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Abstract: Based on fuzzy T-S model and variable structure control technique, adaptive 
output tracking control problem for fuzzy time-delay systems in the existence of 
parameter perturbations is developed. Firstly, the sliding mode was chosen by variable 
structure control theory. By applying the Lypunov stability theory, the design method of 
adaptive variable structure control is proposed. The use of adaptive technique is to 
overcome the unknown upper bound of perturbation so that the reaching condition can be 
satisfied. The method guaranteed the trajectory of system to arrive the slide surface in 
finite time interval and be kept here thereafter. Secondly, the sufficient condition for 
globally bound of the state is presented by using ISS theory and LMI method. Finally, 
simulation example is employed to illustrate the validity and effectiveness of the 
proposed method. Copyright © 2005 IFAC 
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INTRODUCTION 

 
The robust stabilization and tracking control of 
nonlinear systems are important topics in the field of 
control theory and many approaches have been 
introduced to treat control problems in the past few 
decades. In general, tracking problems are more 
difficult than stabilization problems especially for 
nonlinear systems. For nonlinear system design, 
various control schemes are introduced including 
exact feedback linearization, adaptive control, siding 
model control and fuzzy control. The technique of 
exact feedback linearization needs perfect knowledge 
of the nonlinear system and uses that knowledge to 
cancel the nonlinearities of the system. However, as 
pointed out in [Ying H (1999)], the controller 
derived by feedback linearization may not be 
bounded, i.e. the controller is not guaranteed to be 
stable for no minimum phase systems. Since perfect 
knowledge of the system is impossible, exact 
feedback linearization seems impractical for  
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nonlinear systems with uncertainty [Khalil H K, 
(1996, Slotine J J E (1992)]. Recently, based on 
feedback linearization technique, ∞H adaptive fuzzy 
control schemes have been introduced to deal with 
nonlinear systems [Chen B S (1996),Chen B S 
(1998). ]. However, the complicated parameter 
update law and control algorithm make this control 
scheme impractical. Especially in the case of 
considering the projection algorithm for the 
parameter update law can avoid the singularity of 
feedback linearization control. Variable structure 
system (VSS) control scheme has been developed as 
a popular robust strategy to treat uncertain control 
systems (see, for example, [Feng G (1995), Utkin V I 
(1978), Yoo D S, (1992)]. The main feature of such 
VSS control is its ability to deal with external 
disturbances, quickly varying parameters and 
unmodeled dynamics. However, it can’t avoid 
displaying chattering phenomena and exciting high-
frequency unmodeled dynamics. So a conservative 
design may be obtained since the VSS control 
algorithm should be designed to treat the worst 
situation of uncertainties. On the other hand, Fuzzy 
control has recently found extensive applications for 
a wide variety of industrial systems and consumer 
products. It has attracted the attention of many 
control researchers due to its model free approach 



 

     

[Jadbabaie A (1998). Takagi T (1985)]. According to 
the universal approximation theorem, the T–S fuzzy 
model has been proved to be a very good 
representation for a certain class of nonlinear 
dynamic systems [Wang W J (1999)]. In their studies, 
a nonlinear plant was represented by a set of linear 
fuzzy models interpolated by membership . functions 
and then a model-based fuzzy controller was 
developed to stabilize the T-S fuzzy model. 
Currently, the stabilization problem for the system 
represented in T-S fuzzy model have been well 
addressed [Takagi T, (1985), Wang H O, (1996), 
Wang W J (1999)], but the studies concerning with 
tracking controller design based on T-S fuzzy model 
are relatively few. [Tseng C S, (2001)] proposed 
fuzzy tracking control design for nonlinear dynamic 
systems via T-S fuzzy model. However their work 
did only concern on the tracking control of nominal 
T-S fuzzy model without time delay and uncertainty. 
So the robustness of the whole tracking control 
system can’t be guaranteed. In addition, dynamic 
systems with time delay are common in chemical 
processes and long transmission lines in pneumatic, 
hydraulic, or rolling mill systems. Nonlinear systems 
with time delay constitute basic mathematical models 
of real phenomena in biology, mechanics, economics, 
etc. Generally speaking, the dynamic behaviors of 
systems with delays are more complicated than that 
of systems without any delay. Fuzzy time-delay 
systems of T–S model provide a method of using 
local linear delayed systems combined with fuzzy 
linguistic descriptions to achieve nonlinearity.  

Motivated by the aforementioned concerns, 
adaptive output tracking control problems for fuzzy 
time-delay systems in the existence of parameter 
perturbations was developed based on the 
combination of sliding mode control and fuzzy 
control techniques. The method conquers the 
deficiency of LMI theory and H∞

theory on this 
problem. Furthermore, fuzzy control techniques can 
weaken immanent chattering phenomenon in the 
sliding mode control.  

 
2. FUZZY TIME-DELAY SYSTEM 

FORMATION 
 

A fuzzy dynamic model has been proposed by 
Takagi and Sugeno [Takagi T (1985)] to represent a 
nonlinear system. The T-S fuzzy model is a 
piecewise interpolation of several linear models 
through membership functions. The fuzzy model is 
described by fuzzy If-Then rules and will be 
employed here to deal with the control design 
problem for nonlinear time-delay systems. The i th 
rule of the fuzzy model for nonlinear systems is of 
the following form: 

 
Plant Rule i: 
If 1( )tθ is 1iµ and...and ( )p tθ is ipµ , Then 

1 1 2 2( ) ( ) ( ) ( ) ( ( ))i i i ix t A A x t A A x t t Buτ= + ∆ + + ∆ − +                    
(1) 

( )y Cx t= ,   )...2,1( ri =                               (2) 

where ijµ denotes fuzzy set; nRtx ∈)( denotes state 

vector; mRtu ∈)( denotes the control input; iA1 , iA2  
denotes some constant matrices of compatible 
dimensions; ( )tτ is time-delay in the state. It is 
assumed that0 dτ≤ ≤ , ( ) 1t lτ ≤ < where d , l denote a 
constant; 1iA∆ , 

2iA∆ denote the perturbations of 
system. It is assumed that the premise variables are 
independent of the input variables ( )u t . 
The overall fuzzy system is achieved by fuzzy 
blending of each individual rule as follows: 

1 1 2 2
1

( ) ( ( ))[( ) ( ) ( ) ( ( ))
r

i i i i i
i

x t h t A A x t A A x t tθ τ
=

= + ∆ + + ∆ − +∑

           
( )]Bu t                        
(3)                       

( )y Cx t=                                                               (4) 
where ( )i tθ ( 1, 2..... )i p= are the premise variables; 

1 2( ) [ ( ), ( )....... ( )],pt t t tθ θ θ θ=  
1

( ( )) ( ( )),
r

i ij j
j

w t tθ ν θ
=

= ∏   

1

( ( ))( ( ))
( ( ))

i
i r

j
j

w th t
w t

θθ
θ

=

=

∑
, ( ( ))ij j tν θ  denotes the grade of 

membership of ( )j tθ . The following assumptions are 
made. 
Assumption 1:   The matrixCB is nonsingular. 
Assumption 2: All the perturbations

1iA∆ ,
2iA∆ satisfy 

the following matching condition, there exist  

11i AA M ∆∆ ≤ , 
22i AA M ∆∆ ≤ , such that  

1 1( )i iA x B A∆ = ∆ ,
2 2( )i iA x B A∆ = ∆ , 

where
1AM ∆
, 

2AM ∆
is known number. 

Assumption 3: [Chou C H (2001)]: There exists 
unknown positive constant 

0q , 1q , such that 

0 1( ( )) ( )x t t q q x tτ− ≤ +      

for ( ) [0, ]t dτ ∈ , d is a constant. 

The object in this paper is to find a variable 

structure controller such that the output ( )y t of (3) 

will track a desired reference trajectory ( )ry t .   

3. OUTPUT TRACKING CONTROL   
In the following, we introduce the definition of ISS 
and a necessary and sufficient condition for ISS. 
Consider the general nonlinear system 

( , )x f x u=                                        (5) 
where nRtx ∈)( , mRtu ∈)( , :  n m nf R R R× →  is 
continuous and satisfies (0,0) 0f = . According to [9], 
we have 

Lemma1: System (5) is ISS if and only if there is a 

smooth function :   nV r R+→ such that there exist 

K∞ function 1ν , 2ν and K  function 3ν , 4ν , such that 
1 2( ) ( ) ( )          nV Rν ξ ξ ν ξ ξ≤ ≤ ∀ ∈  

3( ) ( )V ξ ν ξ≤ − , so that 
4( ) ( )V ξ ν ξ≥  



 

     

A function + +:   R Rγ → is called K function if it is 
continuous, strictly increasing and (0) 0γ = ; if 
γ further satisfies lim ( )

t
tγ

→∞
= ∞ , it is called 

K∞
function. 

The sliding mode was selected for system (3) by 
variable structure control theory: 

1( ) ( ) ( ( ) ( ))rs t CB y t y t−= −  
Defining tracking error 

( ) ( ) ( )re t y t y t= −  
Then, the following variable structure controller is: 

2 1

2

1 1
1 2

1 1

0 1 1

1
0 1 2

( ) ( ( ))( ) ( ) [ ( )

ˆ ˆ ˆ          ( ( ) ) ( ( ) ) ( )

ˆ          ( ) ]sgn sgn ( ) ( )

r r

i i i i
i i

A A

A r

u t h t CB CA x t h CB CA

q q x t q t M M x t

q t M s s s CB y t

θ

α α

− −

= =

∆ ∆

−
∆

= − −

+ + + +

− − +

∑ ∑

    

(6) 
where 1 2, α α are two positive numbers, the parameter 
adaptive laws are designed as 

1
0 2

1

ˆ ( ) ( )
r

T
i i

i

q t h s CB CA−

=

= ∑ ,        

1
1 2

1

ˆ ( ) ( ) ( )
r

T
i i

i
q t h s CB CA x t−

=

= ∑                         

(7) 
Substituting the controller (6) into (3), yields 

1
1 1 2

1

1
1 2 2

1

( ) ( ( ))[( ( ) ) ( ) ( )

          ( ( ) ( ))] [( ( )

r

i i i i
i

r

i i i i
i

x t h t A B CB CA x t A x t

B A x t A x t B h CB CA

θ τ

τ

−

=

−

=

= − + − +

∆ + ∆ − −

∑

∑

 

2 1

2

0 1 1

1
0 1 2

ˆ ˆ ˆ( ( ) ( ) ( ) ) ( ( ) ) ( )

ˆ ( ) )sgn sgn ( ) ( )]
A A

A r

q t q t x t q t M M x t

q t M s s s CB y tα α
∆ ∆

−
∆

+ + + +

+ + −

                                                                     
( )y Cx t=                                                                    

(8) 
Since matrixC  is of full row rank, a nonsingular 

matrix
1T can be found such that 

1 2[0  C ]CT C= = , 

where
2C is nonsingular. Let 1

1 1 2

T
T B B B B− ⎡ ⎤= =⎣ ⎦ , 

where ( )
1

n m mB R − ×∈ , 2
m mB R ×∈ , since 2 2CB CB C B= =  

it follows that matrix
2B is nonsingular. Define 
1

1 2
2

20
I B B

T
C

−⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
, 011

0 2 1
02

T
T T T

T
− ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 

where 1 1
01 1 2 1T I B B T− −⎡ ⎤= −⎣ ⎦ , 1

02 2 10T C T −⎡ ⎤= ⎣ ⎦ . It 

shows that 
02T C= , 

01 0T B = .Let [ ]1
0 0 1 0 2inv invT T T− = ,  

where ( )
0 1

n m m
invT R − ×∈  and 0 2

n m
invT R ×∈ . For closed-

loop system (8), we can obtain that 
Theorem 1: Consider (3) satisfy assumptions 1-3, 
suppose that there are positive-define 
matrix P and R , such that the following: 

T 1
(1 )1 1 01 2 0 1

T T T
0 1 2 01

0li i i inv

inv i

PN N P R PT A T
T A T P R

−⎛ ⎞+ +
<⎜ ⎟

−⎝ ⎠
 

holds, where
1 01 1 0 1i i invN T A T= , the variable structure 

controller(6) with the adaptive laws(7) will make 

output of the closed-loop system (8) track reference 

signal ( )ry t .  

  Proof: the proof is divided into two parts. In part a), 
we show that output of (3) can follow exactly the 
desired signal ( )ry t after a finite time interval and 
obtain adaptive laws. In part b), we show that the 
state of (3) is bounded globally.  
a) The derivative of ( )s t along the trajectory of 
closed-loop system (7) is 

1 1( ) ( ) ( ) ( ) ( )rs t CB Cx t CB y t− −= −  

1
1 2

1

1
1 2

1

( ( ))( ) [ ( ) ( )] ( )

  ( ( ))[ ( ) ( )] ( ) ( )

r

i i i
i

r

i i i r
i

h t CB C A x t A x t u t

h t A x t A x t CB y t

θ τ

θ τ

−

=

−

=

= + − + +

∆ +∆ − −

∑

∑  

1
2

1

( ( ))( ) ( )
r

i i
i

h t CB CA x tθ τ−

=

= − −∑
      

2 1 2

1
2 0 1

1

1 0

ˆ ˆ[ ( ) ( ( ) ( ) ( ) )

ˆ ˆ( ( ) ) ( )  ( ) ]sgn

r

i i
i

A A A

h CB CA q t q t x t

q t M M x t q t M s

−

=

∆ ∆ ∆

+ +

+ + +

∑
 

1 2
1

1 2

 ( ( ))[ ( ) ( )]

  sgn

r

i i i
i

h t A x t A x t

s s

θ τ

α α
=

∆ +∆ − −

−

∑    

If 0js > , we hold 

1 21 2 ( ) ( )j j A As s M x t M x tα α τ∆ ∆= − − − − −

1 2
1

( ( ( ))[ ( ) ( )])
r

i i i j
i

h t A x t A x tθ τ
=

+ ∆ +∆ −∑
 

1 21 2 ( ) ( )j A As M x t M x tα α τ∆ ∆≤ − − − − −

1 2
1

( ( ( ))[ ( ) ( )])
r

i i i j
i

h t A x t A x tθ τ
=

+ ∆ +∆ −∑
 

1 21 2 ( ) ( )j A As M x t M x tα α τ∆ ∆≤ − − − − −

1 2
1

( ( )) ( ) ( )
r

i i i
i

h t A x t A x tθ τ
=

+ ∆ + ∆ −∑
 

1 21 2 ( ) ( )j A As M x t M x tα α τ∆ ∆≤ − − − − −

1 2
1

( ( ))( ( ) ( ) )
r

i A A
i

h t M x t M x tθ τ∆ ∆
=

+ + −∑
 

 
1 2jsα α= − −

 if 0js < , we hold 
1 2j js sα α≥ − +

 
From above, it can 

be seen that all js  will arrive at zero in finite time 
interval and kept here thereafter.  

The adaptation error of each gain is defined as 

0 0 0ˆ( ) ( )q t q t q= − ,  1 1 1ˆ( ) ( )q t q t q= −  

Consider a Lypunov candidate function given by  

2 21
2 0 1( ) ( ( ) ( ))TV t s s q t q t= + +  

The derivative of ( )V t along the trajectory of 
system (8) is 



 

     

0 0 1 1( ) ( ) ( ) ( ) ( )TV t s s q t q t q t q t= + +  

2

2

1

1
2 0 1

1

1
2 0 0

1

1
2 1 1

1

1 2
1 1

0 0 0 1 1 1

( ( )) ( ) ( ( ) ( ) ( ) )

ˆ ˆ[ ( ) ( ( ) ( ) )

ˆ ˆ( ) ( ( ) ( )

) ( ) ]

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

r
T

i i
i

r

i i A
i
r

i i A
i

r m
T

A i i
i i

s h t CB CA q t q t x t

h CB CA q t q t M

h CB CA q t q t M

M x t s s s s

q q q t q q q t

θ

α α

−

=

−
∆

=

−
∆

=

∆
= =

≤ + −

+ +

+ +

− − +

− + −

∑

∑

∑

∑ ∑

 
from (7), we obtain  

2 2 1

1
2 0

1 1

0 1 1
1

2
1

ˆ( ) ( ( )) ( ) ( )( ( ))

ˆ ˆ[( ( ) ( ) ) ( ) ]

0

r m
T

i i i
i i

r
T

A A A i
i

m

i
i

V t h t CB CA q t s s

M q t q t M M x t s s s

s

θ

α

α

−

= =

∆ ∆ ∆
=

=

≤ − − −

+ + − −

<

∑ ∑

∑

∑
from above, we show that output of (3) can follow 
exactly the desired signal ( )ry t after a finite time 
interval and obtain adaptive laws simultaneously. 

b) The state of system (3) is bounded globally. 

Under the following state transformation: 
011

0
022

( )
T xz

z T x t
T xz

⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

we obtain 

1 01 1 0 1 1 01 1 0 2 2
1

( ) ( ( ))[ ( ) ( )
r

i i inv i inv
i

z t h t T A T z t T A T z tθ
=

= + +∑       

01 2 0 1 1 01 2 0 2 2( ) ( )]i inv i invT A T z t T A T z tτ τ− + −          (9) 

2 1 2 1
1

( ) ( ( ))[ ( ( ) ( ))] [
r

i i i
i

z t h t CB A x t A x t CB sθ τ α
=

= ∆ + ∆ − − +∑

1 2

1
2 sgn ( ( ) ( ) )sgn ( ) ( )]A A rs M x t M x t s CB y tα τ −

∆ ∆+ + − −

                                (10)  

Since
2 02z T x Cx y= = = , notice that in the previous 

argument, when rt t≥ , ( ) ( )ry t y t= . So our attention 

can be concentrated in (9). 

Now view 2 ( )z t  as the input of (9) and choose an 

ISS-Lyapunov function candidate as  
T T1

(1 )1 1 1 1 1( ( )) ( ) ( )
t

l t
V z t z Pz z s Rz s ds

τ− −
= + ∫  

The derivative of 
1( ( ))V z t along the 

trajectory of system (9) is 

1 1 1 1 1 1
1 1

01 1 0 2 2 1 01 2 0 1 1
1

( ) ( ( )) ( )( ) ( ) 2 ( ( )) ( )

             ( ) 2 ( ( )) ( ) ( )

r r
T T T

i i i i
i i

r
T

i inv i i inv
i

V z h t z t PN N P z t h t z t

T A T z t h t z t PT A T z t

θ θ

θ τ

= =

=

= + + ×

+ −

∑ ∑

∑
              

1
(1 )1 01 2 0 2 2 1 1

1
2 ( ( )) ( ) ( ) ( ) ( )

r
T T

li i inv
i

h t z t PT A T z t z t Rz tθ τ −
=

+ − +∑

1 1( ) ( )Tz t Rz tτ τ− − −

 

T 1
(1 )1 1 01 2 0 1

1 1 T T T
1 0 1 2 01

( ( )) ( ) ( )
r

lT T i i i inv
i

i inv i

PN N R PT A T
h t z t z t

T A T P R
θ τ −

=

⎛ ⎞+ +
⎡ ⎤= − ×⎜ ⎟⎣ ⎦ −⎝ ⎠

∑

1
1 01 1 0 2 2

11

( )
2 ( ( )) ( ) ( )

( )

r
T

i i inv
i

z t
h t z t PT A T z t

z t
θ

τ =

⎡ ⎤
+ +⎢ ⎥−⎣ ⎦

∑

1 01 2 0 2 2
1

2 ( ( )) ( ) ( )
r

T
i i inv

i
h t z t PT A T z tθ τ

=

−∑  

Defining  
T 1

(1 )1 1 01 2 0 1
T T T

0 1 2 01

li i i inv
i

inv i

PN N P R PT A T
W

T A T P R
−⎛ ⎞+ +

= ⎜ ⎟
−⎝ ⎠

 

let
minmin{ ( ),1,2, }iW rλ λ= − , 

min ( )λ ⋅ denote the 
minimum eigenvalue of concerned matrix, we have  

2 2
1 1 1 1 1 2

2 1 2

( ) ( ( ) )

            ( )

V z z z t z z

z z t

λ τ γ

γ τ

≤ − + − + +

−
 

where 1γ , 2γ are two positive numbers. From 
assumption 3, There exists known number 0q , 1q , 
such that 

0 1( ( )) ( )z t t q q z tτ− ≤ + , so we obtain 
22 2

1 1 1 1 2 1 1 2 0

0 1 2 0 1

( ) ( ) ( )

            ( 2 )

V z q z q z z q

q q q z

λ λ γ γ λ

λ γ

≤ − + + + − +

− +
 

22
1 1 1 2 1 1 2

0 1 2 0 1

( ) ( )

   ( 2 )

q z q z z

q q q z

λ λ γ γ

λ γ

< − + + + +

− +
 

2 21 1
1 1 1 1 2 1 2 3 12 2( )z z z z zβ β β β= − + − + +  

where  
2

1 1qβ λ λ= + , 
2 1 2 1qβ γ γ= + , 

3 0 1 2 02 q q qβ λ γ= − + , when 

2 2 3
1

1

2 2z
z

β β
β

+
≥ , such that 21

1 1 12( )V z zβ≤ −  

According to lemma1, when rt t≥ , the system(9) is 
ISS. This completes the proof.  

4. SIMULATION EXAMPLE 

Consider a continuous stirred tank reactor (CSTR), 
according to [Cao Y Y (2000)], the material and 
energy balance equation are 

0 0(1 ) ( ) ( ) exp( ) ( )
( )

dA EV qA q A t qA t VK A t
dt RT t

λ λ α −
= + − − − −

0

0

[ (1 ) ( ) ( )]

             ( ) exp( ) ( ) ( ( ) )
( )

dAVC qC T T t T t
dt

EV H K A t U T t T
RT t

ρ ρ

ω

λ λ α= + − − − −

−
−∆ − −

 

By transformation, we have  
1

1 1 1( ) ( ) ( 1) ( ( ))x t f x x t tλ τ= + − −  
1

2 2 2( ) ( ) ( 1) ( ( )) ( )x t f x x t t u tλ τ β= + − − +  
where 

[ ]1 2( ) ( ) ( ) ,Tx t x t x t=        0
1

0

( )( ) A A tx t
A
−

= , 

0
2

0

( )( ) ( )
( )

T t T Ex t
T RT t

− −
= ,   0 1

1
0

( )( ) A tt
A
ϕθ −

= , 

2 0
2

0

( )( ) ( )
( )

t T Et
T RT t

ϕθ − −
= , V

q
υ

λ
= , ατ

υ
= , 

0 ( )
E

RT t
γ = ,  



 

     

2
1 1 1

2 0

( )1( ) ( ) (1 ( )) exp( )
1 ( ) /

x tf x x t D x t
x tαλ γ

= − + −
+

, 

2
2 2 1

2 0

( )1( ) ( ) ( ) (1 ( )) exp( )
1 ( ) /

x tf x x t HD x t
x tαβλ γ

= − + + −
+

. 
The parameters are given as  

0 20;  =8;  =0.3;  0.072;  =0.8;  =2H Dαγ β λ τ= = . 

Choose a steady-state as ( ) [0.1440;  0.8862]ex t = , 

defining a new state variable 

1 1 (1)ex x xδ = − , 
2 2 (2)ex x xδ = −  

As in [Cao Y Y (2000)], we present the 
following fuzzy control law 

Rule 1:   If     2xδ is small (i.e. 2xδ is -1)    Then   

11 11 21 21( ) ( ) ( ) ( ) ( ( ))x t A A x t A A x t t B uδ δ δ τ δ= + ∆ + + ∆ − +
      

Rule 2:   If      2xδ is middle (i.e. 2xδ is 0) Then   

12 12 22 22( ) ( ) ( ) ( ) ( ( ))x t A A x t A A x t t B uδ δ δ τ δ= + ∆ + + ∆ − +
 

Rule 3:   If  
2xδ is large (i.e. 2xδ is 1)Then   

13 13 23 23( ) ( ) ( ) ( ) ( ( ))x t A A x t A A x t t B uδ δ δ τ δ= + ∆ + + ∆ − +
 
where 

[ ]0 TB β= , 
1 11 12

T

j j jA a a⎡ ⎤= ⎣ ⎦ , 

1 2

( ) ( ) ( )
( )

T i
i j j j

i
ij j j

j

ff x x xf xa x x
x x

δ δ δ
δ δ

δ

∂
∂ −∂ ∂= +

∂
  

( 1, 2)i = , ( 1, 2,3)j =  
From above, we obtain  

11
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, 
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,              0
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⎣ ⎦
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0 0
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A
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0 0
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A
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0 0
1.4189 0.9442

A
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, 

21 22 23

0 0
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⎣ ⎦
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The membership function are selected as  
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=

+ +
. 

Let ( ) sin( )y t t= , [ ](0) 1 1 Txδ = , the trajectory of 
system are shown in Fig1. 

 
(a)  The trajectory of 1xδ  

          
(b)  The trajectory of output tracking 

                                   

          
(c)  Response of system control 

Fig1 The response of system with adaptive variable 
structure controller (6) 

, 
(a) The trajectory of 1xδ  

 
(b)  The trajectory of output tracking 



 

     

 
(c) The response of system control 

Fig2 The response of system with conventional 
variable structure controller 

From Fig 1, it can be seen that the control techniques 
proposed in this paper guarantee globally bound of 
the state and the output of this system possesses well 
tracking performance. Comparing Fig 1 with Fig 2, 
our control techniques can track the reference signal 
more accurately and weaken chattering phenomenon 
more effectively than conventional control technique. 

5.  CONCLUSION 

Based on fuzzy T-S model and variable structure 
control technique, adaptive output tracking control 
problem for fuzzy time-delay systems in the 
existence of parameter perturbations was developed. 
The method conquers the deficiency of LMI theory 
and H∞

theory in this field. Furthermore, fuzzy 
control techniques can weaken immanent chattering 
phenomenon in the sliding mode control.  
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