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Abstract: Condition numbers, local and non-local perturbation bounds are ob-
tained for the complex matrix equation X — AFV/X-14 = I, which arises in
a number of problems of linear control systems theory. The technique used is
based on Lyapunov majorants and fixed point principles. An illustrative numerical

example is given. Copyright © 2005 IFAC
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1. INTRODUCTION

In this paper a complete perturbation analysis of
the complex matrix equation

F(X,A):=X - AlWX-1A-1=0, (1)

with data matrix A € C**", solution X € C**"
and I - the identity matrix is presented. This
equation arises in control theory when solving
systems of linear equations by LU decomposition.
The sufficient conditions for existence of positive
definite solution of (1) are proved in (Ivanov et
al., 1999). An iterative method for obtaining a
positive definite solution is also proposed.

The more general non-linear matrix equation
X + A*F(X)A = Q is investigated in (El-Sayed
and Ran, 2001; Ran and Reurings, 2002). The
Hermitian positive definite solution of the equa-
tion and its properties are studied. Theorems of
necessary and sufficient conditions for the exis-

tence of solution are proved. Perturbation upper
bounds are obtained. Iterative methods for com-
puting a positive definite solution are proposed.
Particular cases of F(X) are discussed in (W. An-
derson et al., 1990; Engwerda et al., 1993; Engw-
erda, 1993; Guo, 2001; Konstantinov, 2002; Kon-
stantinov et al., 2002a; Meini, 2001; Sun and Xu,
2003; Xu, 2001; Zhan, 1996) for F(X) = £X1;
in (Angelova, 2003; Ivanov et al., 2001; Ivanov and
El-Sayed, 1998; Zhang, 2003) for F(X) = £X%;
in (Hassanov and Ivanov, 2001; Hassanov and
Ivanov, 2003; Ivanov and Georgieva, 2003; Ivanov
and Hassanov, 2003) for F(X) = X" n =
2,3,...

In practice the elements of the matrix A are con-
taminated with measurement errors. Also, when
a numerically stable algorithm (Higham, 2002;
Petkov et al., 1991) is applied to solve (1) then
the solution, computed in finite arithmetics, will
be close to the solution of a near equation. Obtain-



ing condition and accuracy estimates is important
from both theoretical and computational point of
view.

In this paper the conditioning of (1) and the
sensitivity of its solution to perturbation in the
data are studied. Local and non-local perturba-
tion analysis are made. Perturbation bounds of
the error in the solution are proposed.

The paper is organized as follows. In Section 2
a local perturbation analysis is presented. The
perturbations A in the data A and 60X in the
solution X are estimated in terms of the Frobenius
matrix norm || - [|p. Explicit expression for the
condition number of X relative to perturbation in
A is obtained. Rewriting (1) as an equivalent ma-
trix equation for the perturbation in the solution,
non-linear non-local bound is obtained in Section
3. The technique used is based on Lyapunov ma-
jorants and fixed point principles (Konstantinov
et al., 2002b). In Section 4 a numerical example
demonstrates the effectiveness of the bounds pro-
posed.

Throughout the paper the following notations are
used: R™"*™ — the space of n x n real matrices;
C"**™ — the space of n xn complex matrices; R, =
[0,00); AT — the transpose of the matrix A; A -
the complex conjugate of A; AH = AT; vec(A) €
C"* - the column-wise vector representation of
the matrix A € C"™"; Mat(L) € CV>*n" —
the matrix representation of the linear matrix
operator L : C"*" — C"*"; I, — the identity
n X n matrix; A @ B = [ap,B] — the Kronecker
product of the matrices A = [ap,] and B; || - ||2
— the Euclidean norm in C* or the spectral (or
2-) norm in C**"; || - ||[r — the Frobenius (or F-)
norm in C"*™; || -|| - a replacement of either || - ||»

or || - [|r; R = € R?>" - the real version of

zZ— [X+iy] € C", withx,y € R?; TR ¢ R?nx2n
- the real version of T' € C**"; £,,(C) — the space
of linear operators C**" — C"*",

The notation “:=’ stands for ‘equal by definition’.

2. LOCAL PERTURBATION ANALYSIS

Suppose that (1) has a positive definite solution
X. Let A and X be slightly perturbed to A +J0A,
X + 60X, where 6A,6X € C**"™. Let the number
a > 0 be given and suppose that [|0Allr = «.
The perturbed equation is obtained from (1) by
replacing the nominal value A with A + §A and
X with X + X

F(X +0X,A + 6A) = 0. 2)

For « sufficiently small equation (2) has a solution
X + 6X, depending on JA.

Rewrite (2) as an equivalent equation for the
perturbation §X in X

F(X +6X,A+0A)=F(X,A) (3)
+ Fx(X,A)(0X) + Fa(X,A)(JA)
+ Fx(X,A)(6A) + G(X,A)(6X,5A),
where
Fx(X,A)(Y):=Y + %AH\/FYX*lA

Fx(X,A)(Y) € £n(O)
is the partial Fréchet derivative of F' in X calcu-
lated at the point (X, A), and

Fa(X,A)(0A) + F5(X,A)(0A) € L,(C),

with
Fa(X,A)(Y) := AHVX-1Y,
Fi(X,A)(Y) =YVX-1A
is the Fréchet pseudo-derivative in A, computed
at the point (X, A). The term G(X,A)(0X,0A)
contains second and higher order terms in X, 0A.

The matrix of the operator Fix (X, A) is

L:=1,:+ %(X‘lA)T ® (ATVX-1). (4)

The eigenvalues of Fx (X, A) are the eigenvalues
of its matrix L and are equal to

1+)\1 (X_lA) Hj (AHV Xﬁl) ’ 7/7.7: 1727"'7”'
Here A\;(Z), pj(Z) are the eigenvalue of the matrix
Z.

The operator Fx(X,A) and its matrix L are
invertible iff

N (XTRA) gy (ATVXT) £ -1 (9)
In what follows it is assumed that the inequalities
(5) hold true.
Substracting F'(X,A) = 0 from
F(X+6X,A+0A)=0

and assuming that the operator Fix (X, A) is in-
vertible, from (3) one has

§X = —Fx' o FA(0A) — Fx' o F5(6A) + 0(a?),
a—0

and

x = Mja + Msa + O(||a]|?), a — 0. (6)

Here x := vec(6X), a := vec(§A) are n’-vectors,
M; = —-L7'La € ¥

is the matrix of the operator —F);l o Fyu,
M, = —L 'Lz € C¥’*"’

is the matrix of the operator —Fy ' o Fi with



LA — _In ® (AH /Xfl) c (Cn2 xn?
Lz =—((VX TA)T ®1,)P,. € C*" *"",

where P, € € *"° s the so called vec-

permutation matrix such that vec(Y ") = P 2vec(Y)

for each Y € C**™,

For the real version of x it is fulfilled (Konstantinov
et al., 2001; Konstantinov et al., 2002b)

x® = @(M;,Ms)a® + O(|]a®|]?), a® — 0,
where for
M; = Mjp +iM11 and My = Myg + iMy;
(with Mg, My, Mag, My, real) the matrix © is

| Mg + Mz M2 — My,
O(M1, Ms) := [Mn + My My — MZO} @

O(M;,M,) € R *n*

The real version a™ of the complex vector a =
a; + iay € C* (with ay, ay real) is

The matrices M, M, are

Ml :L_l(In ® (AH v Xﬁl)):
M, =L ((VX—1A)T @ 1,)P,2).

Denote
a:=||0Ally € Ry,
= [|0X|lr = [[vec(dX)[[2 = |Ix[l2
and since ||x[lz = ||x%|]> the following local
estimate is obtained

¢ < est(a) +0(a?), a— 0, (8)
c:=[|©(Mi, M)z € Ry,

where the matrix @(M;,M,) is given by (7).
Here c is the absolute condition number. The
relative condition number is then computed from

v = cllAlle/IIX]lF-

The estimate (8) allows to define the overall
relative condition number as follows. Let a =
e||Al|r, where € > 0 (in floating point arithmetic
the quantity € may be taken as a multiple of the
rounding unit). Then est(a) = e est(||A||r). Hence
the relative perturbation in the solution can be
estimated as

10X ]|
1X[lr

est(a) := ca,

_est(|All)
B

The estimate (8) is valid only asymptotically. This
means that the perturbations in the data must
be small enough to ensure sufficient accuracy of

the linear estimate. This disadvantage of the local
estimate may be overcome using the techniques of
non-local perturbation analysis, presented below.

3. NON-LOCAL PERTURBATION ANALYSIS

The perturbed equation (2) may be written in the
form

Fx (6X) = B (6A) + &, (0X,5A) + B3 (6X, 5A)
+O(||oX]%),

where

Po(0A) := ATVX-16A + SAHNVX 1A
+0ARVX-16A,
®,(5X,0A) := —% (AH\/X*(SXX*(SA
+ANVX-16XX 1A
+ 6AH\/X—16XX‘15A),
B, (6X,0A) := %(A + 6AHVX L (6XX )2
x (A +6A).

The above relations are obtained using the ap-
proximation (according Theorem 5.6.3 in (Lancaster,
1969))

VX +6X) T =vVX-1- %\/X*HSXX*

3 .
+§\/xfl(5xx—1)2 + O(J|6X|?).
As a result, neglecting the terms of third and

higher order in §X the operator equation

§X = TI(5X,5A) (9)
(56X, 6A) :=TI(6A) + II, (6X, 6A) + I, (5X, 6A)

is obtained, where II; = F)}l(@i), i=0,1,2.

Suppose that ¢ = ||6X]|lr < p, where p is a
positive quantity. Then, after some calculations,
the inequality

IF'(6X,6A)[[r < h(p, ),
h(p, @) == ao(e) + a1 (@)p + as(a)p®
is obtained.

Here
ap(a) :=est(a) + lpa?,
1 .
ai(a) ==ana+ §lu||X71||2042:
3 1 .
as(a) == X5 (IAll2 + )7,

ap = %HXAHZ HL71 (I" ® (AH\/F)) H

2



1 _ _ T
+onf ((x1a) e L) Py
L= L7, pe= VX2

The function A is a Lyapunov majorant for the
operator II, see (Grebenikov and Ryabov, 1979;
Konstantinov et al., 2002b; Konstantinov et al.,
1996). The corresponding majorant equation

)
2

p = hip, )
is equivalent to the quadratic equation
az(a)p® — (1 = ai(a))p + ao(a) = 0.

Consider the domain

0= {a ERy : ai(a) + 2v/ag(a)az(a) < 1} .(10)

If « € Q then the majorant equation p = h(p, a)
has a root,

(11)

2a0(a
fla) = ole)_ |
1—ai(a) + /(1 —ai(a))? — dag(a)as(a)
Hence for a € 2 the operator II(.,0A) maps the
set By(q) into itself, where

B, = {x eC” lIx|]2 < 7“}

is the closed central ball of radius r > 0.
Then according to Schauder fixed point princi-
ple (Kantorovich and Akilov, 1964; Ortega and
Rheinboldt, 2000) there exists a solution 60X €
By(a) of equation (9).

Thus the following result is obtained.

Theorem. Let o € Q, where Q is given in (10).
Then the non-local perturbation bound ||0X||r <
fla) is walid for equation (1), where f(a) is
determined by (11).

4. NUMERICAL EXAMPLE

Consider the complex matrix equation
X - AVX-1A =1
with matrices X =V« Xg*xV, A=V xAgxV,

Ao =diag [6, 0.1+ 0.1i, 6],
Xo = diag [ 11.579, 1.0198, 11.579]

and V is the elementary reflection
V=Ig—2xvsv, v=[111]".

The perturbation in the data is taken as

§Ao = diag [ 1.8663 1.0371 1.0026] % 10(~»
for k = 10,9, ..., 1.

This problem was designed so as to obtain the
analytic solution

X = diag [;1:1 To ;1;3]
and
X+5X:diag[;171 + 0x1 T2 + 0x2 ;1:3+(5;1:3]

of the unperturbed and perturbed equation re-
spectively. According to the physical applications
(Ivanov et al., 1999) the positive definite solution
of (1) is of interest. One has

mz:y;‘za 6-7:1 = (yl+6yl)2 yzza 1= 172737
_3lq q? 1 3/ q q? 1
yz—\/2+ TR 1 a7
2 2
. Y G 1 s/ta  jqg 1
y‘+5y‘_\/2Jr s T\ 427

g =Re(Ao(4,4))* + Im (Ao (i, 7)),
qa = (Re(Ao(i,7)) + Re(6 40 (i,1)))*
+ (Im(Ag(i,4)) + Im(6 Ao (i, 1)))>.
The perturbation ||0X||F in the solution is esti-
mated by the local bound est(«) (8) from Section

2 and the non-local bound p(a) (11), (10) from
Section 3.

The results obtained for different values of k are
shown in Table 1.

Table 1.

k [10X]|F est(a) (8) p(a) (11)
10 5.1350x10~ 10  5.7098x10~10  5.7098x10—10
9 5.1327x10~9 5.7098x 109 5.7098x 109
8 5.1324x10~8 5.7098x 108 5.7098x 108
7 501323x10~7  5.7098x10~7  5.7098x10~7
6 5.1323%x106 5.7098x 106 5.7102x 106
5 5.1323x10~2 5.7098 102 5.7142x10~5
4 5.1324%x10% 5.7098x 10 % 5.7543%x10%
3 5.1326x10~3 5.7098 %103 6.2299%x 103
2 5.1351x 102 5.7098x 102 *

1 5.1611x10~ 1t 5.7098 %10~ ! *

The case when the non-local estimate is not valid,
since the existence condition a € (2 is violated, is
denoted by asterisk. When k decreases from 10 to
1 the non-local estimate p(a) (11) is slightly more
pessimistic than the local bound est(«a) (8).
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