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Abstract: Particle Swarm Optimizer, PSO, exhibits good performance for optimization 
problem, although, PSO can not guarantee convergence of a global minimum, even a 
local minimum. However, there are some adjustable parameters and restrictive conditions 
which can affect performance of the algorithm. In this paper, a new adaptive PSO 
algorithm—Balloon PSO (BPSO) is proposed. The sufficient conditions for asymptotic 
stability of acceleration factor and inertia weight are deduced. Furthermore it is proved 
that BPSO is a global research algorithm. Simulation results of power spectral density 
(PSD) of vehicle vibratory signal estimation show the good performance of BPSO.  
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1. INTRODUCTION 

 
Particle Swarm Optimization (PSO) algorithm is a 
population based parallel optimization technique 
(Kennedy and Eberhart, 1995), which exhibits good 
performance for optimization problems. There are 
some adjustable parameters, such as inertia weight, 
acceleration factor, scaled factor, and so on, which 
greatly influence the convergence performance and 
stability of the algorithm. Some papers (Clerc and 
Kennedy, 2002, Bergh, 2002, Jie Chen, et al., 2003) 
about the stability analysis have been published with 
many improved methods proposed. 
 
At time k+1, the update equations of the ith particle 
in the dth dimension search space of standard PSO 
algorithm are defined as following:  
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Satisfying 
max|| Vvid ≤ . As an upper  bound  of  

velocity vector in every epoch, 
maxV  can be presented 

as the Lipschitz condition of particles dynamic 
systems. 
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Where w is the inertia weight, k
idx is the current 

position of the particle; k
idv is the velocity vector, k

idp  
is the personal best position of the particle; k

gdp is 
the swarm best position among all particles; 

1c , 2c are acceleration factors, respetively; 
idrand and 

gdrand  are random number in the range [0,1]. In the 
search space, particles “fly” to the target guided by 
the swarm information k

gdp and its own information 
k
idp . 

 
In this paper, standard PSO algorithm is analyzed as 
a discrete dynamic system. Sufficient conditions for 
asymptotic stability are deduced. On the basis of the 
analysis, a new adaptive PSO algorithm——Balloon 
PSO (BPSO) is proposed and proved to be a global 
research algorithm. 
 



     

2. STABILITY ANALYSIS OF PSO 
 
Adjustable parameters of PSO are always tuned 
empirically. The state equations of particles are 
simplified and analyzed as a constant coefficient 
dynamic system (Clerc and Kennedy, 2002). In this 
section, the sufficient asymptotic stability conditions 
without Lipschitz condition constrains for 
acceleration factor ϕ  and inertia weight w are 
deduced. First, a Lemma is introduced (Yang Xiao, 
2002). 
 
Lemma 1: Given time varying discrete dynamic 
system as below: 

)()()1( nxnAnx =+  

Sufficient condition for asymptotic stability of the 
discrete-time system is that: there exists M>2 and 
k M≥ satisfying: 
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Where 
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− = −∏  is the transfer matrix, 

ρ  is the spectral radius and 
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Based on the Lemma 1, theorem 1 can be deduced. 

 

Theorem 1:  The sufficient condition for 
asymptotic stability of PSO algorithm is that: the 
acceleration factor 1kϕ +  and inertia weight w  
satisfying the following conditions: 

 
( 1,1)wη ⋅ ∈ −    (4) 

min

1 1 1
max{ | ( , )}k k kU Uη ϕ ϕ ϕ+ + +⋅ ∈ ⊂    

1
min

(1 )
1

k
k

k

w
w

ηϕ ηϕ
η ηϕ

+ − +
=

+ −
 

2
1

max
2(1 ( ) ) (1 )

1

k
k

k

w w
w

η ηϕ ηϕ
η ηϕ

+ + − +
=

+ −
          (5) 

 
Proof:  The standard PSO algorithm can be 
expressed as  
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Where acceleration factor 1 1 1

1 2
k k kϕ ϕ ϕ+ + += + ，

1k
i i ic randϕ + = × ， and input vector is 

1 1 1
1 2( ) /k k k k k

id gdp p pϕ ϕ ϕ+ + += ⋅ + ⋅ . The transfer matrix of 
Eq.(6) is:  
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From Lemma 1, if the condition 

1max))2,(( <=− ikkT λρ  is satisfied, the system 
described by Eq(6) is asymptotic stable.  
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Where (1 )k kL wη η ϕ= + ⋅ − ⋅ . The characteristic 
equation of Eq.(7) is described as: 
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Based on Jury criterion, the sufficient condition of 
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By calculation, ( 1/ ,1/ )w η η∈ − satisfying Eq.(9), 
moreover:  
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At time k+1, the acceleration factor 1kη ϕ +⋅  and 
inertia weight w  should meet the Eq.(4), Eq.(5) to 
ensure asymptotic stability. If the range of 1kη ϕ +⋅  
satisfys 1 1 1

min max{ | [ , ]}k k kUη ϕ ϕ ϕ+ + +⋅ ∈ , particle systems 
are asymptotic stable; Otherwise, swarm system will 
disperse. 
 

3. BALLOON PSO AND ITS GLOBAL 

CONVERGENCE PROOF 

3.1  A kind of adaptive PSO —— Balloon Particle 

Swarm Optimizer, BPSO 

 
Same as GA and other evolutionary computing 
techniques, PSO is facing a dilemma between rapid 
searching and premature convergence. According to 
the analysis result of theorem 1, a kind of adaptive 
PSO (BPSO) is proposed in this paper. At every 
epoch, according to the current value of acceleration 
factor kη ϕ⋅ , 1kη ϕ +⋅  can be adjusted dynamically, so 
as to control the convergence or disperse of the 
swarm. The swarm, which is looked as a balloon 
expands and shrinks continuously, can search the 
resolution space repeatedly. 
 

The logical flow of BPSO is: 
(1). Create and initialize a PSO swarm. 
(2). Evaluate each particle in the swarm 
(3). If the available time has expired, or reach the 
termination, return the best solution, if not, go to (4) 
(4). If the consecutive failure times exceed CFmax or  
DVswarm<DVmin, update particles based on Eq.(4), 
Eq.(5), to expand the swarm, else if DVswarm>DVmax, 
shrink the swarm 
(5) Update particles by Eq.(4), Eq. (5), to shrink the 
swarm. Go to (2) 



     

 
In the above flow, the term CFmax is the upper bound 
of consecutive failure times, where failure means the 
current fitness is worse than swarm best fitness 
before. DVswarm=∑Deviation(Swarm) is defined as 
the sum of swarm variance, and DVmax denotes the 
variance of searching space.  
 

3.2  Global convergence proof of BPSO 
 
Solis and Wets (Solis and Wets, 1981) provide some 
conditions and results for global convergence of 
random search algorithms as follows. 
 
(H1) ( ( , )) ( )f D x f xξ ≤ and if nSξ ∈ , 

( ( , )) ( )f D x fξ ξ≤ . 

Where kξ is generated from sample space 

( , , )n
kR B µ ; 1 ( , )k k kx D x ξ+ = , : n n nD S R S× → ; 

nS is a subset of nR ; B is the σ -algebra of subset 
of nR ; kµ is the probability measure. 
 
(H2) For any (Borel) subset A of nS with ( ) 0Aυ > , 

there exists
0
[1 ( )] 0k

k
Aµ

∞

=

− =∏ , where υ  is a 

nonnegative measure defined on B , generally is 
Lebesgure measure. 
 
Lemma 2 (Global Search): Suppose that f is a 
measurable function, nS is a measurable subset of 

nR ,  (H1) and (H2) are satisfied. Let 0{ }k
kx ∞

=  be a 
sequence generated by the algorithm. Then   
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where ,[ ]k

MP x Rε∈  is the probability that at step k , 
the point xk generated by the algorithm in the 
optimality region.               
 
It has been proved that PSO doesn’t satisfy (H2) and 
Lemma 2 (Bergh, 2002). In this paper, convergence 
properties of BPSO is studied. Without Lipschitz 
constrain condition, Eq.(1), and Eq.(2) of standard 
PSO can be represented as Eq.(10) and Eq.(11) 

1 1 1( )k k k k
id id idv w v p xϕ+ + += ⋅ + ⋅ −  (10) 

1 1k k k
id id idx x vη+ += + ⋅        (11) 

where p is a hypercube whose vertex is k
gdp  and k

idp . 
 

From the above, we have theorem 2. 
 
Theorem 2:  BPSO is a global search algorithm. 
 
Proof:  D function of BPSO is defined below 
(Bergh, 2002):  

( ) ( )
( , )
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  (12) 

It is clear that Eq.(12) satisfys (H1). At time k , the 
support k

iM  of the i th particle is defined as： 

1 1 ( )k k k k k
i id id idM x w v p xη η ϕ+ += + ⋅ ⋅ + ⋅ ⋅ −  

where 1k
iM + is a hyper sphere whose center is k

idx and 

radius is 1 ( )k k k k
i id idw v p xρ η η ϕ+ = ⋅ ⋅ + ⋅ ⋅ − . To BPSO, 

Searching is a process of “Shrink-Expand-Shrink” 
course. Moreover, according to Lemma 1, there is no 
restriction of the 1kϕ + value, especially, if the swarm 

is a expand status. So the range of 1k
iρ + has no 

limitation in theory. If only the following condition is 
met: 
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Then 
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and lower bound of searching space nS separately. If 
1kη ϕ +⋅  meets Eq.(13), then n k
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According to Lemma 2, BPSO is a global search 
algorithm.              
 

4. EXPERIMENT RESULTS 
 

Vehicle running on various kinds of road at different 
speeds, there are some vibratory disturbance in the 
vehicle, caused by the road surface roughness. 
Modelling the vehicle vibratory response is important 
to the future work for researching the characteristic 
of road irregularity motivation. 
 
The time series data { ( )}ix n analyzed in this section 
is collected from a servo platform and the sampling 
time is 66ms, The PSD ( )xP ω of the disturbance data 
vector is estimated by the Yule-Walker AR method, 
which assumes the data is output of a linear system 
driven by white noise, whose variance is 2

ωσ . The 
method estimates the PSD by first choosing the AR 
order, which is determined via single value 
decomposition in this paper and is 12; secondly 
estimating the parameters of the linear system that 
hypothetically generates the signal; finally the PSD 
can be computed as follows (Zhang,X.-D, 1995): 
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x j
P

A e
ω

ω
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The Yule-Walker equations can be presented as 
below: 
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( ) { ( ) ( )}xR E x n x nτ τ= + is the autocorrelation 
coefficients. It is a hard work to calculate the inverse 
matrix to obtain the parameters ka and 2

ωσ . The 
Levinson-Durbin algorithm is in general use and can 
work efficiently. Here, standard PSO, SAPSO (Feng 
Pan, 2005), GA and BPSO are used to solve the 
Yule-Walker equations. The parameter values is 
given in Tables 1 
 

Table 1. Parameters Setting 
 

Variable     Value 
 

Swarm Size  20  
Inertia Weight  0.79 
Acceleration Factors 1.4  
Scaled factor  1 
Initial Value  [-1 1]  
Error Goal  10-3 

maxDV    1 

minDV    10-4 
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Fig1  PSD curve comparison  
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Fig2  Comparison of Error Curve 

 
The PSD curves are plotted in Fig1 (plotting the PSD 
in units of power per units of frequency). The circle 
corresponding to the BPSO almost completely 
coincides with the solid line solved by Levinson-
Durbin method, and is much more accurate than the 
curves of other three methods. The error curve in 
comparison of the algorithms is shown in Fig2.It is 
obviously that the convergence speeds of PSO and 
SAPSO are faster and the searching ability is better 
than that of BPSO at the beginning of optimization. 

The reason is that BPSO will repeat the “expand-
shrink” process, but not shrink only. The searching 
ability of standard PSO will decrease if there is no 
new information introduced, however, BPSO can 
guarantee a harmonious relation of swarm diversity. 
The swarm of BPSO expands until overlap the whole 
searching space, after that, the swarm shrink to a 
lower limit. This process will repeat till meet the 
terminate condition. The modified update rules of 
BPSO promote the swarm searching ability.  

 
5、DISCCUSION 

 
The parameters and update rules of standard PSO 
have made it easy to fall into stagnate, unless the 
swarm can provide new information incessantly. In 
this paper, the stability conditions of PSO parameters 
are explored and BPSO is proposed which can 
adaptively adjust parameters and is proved its global 
convergence. Experiment demonstrates the validity 
of BPSO.  
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