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1. INTRODUCTION

In recent years the notion of passivity for analysis
and control design has been studied widely, see
e.g. (van der Schaft, 1999; Sepulchre, 1996; Or-
tega, et al, 1998). The central question of trans-
forming a non–passive system into a passive sys-
tem via state–feedback was elegantly settled in
(Byrnes, et al, 1991) where succinct, necessary
and sufficient, geometric conditions are given.

On the other hand, feedback equivalence to port
controlled Hamiltonian (PCH) models, which are
a class of passive systems, has attracted the at-
tention of many researchers lately, in particular
for stabilization objectives. A PCH system (with
dissipation) is defined as (van der Schaft, 1999):

ẋ = [J(x)−R(x)]∇H(x) + g(x)u, x ∈ IRn,(1)

y = g>(x)∇H(x), u ∈ IRm, y ∈ IRm,

1 Supported by the NNSF of China under Grants
No. 60274010, 60221301, 60334004, 60228003.

where H : IRn → IR is the total stored energy,
J(x) = −J>(x) is known as the interconnection
matrix, R(x) = R>(x) ≥ 0 represents the dissipa-
tion and ∇ = ∂

∂x . The vector signals u and y are
the conjugated port variables and their product
u>y has units of power. It is easy to see that,
if the total energy function is non-negative, then
PCH systems are passive.

2. PROBLEM FORMULATION

Given an affine system

Σf,G : ẋ = f(x) + G(x)u, x ∈ IRn, u ∈ IRm,
(2)

and the matrix J(x)−R(x), when does there exists
a state feedback β : IRn → IRm and an energy
function H : IRn → IR such that

f(x) + G(x)β(x) = [J(x)−R(x)]∇H(x). (3)

In this case, we say that the system Σf,G is
feedback equivalent to a PCH system (with given
interconnection and damping matrices.)



Transforming a system to be controlled into a
PCH system is the central idea of the Intercon-
nection and Damping Assignment Passivity-based
Control method firstly introduced in (Ortega,
2002). A summary of some recent developments
may be found in (Ortega, 2002).

Remark 2.1 As will become clear in the sequel
the particular structure of the matrix J(x)−R(x)
does not play any role in the characterization of
the class of feedback equivalent systems, therefore
we will address the slightly more general problem
of feedback equivalence to a pseudo–gradient sys-
tem. That is, instead of the PCH model (1) we
will consider pseudo–gradient systems

ΣF : ẋ = F (x)∇H(x)

where F (x) is a fixed, but otherwise arbitrary, n×
n matrix. This yields, instead of (3), the matching
equation

f(x) + G(x)β(x) = F (x)∇H(x), (4)

If (4) holds, we will say that the system Σf,G is
feedback equivalent to ΣF .

Before giving our solution to this problem a word
on notation is in order.

– All vectors, including the gradient, are col-
umn vectors.

– For all vectors and matrices which are func-
tions of x we will write explicitly this depen-
dence only the first time they are defined.

– Throughout the paper we will assume that
all functions are sufficiently smooth.

– Finally, no particular attention is given to the
characterization of the domain of validity of
our statements, to which the local qualifier
should be attached. The global equivalence
is discussed in Section 5. Where you can see
that global rank condition is not enough to
assure a global equivalence.

3. TWO EQUIVALENT CONDITIONS FOR
FEEDBACK EQUIVALENCE

If the matrix F is full rank, Poincare’s Lemma give
us directly a necessary and sufficient condition
for feedback equivalence. Indeed, the vector field
F−1(f +Gβ) is a gradient vector field, that is, (4)
is satisfied for some scalar function H, if and only
if

∇[F−1(f + Gβ)] =
(∇[F−1(f + Gβ)]

)>
. (5)

The latter condition—for fixed F, f and G—
translates into n

2 (n−1) PDE’s in terms of β. This
was the method proposed in (Ortega et al, 2002).
One of the objectives of this note is to show that
we can significantly reduce the number of PDE’s
to be solved, therefore simplifying the associated
computational problem. Actually, we will identify

the minimal number of PDE’s that needs to be
solved to achieve the feedback equivalence.

Before presenting our characterization we recall a
basic linear algebra lemma.

Lemma 3.1 Consider two linear subspaces S1,S2 ⊂
IRn. If, dimS1 = dimS2 and S1 ⊂ S2 (or S2 ⊂
S1), then S1 = S2.

We need the following standard assumption.

Assumption A.1 For all points p ∈ IRn there ex-
ists an open and simply connected neighborhood
Np such that for all x ∈ Np we have rankG(x) =
m. Without loss of generality, we partition 2

G(x) =
[
G1(x)
G2(x)

]
, G2(x) ∈ IRm×m, (6)

where rankG2(x) = m for all x ∈ Np.

Remark 3.2 Note that under assumption A.1,
the feedback control for PCH equivalence can be
uniquely determined from (4) as

u(x) = [G>(x)G(x)]−1G>(x) [F (x)∇H(x)− f(x)] .
(7)

This control will be used through the paper.

Proposition 3.3 Under Assumption A.1, the
following statements are equivalent

(1) Σf,G is feedback equivalent to ΣF .
(2) The n PDE’s

[In −ΠG(x)][F (x)∇H(x)− f(x)] = 0 (8)

admit a solution, where

ΠG(x) = G(x)[G>(x)G(x)]−1G>(x).

(3) The n−m PDE’s

[F1(x)−G1(x)G−1
2 (x)F2(x)]∇H(x)

= f1(x)−G1(x)G−1
2 (x)f2(x)

(9)

admit a solution, where

F (x) =
[
F1(x)
F2(x)

]
, F1(x) ∈ IR(n−m)×n;

f(x) =
[
f1(x)
f2(x)

]
, f1(x) ∈ IRn−m.

Proof. [i) ⇒ iii)] Define the (n−m)× n matrix 3

ξ(x) =
[
In−m −G1(x)G−1

2 (x)
]
. (10)

We have the following chain of implications

i)⇔ f + Gβ = F∇H

⇒ ξ(f + Gβ) = ξF∇H

⇔ ξ(F∇H − f) = 0 (11)

⇔ iii)

2 This partition can always be locally achieved simply

swapping and relabelling the state equations.
3 Clearly, ξ is a left annihilator of G, that is ξG = 0.



[iii) ⇒ i)] This will be established by contradic-
tion. Assume iii) does not hold. From (9), or (11),
we see that this is equivalent to saying that

F∇H − f 3 Ker ξ, (12)

We will prove now that Ker ξ = Im G. First,
note that both spaces have the same dimension,
m. Consider then the chain of implications:

a ∈ Im G⇔∃b ∈ IRn : a = Gb

⇒ ξa = ξGb = 0

⇒ a ∈ Ker ξ

⇒ Im G ⊂ Ker ξ

Finally, we can invoke Lemma 3.1 to conclude that
Ker ξ = Im G.

From the proof above we have that (12) is equiv-
alent to

F∇H − f 3 Im G,

but the latter contradicts i), that states the exis-
tence of β such that F∇H − f = Gβ.

[iii) ⇔ ii)] To prove this equivalence we will
establish that

Ker ξ = Ker (In −ΠG),

which, together with (8) and (11), shows that the
set of solutions of both PDE’s are the same—
completing the proof. Towards this end, define two
n× n matrices

C(x) =
[
ξ>(x)[ξ(x)ξ>(x)]−1 G(x)

]
,

D(x) =
[

ξ(x)
(G>(x)G(x))−1G>(x)

]
.

Now, using ξG = 0 we have that DC = In,
and consequently D = C−1. This also implies
that CD = In, which doing the computations is
equivalent to

Πξ>(x) = In −ΠG(x). (13)

where we have defined the projector matrix

Πξ>(x) = ξ>(x)[ξ(x)ξ>(x)]−1ξ(x).

We will prove now, by contradiction, that

rankΠξ> = n − m. Assume rankΠξ> < n − m.
We have the following set of equations, that lead
to a contradiction,

n−m = rankξ>

= rankΠξ>ξ>

≤min{rankΠξ> , rankξ>}
< n−m,

where we used Πξ>ξ> = ξ> for the second
identity, and to obtain the third line we invoked

the fact that, for any pair of conformal matrices
A,B,

rankAB ≤ min{rankA, rankB}.
Therefore, rankΠξ> = n − m and consequently
dimKer Πξ> = m.

To conclude the proof we recall that dim Ker ξ =
m, and given that Ker ξ ⊂ Ker Πξ> , we have that

Ker ξ = Ker Πξ>

= Ker [In −ΠG]

where we have invoked Lemma 3.1 for the first
identity and (13) for the second. 2

Remark 3.4 The proposition establishes the in-
teresting fact that the set of solutions of the
n PDE’s (8) exactly coincides with the set of
solutions of the n − m PDE’s (9)—equivalently,
(11). (The lack of such a formal statement was a
source of some confusion on the literature, see e.g.,
(Ortega, 2002).) The proposition also gives alter-
native parameterizations of the matching equa-
tion (4) that complements the original proposal
of (Ortega, 2002) to solve the n

2 (n−1) PDE’s (5).

Remark 3.5 Although the left annihilator ma-
trix of G is not uniquely defined the proposition
remains unaffected if we choose a matrix different
from (10). 4 Indeed, let us take any left annihila-
tor, say ξ̄(x), of G, and partition it as

ξ̄(x) =
[
ξ̄1(x) ξ̄2(x)

]
, ξ̄1(x) ∈ IR(n−m)×(n−m).

The left annihilator condition ξ̄G = 0 imposes
the relationship ξ̄2 = −ξ̄1G1G

−1
2 that leads to the

factorization

ξ̄ = ξ̄1

[
In−m −G1G

−1
2

]
.

For all full–rank matrices ξ̄1, ξ̄ has the same kernel
as ξ, whence the proposition remains unaltered by
the use of this “new” left annihilator.

Remark 3.6 The necessity of (8) for feedback
equivalence can be easily established as follows.
(4) implies that

G>Gβ = G>(F∇H − f),

which together with invertibility of 5 G>G de-
fines, uniquely, the control β. Equation (8) is then
obtained plugging the expression of β in (4).

Remark 3.7 It is easy to prove that Im ξ> is the
orthogonal complement of Im G, that is

Im G⊕ Im ξ> = IRn,

4 Of course, as a space, the orthogonal complement of

Im G is uniquely defined. See Remark 11.
5 This follows from the fact that G>G is the Gram matrix
of a set of linearly independent vectors.



with ⊕ denoting direct sum. This stems from the
fact that Πξ> is an orthogonal projector (over the
rows of ξ), whence

Im Πξ> ⊕Ker Πξ> = IRn,

Im Πξ> = Im ξ>,

Ker Πξ> = Ker ξ

and that, as shown in the proof above, Ker ξ =
Im G.

4. REDUCING THE NUMBER OF PDE’S

This section provides the minimum number of lin-
ear PDE’s to be solved for feedback equivalence.
Rewrite (9) in the form

W (x)∇H(x) = s(x) (14)

where we have defined

W (x) = F1(x)−G1(x)G−1
2 (x)F2(x),

s(x) = f1(x)−G1(x)G−1
2 (x)f2(x).

Assumption A.2 For all points p ∈ IRn there ex-
ists an open and simply connected neighborhood
Np such that, for all x ∈ Np, rankW (x) = ` and
assume

A.2.1 ` < n−m, A.2.2 s ∈ Im W

Clearly, if ` = n−m we are in the situation of iii)
of Proposition 1. Hence, to reduce the number of
PDE’s we need Assumption A.2.1. Furthermore,
if the latter holds, Assumption A.2.2 is necessary
for solvability of (14).

It is well known that there exists an n × n
nonsingular matrix Q(x) that extracts the full–
rank part of W . That is, such that

W (x)Q(x) =
[
W0(x) 0(n−m)×(n−`)

]
, (15)

where W0 ∈ IR(n−m)×` verifies rankW0 = `. Let
us partition

Q−1(x) =
[
M(x)
N(x)

]
, M(x) ∈ IR`×n. (16)

Proposion 4.1 Under Assumptions A.1 and A.2,
the following statements are equivalent

(1) Σf,G is feedback equivalent to ΣF .
(2) The ` PDE’s

M(x)∇H(x) = [W>
0 (x)W0(x)]−1W>

0 (x)s(x)
(17)

admit a solution.

Furthermore, the equation (17) is independent of
the choice of the matrix Q in the construction of
(15).

Proof. First, notice that since Im W = Im W0 we
have that Assumption A.2.2 can be equivalently

stated as s ∈ Im W0. Now, this condition implies
that

ΠW0(x)s(x) = s(x) (18)

where

ΠW0(x) = W0(x)[W>
0 (x)W0(x)]−1W>

0 (x)

is an orthogonal projector (over the columns of
W0.)

We have established in Proposition 1 that Σf,G

is feedback equivalent to ΣF if and only if (9),
or equivalently (14), hold. We then have the
following set of equivalences

W∇H = s⇔WQQ−1∇H = s

⇔ [
W0 0(n−m)×(n−`)

] [
M
N

]
∇H = s

⇔W0M∇H = ΠW0s

⇔ (17),

where we have used (15) and (16) to get the second
equivalence, (18) in the third, and the full rank
condition of W0 for the latter. This establishes
the equivalence between i) and ii).

Assume now that the extraction of the full–rank
part of W is done with another matrix Q̄(x), that
is, instead of (15) we have

W (x)Q̄(x) =
[
W̄0(x) 0(n−m)×(n−`)

]
, (19)

where W̄0 ∈ IR(n−m)×` verifies rankW̄0 = `. We
note that Im W0 = Im W̄0, therefore we can also
construct a projector ΠW̄0

that leaves s invariant
as in (18). It can actually be shown that the two
projectors are the same, that is ΠW0 = ΠW̄0

.
Mimicking the steps of the proof with the new
matrix Q̄ we obtain in the one before the last step

W̄0M̄∇H = ΠW0s,

where we have partitioned

Q̄−1 =
[
M̄
N̄

]
, M̄ ∈ IR`×n.

Now, from (19) and (15) one obtains
[
W̄0 0(n−m)×(n−`)

]
Q̄−1 =

[
W0 0(n−m)×(n−`)

]
Q−1

which proves that W̄0M̄ = W0M , completing the
proof. 2

Remark 4.2 Although the construction of the
matrix Q is standard, for the sake of completeness,
we outline here the procedure. Referring to (16),
select the ` × n matrix M such that its ` rows
span Im W , this can be done choosing elements
proportional to the euclidian orthonormal basis of
IR`. Then, select and (n − `) × n matrix N , also
from the orthonormal basis, to complete the rank.
It is easy to see that this construction yields the
desired decomposition (15).



5. GLOBAL EQUIVALENCE

This section considers global equivalence to PCH.
We assume the following, which is a global version
of A.1:

Assumption A.3 There exists an n × (n − m)
matrix Ψ(x) such that

B(x) :=
[
G(x) Ψ(x)

]
, x ∈ IRn

is nonsingular.

Next, we define

E(x) :=

[
In −

∏

G

(x)G(x)

]

=
[
I −G(x)(G(x)>G(x))−1G(x)>

]
.

We first claim that E(x) has constant rank.

Lemma 5.1 Assume A1 holds. Then

rank(E(x)) = n−m. (20)

Proof. From A1 one sees that g1(x), · · · , gm(x) are
linearly independent. It is easy to see that

E(x)
(
g1(x) · · · gm(x)

)
= 0.

So rank(E(x)) ≤ n−m.

Denote by G(x) = Span{g1(x), · · · , gm(x)}. Then
for any vector field Z(x) ∈ G⊥(x)

E(x)Z(x) = Z(x), ∀Z(x) ∈ G⊥(x).

That is, Span col{E(x)} ⊃ G⊥(x) Hence

rank(E(x)) ≥ n−m. Therefore, (20) follows. 2

Lemma 5.2 Assume A3 holds. Then there exists
an orthogonal matrix P (x), x ∈ IRn, such that

P (x)−1E(x)P (x) =
[
In−m 0

0 0

]
, x ∈ IRn. (21)

Proof. Using A3, we denote

B−1(x) =




∗
ξT
1 (x)
...

ξT
n−m(x)


 , x ∈ IRn,

where ∗ is the first m less important rows. Now it
is clear that

G⊥(x) = Span{ξ1(x), · · · , ξn−m(x)}, x ∈ IRn.

Moreover, from the proof of Lemma 5.1, we have

E(x)ξi(x) = ξi(x), i = 1, · · · , n−m, x ∈ IRn;
(22)

and

E(x)gi(x) = 0, i = 1, · · · ,m, x ∈ IRn. (23)

Normalizing {ξ1(x), · · · , ξn−m(x)} by Gram-Schmidt
orthogonalization algorithm as

ξ̄1(x) = ξ1(x)/‖ξ1(x)‖;





ξ̃k(x) = ξk(x)− 〈
ξk(x), ξ̄1(x)

〉
ξ̄1(x)− · · ·

− 〈
ξk(x), ξ̄k−1(x)

〉
ξ̄k−1(x),

ξ̄k(x) = ξ̃k(x)/‖ξ̃k(x)‖, k = 2, · · · , n−m.

Similarly, g1(x), · · · , gm(x) can be normalized as
ḡ1(x), · · · , ḡm(x).

Define

P (x) =
(
ξ̄1(x), · · · , ξ̄n−m(x) ḡ1(x) · · · ḡm(x)

)
,

x ∈ IRn.

Then it is ready to check that P (x) is an orthog-
onal matrix and (21) holds. 2

Now left multiplying (8) by P−1(x) yields
[
In−m 0

0 0

]
P−1(x)

[
F (x)

∂H

∂x
− f(x)

]
= 0. (24)

Denote

P−1(x)F (x) :=
(

W11(x) W12(x)
W21(x) W22(x)

)
, (25)

where W11(x) is an (n − m) × (n − m) matrix,
the other blocks have corresponding dimensions.
Similarly, decompose

P−1(x)f(x) :=
(

s(x)
sc(x)

)
, (26)

s(x) is the first n−m components.

Now we need the global version of assumption A2
as

Assumption A.4 Let

W :=
[
W11(x) W12(x)

]
.

Then rankW (x) = `, x ∈ IRn and assume

A.4.1 ` < n−m, A.4.2 s(x) ∈ Im W ;

A.4.3 there exists a nonsingular matrix Q(x),
such that

(
W (x)

)
Q(x) =

(
W0(x) 0

)
, x ∈ IRn, (27)

where W0(x) is an (n−m)× ` matrix of rank `.

Then Proposition 4.1 becomes a global result:

Corollary 5.3 Assume A3 and A4. Then Propo-
sition 4.1 is globally true on IRn

6. AN ILLUSTRATIVE EXAMPLE

Consider global equivalence to PCH of the follow-
ing system

ẋ =




cos x2(cos x2 − sinx2) + 1
sinx2(cos x2 − sinx2)
− cos x2 − sin2 x2


φ(x)

+




cos x2

sinx2

cos x2 − sinx2


u,

(28)



where x ∈ IR3 and φ(x) = x3
3 − x1. For notational

compactness, we denote

S = sin x2, C = cos x2, µ =
√

2− 2SC.

Choosing

Ψ(x) =




1 S
−1 −C
−1 0


 ,

it is easy to check that B(x) = [g(x) Ψ(x)] is
nonsingular and

B−1(x) =
1
µ2




C S −S + C
C(C − S) S(C − S) −1
2S − C S − 2C C + S


 .

Hence

ξ1 =
1
µ2




C(C − S)
S(C − S)

−1


 , ξ2 =

1
µ2




2S − C
S − 2C
C + S




Normalizing them, we have

ξ̄1 =
1
µ




C(C − S)
S(C − S)

−1


 , ξ̄2 =




S
−C
0


 .

Then

P =
[
ḡ ξ̄1 ξ̄2

]
=




C(C − S)
µ

S −C

µ
S(C − S)

µ
−C

S

µ

− 1
µ

0
C − S

µ




,

and P−1 = PT .

Now assume the structure required is

J =




0 (−SC − S2)/2 S2 − 0.5
(SC + S2)/2 0 −S2 − SC

0.5− S2 S2 + SC 0


 ,

(29)

R =




C2 + S2 − CS S(C − S)/2 −S2 − 0.5
S(C − S)/2 S2 (3SC − S2)/2
−S2 − 0.5 (3SC − S2)/2 2 + 2(C − S)2


 .

(30)

Then

P−1F (x) = P−1(J−R) =



−µ 0 2µ
−S 0 2S
0 −Sµ 2(S − C)µ


 .

It follows that

W =
[−µ 0 2µ
−S 0 2S

]
.

` = rank(W ) = 1.

It is easy to calculate that

P−1f(x) =




µ
S

2C − 2C2S


φ(x)

So

s(x) =
(

µ
S

)
φ(x) ∈ Span{W}.

Now all the conditions of A3 and A4 are satisfied.
So the only thing we have to check is the solvabil-
ity of (17). Now

Q(x) = Q =




1 0 2
0 1 0
0 0 1


 , W0 =

[−µ
−S

]

Q−1 =




1 0 −2
0 1 0
0 0 1


 , M(x) = M =

[
1 0 −2

]
.

Equation (17) can be easily obtained as

∂H

∂x1
− 2

∂H

∂x3
= x1 − x3

3. (31)

An obvious solution is:

H(x) =
1
2
x2

1 + x2
2 +

1
8
x4

3. (32)

So system (28) has a feedback Hamiltonian equiv-
alent form with Structure matrices J , R and
Hamiltonian function H as in (29), (30) and (32)
respectively.

7. CONCLUSION

The problem of feedback equivalence—via state–
feedback control—of affine systems to PCH sys-
tems is investigated. Necessary and sufficient con-
ditions, expressed in terms of solvability of sets of
linear PDE’s, are given. The minimum number
of linear PDE’s necessary for the solvability is
presented.
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