, N2, and X such that the following
LMIs hold



−W2 CW1 + DN1

NT
1 DT + W1C

T W1A
T +AW1+NT

1 BT +BN1

NT
2 DT + W2D

T
0 W2B

T
0 +NT

2 BT

0 CW1

D0W2 + DN2 0
B0W2 +BN2 W1C

T

−W2 W2D
T
0

D0W2 −I


 < 0

(16)

and



trace(X)+trace(DT
0 D0Υ+αBT

12B12) < γ2




X BT
11 BT

12 Π
1
2

B11 α−1W1 0 0
B12 0 α−1W2 0
Π

1
2 0 0 W2


 > 0

(17)

where

Π=
∫ α

0

ΨT f(t)fT (t)Ψdt, Υ=
∫ α

0

f(t)fT (t)dt

(18)
and X is additional symmetric matrix of com-
patible dimensions. If these conditions hold, the
control law matrices K1 and K2 are given by
N1W

−1
1 and N2W

−1
2 respectively.

PROOF. Interpreting (5) in terms of the closed
loop process yields




−P2 P2C + P2DK1

KT
1 DT P2+CT P2 Λ1

KT
2 DT P2+DT

0 P2 BT
0 P1+KT

2 BT P1+DT
0 C

P2D0 + P2DK2

P1B0 +P1BK1 + CT D0

−P2 + DT
0 D0


 < 0

where ΩT =
[
BT

11 BT
12

]
and

Λ1 = AT P1+P1A+KT
1 BT P1+P1BK1+CT C

Now set W1 = P−1
1 , W2 = P−1

2 , and then pre- and
post- multiply both sides of this last inequality by
diag{W2,W1, W2} to obtain




−W2 CW1 + DK1W1

W1K
T
1 DT +W1C

T Λ2

W2K
T
2 DT +W2D

T
0 Λ3

D0W2 + DK2W2

ΛT
3

−W2 + W2D
T
0 D0W2


 < 0

where

Λ2 =W1AT +AW1+W1KT
1 BT +BK1W1+W1CT CW1

Λ3 =W2BT
0 +W2KT

2 BT +W2DT
0 CW1

An obvious application of the Schur’s comple-
ment formula to the left-hand side of this last in-
equality and setting N1 = K1W1 and N2 = K2W2

now yields (16).

Note now that

trace (P2Π)=trace
(
Π

1
2 P2Π

1
2

)

where Π is defined in (18). Furthermore, (9)
interpreted for this case gives

trace(αBT
12B12+DT

0 D0Υ)

+trace

(
[
BT

11 BT
12 Π

1
2

]
[

αW1 0 0
0 αW2 0
0 0 W2

]−1[B11

B12

Π
1
2

])
<γ2

(19)

which is equivalent to (17). To see this, introduce
a new matrix variable X and note that




I −α
1
2 BT

11W−1
1 −α

1
2 BT

12W−1
2 −Π

1
2 W−1

2
0 I 0 0
0 0 I 0
0 0 0 I




×




X α
1
2 BT

11 α
1
2 BT

12 Pi
1
2

α
1
2 B11 W1 0 0

α
1
2 B12 0 W2 0

Π
1
2 0 0 W2







I 0 0 0

−α
1
2 W−1

1 B11 I 0 0

−α
1
2 W−1

2 B12 0 I 0

−W−1
2 Π

1
2 0 0 I




=




Ξ 0 0 0
0 W1 0 0
0 0 W2 0
0 0 0 W2




(20)

where
Ξ = X−αBT

11W−1
1 B11−αBT

12W−1
2 B12−Π

1
2 W2Π

1
2

Also block (1,1) of the matrix on the right-hand
side of (20) (i.e Ξ) implies that

X > αBT
11W

−1
1 B11+αBT

12W
−1
2 B12+Π

1
2 W−1

2 Π
1
2

and the proof is completed by an obvious applica-
tion of the Schur’s complement formula. ¥

The H2 disturbance rejection bound γ in the LMI
of (17) can be minimized by using linear objective
minimization algorithm as per (12).

5. CONCLUSIONS

This paper has developed substantial new results
on the control of differential linear repetitive pro-
cesses in an H2 setting. Overall, these results
strongly suggest that when fully developed this
approach to the analysis and control of these
processes will provide a very powerful bank of
theory/design algorithms to take forward to the
applications domain.
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