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Abstract: In this paper, robust regulation of a class of nonlinear singularly perturbed 
systems, via nonlinear ∞H  approach is considered. Under appropriate assumptions, it is 
shown through two new theorems that the existence of a positive definite solution for the 
Hamilton-Jacobi-Isaacs inequality related to the problem of disturbance attenuation for 
the main singularly perturbed system, can be related to the existence of a solution of a 
(simpler) Hamilton-Jacobi-Isaacs inequality arising in the problem of disturbance 
attenuation for the reduced-order system. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
One drawback of ∞H  design is that the order of the 
controller is at least equal to the order of the plant, 
and larger if, as is common, weights are included in 
the design (Amjadifard, et al., 2005). An approach to 
reduced-order controller design for a class of 
nonlinear composite systems is introduced by Isidori 
and Tarn (1995) and Isidori (1999). In these 
references, the problem of robust disturbance 
attenuation with internal stability via ∞H  controller 
for a class of nonlinear composite systems has been 
investigated. In particular, it has been shown by 
Isidori and Tarn (1995) that the existence of a 
positive definite solution for the Hamilton-Jacobi-
Isaacs (HJI) inequality arising in the problem of 
disturbance attenuation for a nonlinear composite 
system, can be related to the existence of a solution 
of a (simpler) HJI inequality arising in the problem of 
disturbance attenuation for a plant which is a part of 
the main plant. 
 

The problem of disturbance attenuation with local 
internal stability, via state feedback is to find, if 
possible, a feedback law such that the corresponding 
closed loop system has a locally asymptotically 
stable equilibrium and a 2L  gain from the input 
disturbance to the regulated output, less than or equal 
to a prescribed value γ  (Isidori and  Tarn, 1995). For 
more details about 2L  gain refer to (Ball, et al., 
1993; Van der Schaft, 1992; Van der Schaft, 1991; 
and Isidori, 1991).  
 
Problem of disturbance attenuation via ∞H  approach 
for linear and nonlinear singularly perturbed systems 
has been considered in many references. In (Fridman, 
2001), the mentioned problem has been solved by 
considering the related HJI inequality, defining 
reduced Hamiltonian system, fast ε -independent 
PDE, and then constructing the ∞H  composite 
controller. On the other hand, Yazdanpanah, et al. 
(1997) introduced a new algorithm for the problem of 
robust regulation for linear singularly perturbed 



systems via treating the fast modes of system as 
uncertainty using the small gain theorem. Then 
Amjadifard, et al. (2003) and Amjadifard, et al. 
(2004) extended the method introduced in 
(Yazdanpanah, et al., 1997) to a class of nonlinear 
affine systems. 
 
In this paper, the method introduced in (Isidori, 
1999) is extended to a class of nonlinear singularly 
perturbed systems through two new theorems. In fact, 
robust regulation of a class of singularly perturbed 
systems that are nonlinear in slow states, via 
nonlinear ∞H  technique is considered. Under 
appropriate assumptions, we show that the existence 
of a positive definite solution for the HJI inequality 
related to the problem of disturbance attenuation for 
the main singularly perturbed system, can be related 
to the existence of a solution of a (simpler) HJI 
inequality arising in the problem of disturbance 
attenuation for the reduced-order system. We will 
prove theorems related to the problem of disturbance 
attenuation, with global asymptotic internal stability 
for the nonlinear singularly perturbed system. 
 
The proposed method is applied to an example to 
show the desired behavior of the designed composite 
controller. 
 
 

2. PROBLEM FORMULATION 
 
Consider a class of nonlinear singularly perturbed 
systems as 
 

),,()( 211121111 wxxfwdxAxax =++=&  (1-a) 

),,()( 212222122 uxxfubxAxax =++=&ε  (1-b) 
)( 11 xhz =  (1-c) 

 
where 1

1
nRx ∈ is the slow state, 2

2
nRx ∈ is the fast 

state, mRu ∈  is the control input, w  is an 2L  norm-
bounded disturbance, and z  is the controlled output. 

1A , 2A , 1d  and 2b  are matrices with proper 
dimensions. 0≥ε  is the perturbation parameter. It is 
assumed that )( 11 xa  and )( 12 xa  are smooth vector 
fields with 0)0(1 =a  and 0)0(2 =a , and the 
equilibrium point of the closed-loop system is at 

)0,0(),( 21 =xx . 
 
The objective is to find a control law 
 

),( 21 xxu ϕ=  (2) 
 
such that the closed loop system (1),(2) has an 
asymptotically stable equilibrium point at 

)0,0(),( 21 =xx  and a disturbance attenuation level of 
γ . 
 

2.1 The reduced-order system  
 
If 1

2
−A exists, replacing 0=ε  in equation (1-b), we 

have 
 

))(()( 212
1

212 ubxaAxHx +−== − . (3) 
 
The composite control method seeks the control u as 
the sum of slow and fast controls [Kokotovic, et al., 
1986), 
 

fs uuu +=  
 
where us is a feedback function of x1, 
 

)())(,( 111 xxHxuu ss Γ==  
 
and uf  is a feedback function of x1 , x2.  
 
Replacing the quasi steady state x2 (defined in 
equation (3)) in equation (1-a), the reduced-order 
system (or for simplicity, the reduced system) is 
obtained as: 
 

),,()( 1010101 wuxfwdubxax ss =++=&  (4) 
 
where  
 

)()()( 12
1

211110 xaAAxaxa −−= , 

2
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2.2 The composite system  
 
Changing 2x  coordinate to 
 

)( 12 xHx −=µ   
 
we obtain the new equations of system (1) as follows: 
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2
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 (5-a) 
(5-b) 

 
Theorem 1. Consider system of equations (5) with 

0  ,0 ≡≡ fs uu  and 0≡w . Suppose that the 
equilibrium 01 =x  of the reduced system is locally 
asymptotically stable, and the equilibrium 0=µ  of 
the system µµ ε 2

1 A=&  is also locally asymptotically 
stable. Then the equilibrium )0,0(),( 1 =µx  of 
system (5) will be locally asymptotically stable. 
 
Proof: Proof of this theorem in accordance to the 
Tikhonov theorem (Kokotovic, et al., 1986) and 
theorem 10.3.1 of (Isidori, 1999) will be clear.      � 
 
 



3. NONLINEAR ∞H CONTROLLER DESIGN 
 
As we know from (Van der Schaft, 1991), the 
problem of disturbance attenuation with internal 
stability for a nonlinear system of form (5) is related 
to the problem of finding a positive definite solution 
of a special Hamilton-Jacobi-Isaacs inequality. If we 
set 
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then the HJI inequality will be as follows  
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If we can find a positive definite solution ),( 21 xxW  
for this inequality, then the control law  
 

T
xx

T
f WGu ),(22

1
21

−=  (7) 
 
causes the closed loop system (5)-(7), to have an 2L  
gain less than or equal to a prescribed value γ . 
Furthermore, if some additional conditions are 
satisfied, the control law (7) also asymptotically 
stabilizes the equilibrium point )0,0(),( 21 =xx of the 
system (Isidori, 1991). 
 
Suppose that there exists a positive definite solution 

)( 1xV  for the HJI inequality related to the problem 
of disturbance attenuation for the reduced system, 
i.e., 
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We set 
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As shown in (Basar, and Bernhard, 1990), the 
structure of these two functions is the same as the 
equilibrium solution of the two-player zero-sum 
differential game associated with the problem of 

disturbance attenuation for plant (4). Using the 
function )( 1xH (Equation (3)), and defining 
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(10) 

 
we come up with the following result. 
 
Theorem 2. Suppose: 
 

i) There exists a solution 0)( 1 >xV  for the HJI 
inequality (8), 

ii) The matrix M  defined as follows 
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(11)

 
is positive semi-definite for all 1x . 
 
Then the positive definite function 
 

2
12121 )()(),( xHxxVxxW −+=  

 
is a solution of the HJI inequality (6). 
 
Proof: By defining )( 11 xα  and )( 12 xα  as in (9), we 
have (Isidori and Astolfi, 1992): 
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(12) 

 
where )( 1xHJV  denotes the left hand side of 
inequality (8). Let ),( 21 xxHJW  denote the left-hand 
side of inequality (6) in which we set 
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where the relation 1
1

2 x
x
Hx &&&
∂
∂

−=µ  is used. 

Also, we have  
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Using (9) and (10), 1α  and 2α  will be in the form 
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Noting to (13) and (14), we have: 
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Comparison of (12) and (15) yields: 
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Choosing 
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and using assumption i), we obtain 
 

T
x

T
x

T

TT
VW

VbbVAxb

xxxx

xHJxHxHJ

11

2

004
1

2
2

122
2

12121111
1T

111

- ))(          

 )()()()((          

)())(,(

µδ

δδδδµ

µ

εε

γ

++

+−+

=+

 

 
 

 
which can be written as 
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Where M is defined in (11). At this point, the 
assumption ii) completes the proof.                   � 
 
Note that the right hand side of (15) has a saddle 
point at the points defined in equations (16) and (17). 
 
Now, in the case where the full state ),( 21 xx  of the 
system (1) is available for feedback, it will be shown 
that under additional conditions the feedback law  
 

))()(( 1212 xHxxu T
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which yields disturbance attenuation, will also 
asymptotically stabilizes the system (5) (Isidori and  
Tarn, 1995). 
 
As we know from (Isidori, 1991), a feedback law 
associated with a positive definite solution of an HJI 
inequality is always a stabilizing (in the sense of 
Lyapunov) law. Thus, it should be shown that the 
trajectories of the closed-loop system asymptotically 
converge to origin as time goes to infinity. 
 
Assumption 1 (Isidori and Astolfi, 1992). Any 
bounded trajectory )(1 tx  of the system )( 101 xax =&  
satisfying 0))(( 11 =txh  for all 0≥t , is such that 

0)(lim 1 =∞→ txt . 
 
Theorem 3. Assume Assumption 1. Also assume: 
 

i) There exist a proper solution 0)( 1 >xV  for 
the HJI inequality (8), 

ii) The matrix M  defined in (11) is positive 
definite. 

 
Then the feedback law (18) solves the problem of 
disturbance attenuation, with global asymptotic 
internal stability for system (1). 
 
Proof: Consider the closed loop system (1)-(18) in 
the ),( 1 µx  coordinates. Set 0=w . Along any 
trajectory, the positive definite function 

))(,( 11 xHxW +µ  satisfies (Isidori, 1999; Isidori and 
Tarn, 1995): 
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that shows the stability (in the sense of Lyapunov) of 
the equilibrium )0,0(),( 21 =xx . If   0=W& , then 

necessarily [ ] 0
1

1
=⎥

⎦

⎤
⎢
⎣

⎡
T
x

x
T

VMV
µ

µ  and 0)( 11 =xh . 

 



The first equality, in view of condition ii), yields 
0=µ  and 0

1
=xV , which in turn yields 0)( 12 =xα . 

Thus the trajectories of the closed loop system with 
constraint 0=W&  are trajectories in which 0)( =tµ  
while )(1 tx  is a solution of )( 101 xax =&  which 

0))(( 11 =txh . Noting to Assumption 1, these 
trajectories converge to )0,0(),( 1 =µx . The global 
asymptotic stability of the system may be shown by 
considering the properness of  )( 1xV  (which means 

)( 1xV  is radially unbounded) and then the 
properness of ),( 21 xxW  in view of Theorem 3-3 of 
(Jacques, et al., 1991).                                       � 
 
Thus, the condition for disturbance attenuation with 
internal stability for singularly perturbed system was 
derived.  
 
Remark: It is worth noting that a region for ε  (the 
perturbation parameter) can be determined via 
Condition ii) of theorem 2. 
 
Example: Consider a nonlinear singularly perturbed 
system in the form: 
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Fig. 1 shows the behavior of open loop system with a 
disturbance input tw 2sin=  and initial condition 

110 −=x , 01.020 =x . The quasi steady state 2x  is 
obtained as suxxH += 11 )( ; and therefore, the 
reduced-order system will be: 
 

wuxxx s ++−= 3
111 2& . 

 
We design a robust ∞H  controller in order to 
disturbance attenuation (to a prescribed value γ ) and 
to stabilize the reduced-order system through 
obtaining a positive definite function )( 1xV  such that 
the HJI inequality 
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(with conditions 02 1 <<− x  and 1>γ ) as the 
positive definite solution of HJI inequality. The slow 
input control based on equation (9) will be  
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Fig. 1. Open-loop response of system. 
 
Using change of variable )( 12 xHx −=µ , the 
composite system will be obtained as: 
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3
111 µ&  

fuεε µµ 11 += −&  
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The matrix M defined in (11) will be: 
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Noting to M11 and M22, the elements of M, they are 
always positive definite. Therefore, Condition ii) of 
theorem 2 has been satisfied and using equation (18), 
the controller fu  will provide disturbance 
attenuation to a level γ  and also stabilize the 
composite system (20). Considering (19), application 
of the composite controller in the form 
 

))(()2(
1

3
12

13
112

2

xHxxxuuu fs −−+−
−

−
=+= εγ

γ  

 
results in a closed loop system response with input 
disturbance tw 2sin=  and initial conditions 

110 −=x , 01.020 =x  as depicted in Fig. 2. The 
disturbance attenuation level is obtained 0.11. 

 
 

4. CONCLUSION 
 
In this paper, we have discussed the existence of a 
feedback law that solves the problem of disturbance 



attenuation for a class of nonlinear singularly 
perturbed systems.  
 
Contribution of the paper is in providing two 
theorems, which present sufficient conditions for the 

solution (global solution) of a disturbance attenuation 
problem for a class of nonlinear singularly perturbed 
systems by solving an appropriate disturbance 
attenuation problem for the reduced-order system.  

 
Fig. 2. Closed loop response with input disturbance tw 2sin= . 
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