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1. INTRODUCTION

One drawback of H_ design is that the order of the

controller is at least equa to the order of the plant,
and larger if, as is common, weights are included in
the design (Amjadifard, et al., 2005). An approach to
reduced-order controller design for a class of
nonlinear composite systems is introduced by Isidori
and Tarn (1995) and Isidori (1999). In these
references, the problem of robust disturbance
attenuation with internal stability via H_, controller

for a class of nonlinear composite systems has been
investigated. In particular, it has been shown by
Isidori and Tarn (1995) that the existence of a
positive definite solution for the Hamilton-Jacobi-
Isaacs (HJl) inequality arising in the problem of
disturbance attenuation for a nonlinear composite
system, can be related to the existence of a solution
of a(simpler) HJl inequality arising in the problem of
disturbance attenuation for a plant which is a part of
the main plant.

The problem of disturbance attenuation with local
internal stability, via state feedback is to find, if
possible, a feedback law such that the corresponding
closed loop system has a localy asymptotically
stable equilibrium and a L, gain from the input

disturbance to the regulated output, less than or equal
to aprescribed value y (Isidori and Tarn, 1995). For

more details about L, gain refer to (Ball, et al.,

1993; Van der Schaft, 1992; Van der Schaft, 1991,
and Isidori, 1991).

Problem of disturbance attenuation via H_ approach

for linear and nonlinear singularly perturbed systems
has been considered in many references. In (Fridman,
2001), the mentioned problem has been solved by
considering the related HJl inequality, defining
reduced Hamiltonian system, fast & -independent
PDE, and then constructing the H_ composite

controller. On the other hand, Y azdanpanah, et al.
(1997) introduced a new algorithm for the problem of
robust regulation for linear singularly perturbed



systems via treating the fast modes of system as
uncertainty using the smal gain theorem. Then
Amjadifard, et a. (2003) and Amjadifard, et a.
(2004) extended the method introduced in
(Yazdanpanah, et al., 1997) to a class of nonlinear
affine systems.

In this paper, the method introduced in (Isidori,
1999) is extended to a class of nonlinear singularly
perturbed systems through two new theorems. In fact,
robust regulation of a class of singularly perturbed
systems that are nonlinear in slow states, via
nonlinear H_ technique is considered. Under

appropriate assumptions, we show that the existence
of a positive definite solution for the HJl inequality
related to the problem of disturbance attenuation for
the main singularly perturbed system, can be related
to the existence of a solution of a (simpler) HJ
inequality arising in the problem of disturbance
attenuation for the reduced-order system. We will
prove theorems related to the problem of disturbance
attenuation, with global asymptotic internal stability
for the nonlinear singularly perturbed system.

The proposed method is applied to an example to
show the desired behavior of the designed composite
controller.

2. PROBLEM FORMULATION

Consider a class of nonlinear singularly perturbed
systems as

X, = al(xl) +AX, + d1W = fl(Xl’XZ’W) (1-a)
&Ky =, (%) + AXy +bou = (%, X,,U) (1-b)
z=h,(x,) (1-0)

where x, € R™is the dow state, x, € R™ is the fast

state, u € R™ isthe control input, w isan L, norm-
bounded disturbance, and z isthe controlled outpuit.
A, A,, d, and b, are matrices with proper
dimensions. ¢ > 0 isthe perturbation parameter. It is
assumed that a,(x;) and a,(x,) are smooth vector
fields with a,(0)=0 and a,(0)=0, and the
equilibrium point of the closed-loop system is at
(X, %;) = (0,0).

The objectiveisto find a control law
u= (0()(11 Xz) (2
such that the closed loop system (1),(2) has an

asymptoticaly  stable equilibrium  point at
(X, %,) = (0,0) and adisturbance attenuation level of

V.

2.1 The reduced-order system

If A 'exists, replacing =0 in equation (1-b), we
have

Xy = H (Xl) = —A2_1(a2(X1) + bzu) . (3)
The composite control method seeks the control u as
the sum of slow and fast controls [Kokotovic, et al.,
1986),
u=u,+U,
where u; is a feedback function of x,
us = U(X11 H (Xl)) =T (Xl)

and u; isafeedback function of x5 , X5.
Replacing the quasi steady state X, (defined in
equation (3)) in equation (1-a), the reduced-order
system (or for simplicity, the reduced system) is
obtained as:

Xl:ao(xl)+b0us +le: fo(xl’uslw) 4)
where

aO(Xl) = al(xl) - A1A2_1a2(xl) )
b, = —AA'D, .

2.2 The composite system

Changing x, coordinate to

“=X; —H(X;)
we obtain the new equations of system (1) asfollows:

X = ag(X) + Ay + bl (x,) +dyw (5-a)
f=5Au+obyug. (5-b)

Theorem 1. Consider system of equations (5) with
u,=0,u; =0 and w=0. Suppose that the
equilibrium x, =0 of the reduced system is localy
asymptotically stable, and the equilibrium z =0 of
the system =LA, u isalso localy asymptotically
stable. Then the equilibrium (x;, ) =(0,0) of
system (5) will be locally asymptotically stable.

Proof: Proof of this theorem in accordance to the
Tikhonov theorem (Kokotovic, et a., 1986) and
theorem 10.3.1 of (Isidori, 1999) will beclear. [



3. NONLINEAR H_CONTROLLER DESIGN

As we know from (Van der Schaft, 1991), the
problem of disturbance attenuation with internal
stability for a nonlinear system of form (5) is related
to the problem of finding a positive definite solution
of a specia Hamilton-Jacobi-Isaacs inequality. If we
Set

F(x,%,) = {ao(xl) +b,T (X,) + A (X, —H (Xl))} |

A, (x, —H(x))
& m o=},

then the HJl inequality will be asfollows

Wi, F (X0 X5 ) + 0y (%) (%)

(5G,G] ~G,G; W, <0

(X,

(X1,%;)

o iw ©)

(X1,Xz)

Where

OW (X, X,)  OW (X, X,)
Wi x) = .
v 0%, oX,

If we can find a positive definite solution W (x;, X,)
for thisinequality, then the control law

U :—%G;W(TXMZ) (7)
causes the closed loop system (5)-(7), to have an L,
gain less than or equal to a prescribed value y.
Furthermore, if some additional conditions are
satisfied, the control law (7) also asymptotically
stabilizes the eguilibrium point (x;, x,) = (0,0) of the
system (Isidori, 1991).

Suppose that there exists a positive definite solution
V(x,) for the HJl inequality related to the problem

of disturbance attenuation for the reduced system,
ie,

V., 8, (x,) +h{ (x)hy (%)

. 8
+3V, (d,d] byl V] <0 ®

We set

@ (%) =4IV

(©)

az(xl) = %l bgvx-ll- :

As shown in (Basar, and Bernhard, 1990), the
structure of these two functions is the same as the
equilibrium solution of the two-player zero-sum
differential game associated with the problem of

disturbance attenuation for plant (4). Using the
function H(x,) (Equation (3)), and defining

5,(x,) = (—a'*aixl) - IJel,

1

5,(x) = (aHa—(Xl) - I)Gz. (10)

Xl
we come up with the following result.
Theorem 2. Suppose:
i) Thereexistsasolution V (x,) >0 for the HJ
inequality (8),
ii) Thematrix M defined asfollows

_ },%510(1)5; ()(1)_520(1)52T (Xl)_§ Az _sz‘S‘zT (Xl) 0

M
0 2bobs | (11)

is positive semi-definite for all x; .
Then the positive definite function

W (%, %) =V (%) +[x, = H(x)|”
isasolution of the HJI inequality (6).

Proof: By defining «,(x,) and «,(x;) asin (9), we
have (Isidori and Astolfi, 1992):

V, % + h' (x,)h, (X)) +uu—y*w'w

= HJ, (x,) +|u —az(xl)"2 _72||W_a1(xl)||2 (12)

where HJ, (x,) denotes the left hand side of
inequality (8). Let HJ,, (x,,x,) denote the left-hand
side of inequality (6) in which we set

W(Xl’ Xz) :V(Xl) + "Xz -H (X1)||2 .

Therefore,
M%) o OHOX)
X, . x,
OW (X4, X,) —247,
X,
and

W +h'h +ulu, —y*w'w
:%X1+%X2 +h'h +ufu, —y*w'w
0%, 0%, (13)

=V, X +2u" i+hlh +ufu, —ywiw



where therelation s = x, -ﬁxl is used.
0X,
Also, we have

W +hlh +ufu, —y*w'w
_ _ (14)
= Hy (50, %,) +uy ~ @[ 7% w-a|°

TwT

(X1,%z) *

z,-1c

I
WHEre a, == %21 Wou 5 22

Using (9) and (10), o; and «, will bein theform

1
o, =0 __251T (X)),

Ve

a, = §2T (X)) .
Noting to (13) and (14), we have:
Vxlxl + ZﬂTﬂ + th (X)hy (%)) + U¥Uf - 7/2WTW
2
= HYy, (% 1+ H ) + g =67 (1)

: (15)
W=ty () + % 6 (4)4]

Comparison of (12) and (15) yields:

2
HIy (Xg, 12+ H (%)) + "U f 52T (Xl)ﬂ||

2
- 72 W—a; (%) +y_1251T (Xl)ﬂ“

=HJ, (x)) + "us - az(xl)nz - 7/2"W_ al(xl)uz

—Ugug +uuy +2u" (2 A+ 2byuy)

Choosing
W= a,(X,) - 7125; (X)) u (16)
Up =38, (x)u 17)
and using assumption i), we obtain

HIy (X, 1+ H (X)) = HI,, (%)
+/UT(_%251(X1)51T (X)) + 0, (X1)52T (%)
+%b252T (Xl)"'%Az)ﬂ'%VxlbobngTl

which can be written as
HJ (Xla u+H (Xl)) =HJ, (Xl)

b

Xy

Where M is defined in (11). At this point, the
assumption ii) completes the proof. O

Note that the right hand side of (15) has a saddle
point at the points defined in equations (16) and (17).

Now, in the case where the full state (x,,x,) of the

system (1) is available for feedback, it will be shown
that under additional conditions the feedback law

us = 52T (Xl)(xz -H (Xl)) (18)

which vyields disturbance attenuation, will also
asymptotically stabilizes the system (5) (Isidori and
Tarn, 1995).

As we know from (Isidori, 1991), a feedback law
associated with a positive definite solution of an HJI
inequality is aways a stabilizing (in the sense of
Lyapunov) law. Thus, it should be shown that the
trajectories of the closed-loop system asymptotically
converge to origin astime goes to infinity.

Assumption 1 (Isidori and Astolfi, 1992). Any
bounded trajectory x,(t) of the system x, =a,(x,)
satisfying h (x,(t)) =0 for al t>0, is such that
lim,,, X (t)=0.

t—oo

Theorem 3. Assume Assumption 1. Also assume:

i) There exist a proper solution V (x,) >0 for

the HJl inequality (8),
ii) The matrix M defined in (11) is positive
definite.

Then the feedback law (18) solves the problem of
disturbance attenuation, with global asymptotic
internal stability for system (1).

Proof: Consider the closed loop system (1)-(18) in
the (x,,u) coordinates. Set w=0. Along any
trajectory, the positive definite  function
W (x,, ¢+ H(x,)) satisfies (Isidori, 1999; Isidori and
Tarn, 1995):

W =, 00 =57 ()

+HIy (%, #+H (Xl))_7/2”_(’71||2

< —[;ﬂ V., ]M [V#T } <0,

X

that shows the stability (in the sense of Lyapunov) of
the equilibrium (x,,x,)=(0,0). If W =0, then

necessarily [yT Vv, ]M {Vﬁ

1

}annd hy(x,) =0.



The first equality, in view of condition ii), yields
#=0andV, =0, whichinturnyields a,(x;)=0.
Thus the trajectories of the closed loop system with
constraint W =0 are trajectories in which u(t) =0
while x,(t) is a solution of X, =a,(x,) which
h (x,(t))=0. Noting to Assumption 1, these
trajectories converge to (x;, ) =(0,0) . The global
asymptatic stability of the system may be shown by
considering the properness of V(x;) (which means
V(x,) is radialy wunbounded) and then the
properness of W (x,,X,) in view of Theorem 3-3 of
(Jacques, et al., 1991). O

Thus, the condition for disturbance attenuation with
internal stability for singularly perturbed system was
derived.

Remark: It is worth noting that a region for & (the
perturbation parameter) can be determined via
Condition ii) of theorem 2.

Example: Consider a nonlinear singularly perturbed
systemin the form:

v 3
X, =X =X + X, + W

Xy =X — X, +U

Fig. 1 shows the behavior of open loop system with a
disturbance input w=sin2t and initial condition
Xio =—1, X, =0.01. The quas steady state x, is
obtained as H(x,)=x, +u,; and therefore, the
reduced-order system will be:

v 3
X, =2X, —X; +Ug +W.

We design a robust H_ controller in order to
disturbance attenuation (to a prescribed value y ) and

to sabilize the reduced-order system through
obtaining a positive definite function V (x,) such that

the HJl inequality

V, (2% = %)+ % +1V, (5-1v, <0

2
is satisfied. We choose V (x,) = %(xf —-1x)
}/ —

(with conditions —+v/2 < x, <0 and » >1) asthe

positive definite solution of HJI inequality. The slow
input control based on equation (9) will be

—3y?
U, = =40V = (2 =) (19)
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Fig. 1. Open-loop response of system.

Using change of variable u=x,-H(x), the
composite system will be obtained as:

X, = 2%, — X2 4+ g+ Uy (X)) +W

. (20)
f=2 Uy

The matrix M defined in (11) will be:

| EFA-E(2+3) +1+2 0
0 B

M

Noting to My; and My, the elements of M, they are
aways positive definite. Therefore, Condition ii) of
theorem 2 has been satisfied and using equation (18),
the controller u, will provide disturbance
attenuation to a level y and aso stabilize the
composite system (20). Considering (19), application
of the composite controller in the form

_37/2 3 1
U=us+u; = yz__l(le_xl)"‘_?(xz_H(Xl))

results in a closed loop system response with input
disturbance w=sin2t and initia conditions
Xio =—1, X, =0.01 as depicted in Fig. 2. The
disturbance attenuation level is obtained 0.11.

4. CONCLUSION

In this paper, we have discussed the existence of a
feedback law that solves the problem of disturbance



attenuation for a class of nonlinear singularly
perturbed systems.

Contribution of the paper is in providing two
theorems, which present sufficient conditions for the

0.5
ab]
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=
o
W
w 0.5
=
|_
1 .
0 o 10
Time (sec.)
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r/\/\_/\

10

Controller output
[ ]

0 o
Time (sec.)

The fast modz

Gamma

solution (global solution) of a disturbance attenuation
problem for a class of nonlinear singularly perturbed
systems by solving an appropriate disturbance
attenuation problem for the reduced-order system.

10
5
0 W\/\
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Fig. 2. Closed loop response with input disturbance w =sin2t .
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