OPTIMAL ESTIMATION BY USING NEURAL NETWORKS
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Abstract: The relation between the traditional (minimum variance) algorithms for
estimation of random vectors and the algorithms based on the use of neural networks has
been investigated. It is shown that the Bayesian and neural network algorithms provide
estimates with similar properties. The results derived are discussed. The examples (in
particular problem with a non-Gaussian a posterior probability density function) are

considered. Copyright © 2005 IFAC
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1. INTRODUCTION

Neural networks (NN) have been extensively
investigated in the context of adaptive control and
system identification. But only recently, as it is noted
in (Parlos, et al., 2001), they came to be used for
filtering problem. Optimal filtering is known to be
widely used in estimation of random processes and
sequences (Kalman, 1960, Meditch, 1969; Jazwinski,
1970; Gelb A., 1974; Yarlykov, and Mironov, 1999;
Stepanov, 1998). However constructing algorithms
requires comprehensive a priori information about

the processes estimated and their measurement errors.

Besides, serious difficulties emerge in constructing
nonlinear filtering algorithms (Jazwinski, 1970;
Yarlykov and Mironov, 1999; Stepanov, 1998;
Dmitriev and Stepanov, 1998). These disadvantages
make the researchers look for new approaches to the
construction of algorithms. One of such approaches
can be based on neural networks their advantages
being training capabilities and the possibility to be
applied to the solution of difficult (from the
calculation standpoint) problems (Haykin, 1994).
Among the publications devoted to the application of
NN for the estimation problem, of particular interest
for us are the following:

e References (Parisini, et al., 1994; Alessandri, et
al., 1999) reduces the estimation problem to one of
nonlinear programming problems and NN is used for
the solution of this problem;

e  Reference (Haykin and Yee, 1997) discusses the
application of NN to the nonlinear filtering problem,
in particular, the application of the radial basis
functions for NN estimation;

e Reference (Parlos, et al., 2001) deals with the
application of the recurrent NN for adaptive filtering
problems.

However, in our opinion, there is no unambiguous
answer about the advantages or disadvantages of the
neural approach in comparison with the traditional
one. Most attention in the papers has been
concentrated on the methods of applying neural
networks to filtering and estimation. The publications
that do compare the NN and optimal filtering
approaches concern, as a rule, some particular
examples and are based on simulation. Theory is
most substantially dealt with in the publication of Lo
(1994), in which it is shown that the estimate
generated by the recurrent neural networks
considered there tends, under certain conditions, to
the minimum variance estimate. However the author
does not discuss the relation between the traditional
and neural network algorithms. In our opinion, this
makes it difficult to use widely an NNs for the
solution of applied problems.

There is another line of investigation that also makes
use of both the filtering theory methods and the
neural network approach. It has emerged in
connection with the training problem which is of



great importance and is treated as a nonlinear
estimation problem and solved by using various
modifications of nonlinear filtering algorithms
(Puskorius 1996, Simandl et al., 2004). 1t is this line
of investigation that the recent book by Haykin is
devoted to (Haykin, 2001). Unfortunately, it does
not consider the possibilities of NN themselves to
solve estimation and filtering problems, nor is the
relation between the traditional and neural network
algorithms discussed. For the particular problem of
linear estimation such relation is investigated in
(Stepanov and Amosov, 2004). It is shown that for
linear neural networks and the appropriate choice of
the criterion used for its off-line training, the
traditional and neural network algorithms are
practically identical and they provide estimates with
similar properties. The present paper is devoted to a
more general nonlinear, non-Gaussian case, for
which the problem of linear estimation is particular
case.

2. TRADITIONAL BAYESIAN ESTIMATION

It is not uncommon that the applied estimation
problems (in particular, the problems connected with
navigation) can be reduced to a rather simple
problem of estimating n-dimensional vector

X =[x xn]T by m-dimensional measurements
y=[» Vm 1", which can be written as follows
(Stepanov, 1998):

y=s(X)+v, Q)
where  s(X) =[s,(X) Sy, ®]" is an m -

dimensional, in a general case, nonlinear vector-
function, which is usually assumed to be known; and

T .
v=[v, .. v,] is a random vector of

measurement errors.

Suppose that the joint probability density function
(p-d.f.) f(x,v) is known. This allows deriving the

joint f(x,y) for the vectors x and y . In other
words, suppose that f(x,v) or f(x,y) is the a

priori information. In this case the estimation
problem can be formulated in the framework of the
Bayesian approach as follows: using the vector y,

find the estimate X(y) that minimizes the criterion:

J = E[(x— () (x - x(y))] = E|(x - k)|’

. 2
= [ [lc=sl” rx yyaay. @)
where E is the mathematical expectation
corresponding to the p.d.f f(x,y) . In this

discussion integrals are regarded as multiple integrals
with infinite limits. The estimate that minimizes this
criterion is called a minimum variance (optimal)
estimate. It is well known that this estimate is
determined as in (Jazwinski, 1970; Yarlykov and
Mironov, 1999)

) = [ ¥ (x/yyax, 3)

where f(x/y) is the conditional (a posteriori) p.d.f.

for the vector x, for which the following relation
holds true:

Sy
fy -’

where f(y)= I f(x,y)dx.

Jf(x7y) “4)

It is known that if the p.d.f. f(x,y) is Gaussian,
then the a posterior p.d.f. f(x/y) is Gaussian too.

In this case the estimate X(y), which minimizes (2),

and the covariance matrix of the estimation errors
e =x—X(y) are determined as in (Meditch, 1969):

X(y) =X+ Py Py - 71, (5)

P, = E[(x~X(y)(x~X(y))'] = P =Py PP,y , (6)
where X, y , P“,Pyy,
expectations and covariance matrices for x and y.

P,, are the mathematical

For example, the p.d.f. f(x,y) is Gaussian, when

the joint p.d.f. of the vector x and measurement
errors v is Gaussian and the relation between them
is linear, i.e.,

y=Hx+v, (7

where H is the known m x n matrix. In this case, if
the Gaussian vectors x and v are statistically
independent of each other, then

P, =P H", (8)
T
P, =HP H +P )

where P, is the covariance matrix of the vector v.

Of vital importance is the following circumstance
known from the estimation theory (Kalman, 1960,
Meditch, 1969). If f(x/y) is non-Gaussian, the

estimate (5) is optimal in the class of linear estimates.
This means that the value of the criterion (2) sought
for this estimate will be lower or equal to the value of
the criterion corresponding to any other linear
(relative measurements) estimate. In a general case
some numerical procedures have been specially
developed to derive optimal estimates (Jazwinski,
1970; Stepanov, 1998; Yarlykov and Mironov, 1999).

3. BAYESIAN ESTIMATION IN THE PRESENCE
OF A TRAINING SET

NN training suggests the presence of a training set.
For the problem considered it means that there is a
set of data

(D, xDyy, j=1n,, (10)



in which the pairs y“) , xV) j= m are the
independent-of-each-other realizations of the random
vector z=[x’ y']", withthe p.d.f. f(x,y).

Let us consider a possible statement of the estimation
problem for the case when, instead of the f(x,Vv) or
f(x,y), the set of data (10) is known.
words, assume that the a priori information is given
in the form of (10) and it is necessary, having this set
and the measurement y, to find the estimate X(y)

In other

that minimizes the following criterion:

~ 1A o a2
7= “Xm_x @) “ _ 11
" E ) (11)
0 j=1
As E

2
X% (y)H =[x - &) £ y)dsdy . then,

in accordance with the Monte Carlo method, it is
possible to write (Zaritsky, et. al., 1975):

nU
lim —— %

n, >0 Ny j=]

_ 2
L) ;(y(f))H —E[x- %),

i.e. criterion (11) tends to (2) as the n, increases. It

is evident that in these conditions the estimation
algorithm, optimal in the sense of criterion (11), will
be similar to the traditional Bayesian algorithm (3),
optimal in the minimum variance sense.

The approximate solution to this problem can be
found by introducing a class of parameter-dependent
functions used for the calculation of the estimate.
Then the criterion (11) can be written as:

GUNEE N I
o j=l

where W is the vector or matrix determining a set of

free parameters that define the function X(y, W).

Hence it follows that the problem of deriving the
estimation algorithm is reduced to finding the

parameters W determined by the minimization of
the criterion formed with the use of the data of the
training set (10). The algorithms based on the
minimization of the criterion of the types (11), (12)
are widely used in pattern recognition. They are
usually called the algorithms of empirical risk
minimization (Vapnik, 1982; Haykin, 1994).

From the above it follows that the statement of the
problem under consideration is in full agreement
with the statement for the solution of problems with
the use of NN. Thus in order to find the estimate

X(y, W), it is possible to use an NN, i.e.

™) =K (y, W), (13)

where KNN(y,W) is the NN; W is the matrix that
specifies the free parameters (biases and weighting
coefficients) and y is the input of the NN. The
matrix W is determined when the NN is trained
according with the criterion (12), where
i(y,W’) =5(NNU)(y(j),VNV) is the estimate generated
by the NN by the measurements y corresponding

to the realization of x/ .

The following discussion concerns the solution of the
estimation problem with the use of the so-called
linear NN.

4. SOLUTION OF THE ESTIMATION
PROBLEM WITH THE USE OF A LINEAR
NEURAL NETWORK

Let us solve the estimation problem by using a linear
NN under the assumption that the training set (10)
has been specified. Taking into consideration the
dimensions of the vector to be estimated, the linear

NN WY (y, W) can be written as follows:
£ (y, W) =wo + Wy, (14)

W=[w, | W] is an
dimensional matrix that includes an » - dimensional

where nx(m+1) -

biases vector w, =[w, w,ol" and an nxm -

dimensional matrix of weighing coefficients
W=w, | .. | w, | w,]" , in which
w,=[w; .. w,]" are m - dimensional vectors

/=1.n. This NN has a single neuron layer. The
number of neurons is the same as the dimensions of
the estimated vector x, and their activation function
that depends on the scalar argument s represents
identical transformation (linear activation function),
ire. w(s)=s, —o<s<oo (Haykin, 1994). Using
(14), the criterion (12) can be represented in the
following form

T (W) = ii”x(” — (W, +Wy<«f))“2 . (19)
=

From the previous part it follows that the estimate
(14) determined with the use of NN trained in
accordance with the criterion (15) will tend to the
optimal estimate (5) as the number of realizations n,
increases. To do this, one should, similarly to the
way it was done in Reference (Stepanov and Amosov,
2004) calculate partial derivatives with respect to
w, and W, and put them to zero. After some not
complicated but tiresome transformations the derived
equations can be resolved with respect to w, and

W . As the result, the estimate f(NN(y,W) derived

by the measurements y with the use of NN (14)
trained in accordance with (15) can be given as:



R ~ o * x 1 %
Yy Wy =% +PL L y-F1. (16)

where X :mi; Y* :m P , P:y
values of the mathematical expectations and

corresponding covariance matrices:

Z (/) m

are the sample

Zy(j) , (17)

Mo J=1 n, Jj=1
Py = aslyl-my(my)"; (18)
Py =aj[xyl-m (my)". (19)

Z (j)(y(j))

0]1

allxy

Zy(j)(y(j))

0]1

From Expressions (16) and (5) it is follows that NN,
after some adequate training under the conditions
when the specified sample values of mathematical
expectations and covariance matrices are close to
their true values, provide the determination of the
estimate close to optimal in the linear class. Thus,
the optimal linear algorithm can be treated as a
neural network of the simplest kind trained in
accordance with (15).

5. EXAMPLES

Example 1. It is necessary to estimate the random
variable x , uniformly distributed on the interval

[0, b], from the noisy measurements of the form
y=x+v, =1i, (20)

in which the measurement errors v, , I=1.i are the
random zero-mean Gaussian variables independent
of each other and of x with the covariance 72. In
this example x=x , y=[y; .. y,-]T ,
H=[1 .. 11, v=[y .. v»]" . It should be
noted that the a posteriori p.d.f. f(x/y) is non

Gaussian here, as x is a uniformly distributed
random variable.

It is possible to find the linear optimal estimate
x*(y) and the corresponding error covariance P: by
using (5), (6), i.e.

x (Y) x+P xy yy[y vl (21)
P, =P, —P PP, (22)
b o_ 1 r
here x =— ==[b .. b];
where x > Y 2[ ]

2 2 29T
Py =0y =0"/12; P,y =oyH" ;

P,, =c2I, +r’E,;. (23)

yy

Herel; is a square matrix composed of 1; E; —

unit matrix, c =b%/12.

The optimal Bayesian (nonlinear optimal) estimate
(3) can be determined as:

b
A(y) = % (v x)dx, (24)
where
b
FW = iy ode, (25)
0

1 1 <
f(y/x) = Wexp{— ?;m - x)zj 26)

Assume that the a priori information is represented

by a set of pairs X y(j), jzm Then the

estimation problem can be solved by using NN, in
particular, using a linear single-layer NN with one
neuron, with the identity activation function
w(s)=s and i inputs. Below are the results

obtained by the simulation, corresponding to the
linear and nonlinear optimal and NN algorithms
derived for different number of measurements i .

For the simulation it was assumed that izﬁ,
k=12,.,10.

The calculation of the optimal estimate and the
normalizing factor in accordance with (24)—(26)
involved numerical integration. Training was
performed in accordance with the criterion (15),
based on the iterative Widrow-Hoff algorithm
(Haykin, 1994). To provide training, the realizations
X)) y(J) i=1n, n, =3000 were simulated in

accordance with (20). Training was followed by
testing. For this purpose n, =1000 pairs of the

realizations x'/) y(j) , J

=1.1000 were simulated
for various izﬁ, k=10.

Fig. 1 shows the sample r.m.s. estimation errors for
the nonlinear optimal ( &; ) and NN (NNN )

estimates. It should be noted that from the simulation

results it also follows that SZNN z\/P: , in other

words, the NN estimates are close to the linear
optimal estimates.

The values &, , 5™ were calculated as
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e =xW_ (J)(y(J));

eNNz('J) =x) —chNU)(y(j),VNV).
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Fig. 1. The r.m.s. estimation errors x; .

As seen from Fig. 1, the estimate of the trained NN is
close to the optimal estimate. Therefore it follows
that in this example there is no need for using a more
complicated NN.

It is of importance to note that the derivation of the
optimal estimate involved a priori information
presented in the form of the analytic dependence (20)
and the known joint probability distribution density
function f(x,y)= f(x)f(y/x). At the same time
the derivation of estimates with the use of NN only
involved a set of realizations x/, y(j) , J = E .
Example 2. This example is similar to Example 1,
but the measurement errors v, , / =1.i are assumed
to be zero-mean random variables independent of
each other and of x uniformly distributed on the
interval [-a/2,a/2].

The linear optimal estimate can be calculated by
using (21), but in (23) #2 must be determined as
¥>=a?/12 . 1t is essential that the optimal
nonlinear estimate can be determined exactly for this

example. To explain it, let us introduce the domain
Q that represents the crossing of all the intervals

[y;—al/2,y,+a/2],l=1i,1ie.

Qz[dl,dz]:ﬂ[y,—a/ly,+a/2]. 27)
I=1

It can be shown that the a posteriori density in the
example considered is uniform on the interval
[¢1,¢,1, which represents the crossing of the a priori

domain [0,b] and the
c = max{O,dl} ,Cy = min{b,dz} . Then it follows
that

domain € so that

_leatey)

x(y) 5

(28)

Assuming, just as in Example 1, that the a priori

information is represented by a set of pairs XU

y(j ) , j =1l.n, , the estimation problem can be solved
by using NN. Let us use both a linear single-layer
NN with one neuron with the identity activation
function and i inputs and a nonlinear NN2 — a two-
layer NN with i inputs, ¢ neurons in the hidden

layer and one neuron in the output layer. The NN2
output can be written as:

q i
Wy =y [Z[leyﬁﬁ [Z(WLzJ’z) + WLO]J+ leoJ ’
I=1

u=l1

where WLO, wi,l, ,u:G, I =1.i — the bias and the

weights of the hidden layer neurons; w120 , leﬂ ,

U= E — the bias and the weights of the NN2 output

e o
layer neuron; ¢(s)=ths= — the activation

e +e
function for the neurons of the hidden layer;
w(s)=s — the activation function for the output

neuron.

Below are the simulation results corresponding to the
linear and nonlinear optimal estimates and linear and
nonlinear NN estimates derived for different number
of measurements i . The simulation was performed

under the assumption that b =1, a=1, ¢=20,

i= E, k=12,.,0. The calculation of the optimal

nonlinear estimate was carried out in accordance
with (28).

Training of the linear and nonlinear NN in
accordance with (20) required simulation of the

realizations x| y(j) , jzm , n,=3000 .

Training was followed by checking, for which

n, =1000 pairs of realizations X y(j) were

additionally simulated for various i = ﬁ, k=10.

*

. ~ %
Figure 2 shows the sample r.m.s. errors: &; =P, -

for the linear optimal estimates; 6; — for the

. . . ~NN
nonlinear optimal estimates; o;

NN2

NN estimates; ©;

' _ for the linear

for the nonlinear NN
estimates.

0.22

0.18

0.14

0.1

0.06
0.04

1 2 4 6 8 i

Fig. 2. The r.m.s. estimation errors x; .



As seen from Fig. 2 the estimate of the trained linear
NN and the optimal linear estimate are identical, but
they differ very much from the optimal nonlinear
estimate. At the same time the estimate of the
nonlinear NN2 is close to the optimal nonlinear
estimate.

6. CONCLUSIONS

It is shown that after some adequate training the
suggested linear NN provides determination of the
estimate close to optimal in the linear class. From
the practical point of view the result derived may be
of advantage in the situations when, on the one hand,
it is known that the use of linear estimation
algorithms allows achievement of acceptable
accuracy, on the other hand, the a priori information
about the properties of the vectors being estimated
and measured is presented by a set of pairs vy,

x ) =1.n,. In this case the use of a linear NN

(14) trained by using this set of data allows deriving
estimates that are close in their properties to optimal
linear estimates.

Of more interest is the study of the efficiency of
using NN for the solution of the so-called essentially
nonlinear estimation problems, for which the
algorithms optimal in the linear class cannot provide
the acceptable accuracy of solution (Stepanov, 1998;
Dmitriev et.al. 1998). In this case the a posterior
p.d.f. is non-Gaussian and the problem can be solved
in a similar way, but then NN has to be chosen a
nonlinear function.

It is clear that the efficiency of the such solution will
depend largely on how good the selection of
parametrized functions was from the accuracy
viewpoint, i.e. proximity of the minimum value of

the criterion J~ for the specified class of functions
as compared to the minimum value of the criterion

J without introduction of any restrictions on the
class of functions. Besides, of no small importance
is the complexity of both the training algorithm —
finding the parameters that provide the minimum of
the criterion (12), and the algorithm for the
calculation of the estimate itself. The first
circumstance seems to be of vital importance as after
the substantiated selection of the NN topology
(structure) its training can be carried out with the
methods developed for training NN used for the
solution of other problems. It is in this direction that
further investigations in application of NN for the
solution of applied essentially nonlinear estimation
problems will be conducted.
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