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Abstract: This paper presents the design of an Iterative Learning Observer (ILO)
for the purpose of estimating system states while simultaneously identifying time-
varying parameters. The proposed ILO uses a novel updating mechanism to iden-
tify time-varying parameters instead of using integrators which are commonly used
in classical adaptive observers to identify constant parameters while estimating
system states. The main idea behind the design of the ILO is the use of learning,
i.e. previous information is combined into the ILO for identifying online time-
varying parameters. Stability of estimation error dynamics and convergence of
parameter estimation error are established and proven. An illustrative example
exhibits the effectiveness of the ILO. Copyright c©2005 IFAC
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1. INTRODUCTION

An observer, which is driven by measurable sys-
tem outputs and inputs, can achieve state recon-
struction for the purpose of control applications
when the entire state vector is not available for
the use of feedback. To perform the twin tasks
of state estimation and parameter identification,
adaptive observers have been extensively studied
since 1970s (Bastin & Gevers, 1988; Friedland,
1997; Ioannou & Kokotovic, 1982; Kreisselmeier,
1977; Luders & Narendra, 1973; Marino at al.,
2001; Rimon & Narendra, 1992; Zhang, 2002).
Successful stories in identifying constant or slowly
time-varying parameters have been reported by
Bastin & Gevers (1988). The main principle is to
combine integrators into a Luenberger observer
(Luenberger, 1966) in order to identify constant
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parameters while estimating system states. Many
applications, however, involve time-varying para-
meters acting as disturbances or/and uncertain-
ties. Estimation of constant parameters may not
be sufficient for applications. It is highly desired to
identify time-varying parameters for the purpose
of feedback control and other applications.

In this paper, an Iterative Learning Observer
(ILO) is proposed to alleviate the constraint of
identifying constant and slowly time-varying pa-
rameters by adaptive observers. The ILO was
first suggested by Chen & Saif (2002) to achieve
detection and estimation of constant faults. The
purpose of this work is to explore its ability of
identifying time-varying parameters that may be
periodic or aperiodic signals while estimating sys-
tem states. The concept of learning is used as
updating mechanism for parameter estimation in



the proposed ILO, i.e. the previous information is
used to adjust the parametric update law online.

The remainder of this paper is organized as fol-
lows: in Section 2, the problems are stated and
the considered system is formulated. The main
results are presented in Section 3 where an ILO is
proposed, and stability, as well as convergence is
also proven. An example is used to illustrate ef-
fectiveness of the ILO in estimating system states
and simultaneously identifying time-varying para-
meter in Section 4. Finally, conclusions are drawn
in Section 5.

2. PROBLEM STATEMENT

Consider a linear system described by

ẋ(t) = Ax(t) + Bu(t) + Fθ(t)
y(t) = Cx(t) (1)

where x(t) ∈ <n is the system state, y(t) ∈ <p is
the output, u(t) ∈ <m is the control input, θ(t) ∈
<q is the unknown time-varying parameter that
may be constant, periodic or aperiodic signals,
A ∈ <n×n, B ∈ <n×m, F ∈ <n×q, and C ∈ <p×n

are constant matrices. It is assumed that the pair
{A,C} is detectable, that θ(t) may vary quickly,
and that the derivative of θ(t) may not exist at
some time instants.

Throughout this paper, the following assumption
is made

Assumption 1. The time-varying signal θ(t) is
bounded.

Remark 1. Assumption 1 is the only requirement
for identifying the time-varying parameter θ(t).

The objective of this paper is to design an ILO
for estimating system states and simultaneously
identifying time-varying parameters that act as
disturbances or uncertainties.

An adaptive observer is an excellent tool for recon-
structing system states and unknown constants or
slowly time-varying parameters. Integrators are
employed to update parameter estimation laws,
which has turned out to be effective for constant
parameters. However, derivatives of time-varying
parameters are usually not available for the use
of integrators and they may not exist at some
time instants. To break through these constraints
caused by the integrators, this work proposes an
ILO to identify time-varying parameters while
system states are being estimated.

3. MAIN RESULTS

In this section, the ILO will be presented and
its stability as well as convergence of parameter
estimation, will be proven.

3.1 Design of ILO

Using the concept of learning, an ILO for dealing
with time-varying parameters is proposed. This is
in contrast with the use of integrators in classical
adaptive observers. Time-varying parameters will
be learnt online by an additional term in the ILO,
and their effects on state estimation errors will be
accordingly attenuated by their estimates. In line
with this, an ILO is designed as follows:

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t)− ŷ(t)) + Fv(t)
ŷ(t) = Cx̂(t)
v(t) = K1v(t− τ) + K2(y(t)− ŷ(t))

(2)

where x̂(t) and ŷ(t) are the estimated state and
output. The matrix L can be selected such that
(A − LC) is stable. The signal v(t) is used to
estimate time-varying parameter θ(t). It is up-
dated online by both its previous information and
output estimation errors. The parameter τ > 0
is the updating interval. It may be chosen as the
sampling-time interval in a sampled-data control
system, or as an integer multiple of the sampling-
time interval. A better choice of parameter τ is
the sampling interval because a larger τ may lead
to inaccurate estimate when the estimated para-
meter θ(t) varies quickly. The gain matrices are
K1 ∈ <q×q and K2 ∈ <q×p.

System state estimation error can be obtained by
subtracting (2) from (1) as follows:

˙̃x(t) = (A− LC)x̃(t) + F (θ(t)− v(t))
ỹ(t) = Cx̃(t)

(3)

where x̃(t) = x(t)− x̂(t) and ỹ(t) = y(t)− ŷ(t).

3.2 Analysis of Convergence and Stability

The following lemma will be used in the proof of
Theorem 1.

Lemma 1. If the parameter update law v(t) is
designed in (2), the following equation then holds

e>(t)e(t) = e>(t− τ)K>
1 K1e(t− τ)

+x̃>(t)(K2C)>K2Cx̃(t)
−2x̃>(t)(K2C)>K1e(t− τ)
+2e>(t− τ)K>

1 d(t)
−2x̃>(t)(K2C)>d(t) + d>(t)d(t)

(4)

where e(·) = θ(·)− v(·) and d(t) = θ(t)−K1θ(t−
τ).



Proof: Starting with

e(t) = θ(t)−K1v(t− τ)−K2Cx̃(t)
= K1e(t− τ)−K2Cx̃(t) + d(t), (5)

it is straightforward to have

e>(t)e(t) = [K1e(t− τ)−K2Cx̃(t) + d(t)]>

[K1e(t− τ)−K2Cx̃(t) + d(t)]
= e>(t− τ)K>

1 K1e(t− τ)
+x̃>(t)(K2C)>K2Cx̃(t)
−2x̃>(t)(K2C)>K1e(t− τ)
+2e>(t− τ)K>

1 d(t)
−2x̃>(t)(K2C)>d(t) + d>(t)d(t).

(6)

Remark 2. If θ(t) is a constant, then d(t) can be
zero by selecting K1 = I, an identity matrix. As
a result, (4) can be simplified to

e>(t)e(t) = e>(t− τ)e(t− τ)
+x̃>(t)(K2C)>(K2C)x̃(t)
−2x̃>(t)(K2C)>e(t− τ).

(7)

Remark 3. Rewrite state estimation error equa-
tion by combining (5) into (3) as follows

˙̃x(t) = (A− LC)x̃(t) + FK1e(t− τ)
−FK2Cx̃(t) + Fd(t).

(8)

This will be used in the proof of Theorem 1.

Theorem 1. (Boundedness). Consider system (1)
satisfying Assumption 1 and the ILO is designed
in (2). If there exists a positive definite matrix
P satisfying (A − LC)>P + P (A − LC) = −Q,
where Q is a positive definite matrix, and K1 and
K2 can be selected such that 0 < αK>

1 K1 ≤ I
and PF = ε(K2C)>, where α > ε > 1, then both
state estimation error and parameter estimation
error are bounded.

Proof: Consider the following Lyapunov function
candidate

V (x̃, e) = x̃>(t)Px̃(t) +

t∫

t−τ

e>(s)e(s)ds. (9)

Substituting (8) into the derivative of the Lay-
punov candidate leads to

V̇ = x̃>[(A− LC)>P + P (A− LC)]x̃
+2x̃>(t)PFK1e(t− τ)
−2x̃>(t)PFK2Cx̃(t)
+2x̃>(t)PFd(t)− εe>(t)e(t)
+εe>(t)e(t)− e>(t− τ)e(t− τ)

(10)

where ε is a positive constant and ε = 1 + ε.

Using Lemma 1, (11) can be extended as

V̇ = x̃>[(A− LC)>P + P (A− LC)]x̃
+2x̃>(t)PFK1e(t− τ)
−2x̃>(t)PFK2Cx̃(t)
+2x̃>(t)PFd(t)− εe>(t)e(t)
+εe>(t− τ)K>

1 K1e(t− τ) + εd>(t)d(t)
+εx̃>(t)(K2C)>K2Cx̃(t)
−2εx̃>(t)(K2C)>K1e(t− τ)
+2εe>(t− τ)K>

1 d(t)
−2εx̃>(t)(K2C)>d(t)
−e>(t− τ)e(t− τ).

(11)

For Q = Q> > 0, there exists a P = P> > 0
satisfying (A− LC)>P + P (A− LC) = −Q, and
K2 can be selected such that PF = ε(K2C)>, (11)
is simplified to

V̇ ≤ −λmin(Q)‖x̃‖2 − ε‖e(t)‖2
−e>(t− τ)e(t− τ)
+εe>(t− τ)K>

1 K1e(t− τ)
+2εe>(t− τ)K>

1 d(t) + εk2
d

(12)

where kd is the norm bound of d(t).

By considering the following inequality

2εe>(t− τ)K>
1 d(t) ≤ γe>(t− τ)K>

1 K1e(t− τ)

+
ε2

γ
d>(t)d(t), γ > 0,

(13)

inequality (12) can be rearranged as follows

V̇ ≤ −λmin(Q)‖x̃‖2 − ε‖e(t)‖2
+e>(t− τ)(αK>

1 K1 − I)e(t− τ) + βk2
d

(14)

where α = ε + γ, β = ε + ε2

γ , and I is an identity
matrix.

If 0 < αK>
1 K1 ≤ I, then both system state

estimation error x̃(t) and estimation error e(t) are
bounded.

Remark 4. Theorem 1 has suggested a method for
selecting K1 and K2.

Remark 5. If K1 is designed as a zero matrix, the
ILO will then lose the capability of identifying
time-varying parameters.

Remark 6. When the parameter θ(t) is a con-
stant, state estimation error x̃(t) and parameter
estimation error e(t) can be easily proven to con-
verge to zero by substituting (7) into (10). As
such, the ILO can also achieve the same task
as a classical adaptive observer does. However,
the ILO consumes less computing power than the
adaptive observer because an algebraic equation
is used for parameter identification in the ILO
while integrators are the updating mechanism in
the adaptive observer.



4. AN ILLUSTRATIVE EXAMPLE

The following example illustrates the effectiveness
of the ILO for estimating system states while
simultaneously identifying time-varying parame-
ters.

Consider an airplane model (Zhang & Jiang, 2003)
with

A =



−3.598 0.1968 −35.18 0
−0.0377 −0.3576 5.884 0
0.0688 −0.9957 −0.2163 0.0733
0.9947 0.1027 0 0


 ,

B =




14.65 6.538
0.2179 −3.087
−0.0054 0.0516

0 0


 , and

F =




1
0
0
1


 , C =

[
1 0 0 0
0 0 0 1

]
.

A constant parameter θ(t) = 1 is first employed
to show the effectiveness of the ILO for both state
and parameter estimation. Figure 1 exhibits that
four state estimation errors all converge to zero
under the condition that gain matrix K1 = 1,
and Figure 3 demonstrates accurate parameter
estimation by the ILO. These verify that the
proposed ILO can achieve the same task as a
classical adaptive observer does.

A sinusoidal parameter sin(4t) is further used to
test the ILO. Figure 2 shows convergence of state
estimation errors. This verifies that the accurate
parameter estimate v(t), which is generated from
the ILO, has counteracted the effect of the sinu-
soidal signal on state estimation errors. Figure 3
clearly reveals that the sinusoidal signal is accu-
rately reconstructed.

A more general time-varying parameter is em-
ployed to show parameter estimation ability of
the ILO. Figure 5 displays system state estimation
errors where the effect of the time-varying para-
meter on estimation errors has been attenuated
by the parameter estimation v(t) that is demon-
strated in Figure 4. This verifies the effectiveness
of the ILO for estimating states while simultane-
ously identifying the time-varying parameter.

5. CONCLUSIONS

This paper has proposed an ILO for estimat-
ing system states while simultaneously identifying
time-varying parameters. In order to circumvent
the deficiency of identifying constant parameters
while estimating system states by classical adap-
tive observers, the concept of integrators is aban-
doned and a learning mechanism is adopted to

design the ILO, i.e. the previous information is
used to adjust the updating law online . The only
a priori required for designing the ILO is the
bound of time-varying parameters. By virtue of
the proposed ILO, system state estimation errors
and parameter estimation errors are convergent
and the effect of time-varying parameter on state
estimation errors is successfully attenuated by the
accurate parameter estimates. The illustrative ex-
ample has clearly demonstrated the effectiveness
of the ILO for identifying time-varying parameters
which include constant, periodic and aperiodic
signals.
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Fig. 1. Case I: a constant parameter.
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Fig. 2. Case II: a periodic signal
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Fig. 3. Parameter estimation by the ILO (The
solid line is the estimate).
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Fig. 4. A time-varying parameter and its estimate
(The solid line is the estimate).
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Fig. 5. System state estimation errors.


