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Abstract: The main goal of the paper is to show that nonlinear model based predictive 
control is an effective alternative method for controlling uncertain nonlinear 
underactuated systems satisfying real time expectations where uncertainty is caused by 
friction and disturbance. The paper presents control algorithms for a two degree of 
freedom robot and for two underactuated systems, the small size model of a planar crane 
and a weeled mobile robot, which are based on nonlinear model predictive control. The 
continuous time dynamic model has been discretized and the finite dimensional 
optimization problem is solved by conjugate gradient technique in every horizon. 
Extended Kalman filter is used for state and disturbance estimation. For the crane the 
initial approximation of the control sequence within the actual horizon is determined by 
using the flatness properties. For development purposes a multiprocessor system has been 
elaborated where the control algorithm is running under QNX real-time operating system. 
The paper also presents experimental results that demonstrate the applicability of the 
proposed algorithms under real time conditions. Copyright © 2005 IFAC 
�
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1. INTRODUCTION1 

 
Model predictive control is a popular method 
especially in the process industry where relatively 
slow process models allow online optimization. 
Linear predictive control is well elaborated both in 
frequency (operator) domain (Camacho, E. F. and C. 
Bordons, 2000; Lantos, 2003) and state space 
(Rossiter et al., 1998; Lantos, 2003). Depending on 
the type of constraints optimal prediction leads to 
Quadratic (QP) or Nonlinear Programming (NP) 
wich are well supported by existing softwares (e.g. 
Optimization Toolbox in MATLAB). 
 

                                                 
1 Support for  the research was provided by the Hungarian 
National Research Programs under grant No. OTKA T042634, 
NKFP 2/016/2001 and NKTH RET 04/2004 and by the Control 
System Research Group of the Hungarian Academy of Sciences. 

For nonlinear systems recent methods are usually 
based on new optimum seeking methods suited for 
the predictive control problem or traditional 
analytical optimum conditions and gradient based 
optimization techniques (Allgöver and Zheng, 2000; 
Kim and Shin, 2003). Basis for the later ones is a 
general form of the Lagrange multiplicator rule 
which is also valid in Banach spaces (Lantos, 2003). 
Typical finite horizon nonlinear predictive control 
problems in discrete time lead to optimization in 
finite dimensional space where the variables are 
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the constraints are the state equation 
  ,0),( 1 =− +iii xuxϕ  (2) 

control set Mui ∈  and initial condition 00 =− xa . 
 

If ),( ∗∗ ux  is the optimal solution then  

 uuxJxuxJuxf ux ),(),(),( ∗∗∗∗ ′+′=   

is the derivative of 
>−<+>−<+= 1001000 ),(,,),(),( xuxxauxFuxJ ϕλλ

 .),(, 11 >−<++ −− NNNN xuxϕλ�   

By introducing the Hamiltonian functions as 
 ),,(),(,1 iiiiiii uxLuxH +>=< + ϕλ   

the necessary condition of the optimality results in 
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For the control design within the actual horizon first 

the initial condition 0x  and the approximation of u  

are needed (the latter may be the solution in the 
previous horizon shifted to the left). 
 
The optimization repeats the following steps: 

1. Solution of the state equations in N
iixx 0}{ == . 

2. Computation of the Lagrange multiplicators iλ . 

3. Computation of the derivatives ii uH ∂∂ / .  

4. Numerical optimization based on gradient type 
methods (gradient, conjugate gradient, 
Davidon-Fletcher-Powell etc.) to find 

1
0}{ −

== N
iiuu . 

 
Non-predictive design method should be used to 
find the initial approximation for the first horizon. If 
the original sytem is a continuous time one then first 
it can be approximated by a discrete time one, e.g.  
 

),(:),(),( 1 iiiiciic uxuxTfxxuxfx ϕ=+=⇒= +�  (4) 
 

where T  is the sampling time. If the full state can 

not be measured then 0x  can be approximated by 

using extended Kalman filter.  
 

If Cxy =  is the system output and yyy d −=~  is the 

error then the cost function can be modified as 

,~,~~
)(2

,,,~,~~
),(2

,~

>=<

><+><+>=<

−=

NNNN

iiiiiiiiiiii

d

yyQx

uuRxxSyyQuxL

Cxyy

Φ

  

and the derivatives can be computed by 
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Input constraints are enforced by projecting iu  into 

the constraints set. State constraints can be taken into 
consideration as an additional penalty added to 

),( ii uxL  in the cost function. It is known that the 

weighting in the term )( NxΦ  has great influence on 

the stability and dynamic behaviour of the sytem 
under predictive control (Allgöver and Zheng, 2000). 
To improve the stability properties the techniques of 
Frozen Riccati Equation (FRE) and Control 
Lyapunov Function (CLF) can be suggested (Yu et 
al., 2001). Unfortunately their real time realization is 
time consuming. In the paper experimentally chosen 
weighting terms have been applied.  
 
The control design strategy can be summarized in the 
following steps:  
1. Development of the nonlinear dynamic model 

of the system.  
2. Optimal (suboptimal, flatness-based etc.) open 

loop control signal design used for initial 
approximation of the control sequence in the 
horizon.  

3. Identification of the nonlinear friction model.  
4. Elaboration of the disturbance model reduced 

on the system input.  
5. Development of the model based nonlinear 

predictive controller and its use in closed loop 
control. The first element of the control 
sequence in the actual horizon is completed by 
the feedforward compensations of the friction 
and the disturbance. 

 
 

2. NONLINEAR PREDICTIVE CONTROL OF A 
2-DOF ROBOT ARM 

 
A two degree of freedom (DOF) open chain rigid 
robot having nonlinear friction effect ),( qqh f �  and 

dynamic model τ=++ ),(),()( qqhqqhqqH f ����  is 

considered first. Low level torque (current) control is 
assumed hence the control input is the torque τ . 
Inertia and friction parameters in the model are the 
results of previously performed identification and 
assumed known. The dynamic model of the robot 
arm (without the friction effect) is  
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where the parameters and functions are 
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and )cos( 2112 qqC +=  etc. as usual in robotics. In 

the experiments 521 == mm , 121 == II , 

121 == ll , 5.021 == cc ll  have been used (all in SI 

units). If TTT qqx ),( �=  denotes the state then the 



 

     

nontrivial part of the state equation is 

τ11 −− +−= HhHq�� .  
 
The predictive control algorithm needs the derivative 
of the right side of the state equation by x  and u . 
Meanwhile it can be utilized that if 

)()()( 1 xbxAxf −=  is any smooth function then 
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The robot repeats a predefined path which allows 
that the desired )( ktqd +  and )( ktqd +�  are known 

in the prediction horizon. The initial approximation 
for the first horizon is based on the gravity 
compensation in the initial state and the 
compensation of the friction. Unknown disturbance 
(load etc.) consisting of first order deterministic 

polynomial and Gaussian noise was considered on 
the input of the robot (output of the controller). 
Experiments with estimated q�  and estimated 

disturbances 21 , dd  reduced on the system inputs are 

performed. For estimation of the augmented state 
extended Kalman filter was used (Chui and Chen, 
1999; Lantos, 2003). 
 
Optimization is based on conjugate gradient 
technique. For horizon length 10=N  satisfactory 
accuracy of the optimization can be reached within 

25=T  ms sampling time on standard processors. 
Fig. 1 shows the results. If needed, fine interpolation 
in closed loop is also possible based on )(tu  and 

)1( +tu  determined in the actual horizon. For large 

N  basis functions (splines etc.) can be suggested. 
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Fig. 1. Behaviour of the 2-DOF robot arm during predictive control. 
 
 
 
 

3. NONLINEAR PREDICTIVE CONTROL OF A 
2D CRANE 

 
The second problem is the control of the small size 
model of a real cable-driven crane used by US Navy 
(Kiss et al., 2000). For simplicity only the two 
dimensional (2D) planar version is considered. The 
goal is the precise and quick motion of the load 
without overshoot. The scheme of the 2D crane is 
shown in Fig. 2.  (Since the pulley’s mass in point B  
has been neglected hence sL  and its actuator motor 

is omitted in the discussion). The planar crane is a 3-
DOF system which is underactuated because the only 
inputs are the two motor torques moving the ropes 

1L  and 32 LL + . The model of the planar crane is 

differencially flat (Kiss, 2001). In simplified 
formulation it means that if ),( uxfx =�  is the 

dynamic model of the system then there exist a new 
variable y  (the flat output) and finite integers q  and 

p  such that ),,,,( )(
1

qyyyyx ����φ= , 

),,,,( )1(
2

+= qyyyyu ����φ , ),,,,( )(
1

puuuxy ��ψ= . 

For the crane Tzxy ),(:=  where zx,  are the 

coordinates of the load in the plane of the crane. The 
flatness relations for the 2D crane are summarized as 
follows: 
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If )4(,,, yyy ��  are known then all system variables 

can be computed from them except singularities. For 
prescribed initial 0y  and final 1y  and transient time 

FT  five times differenciable )(ty  polynomials can 

be found connecting the points with straight line 
from which all the system states )(tx  and inputs 

)(tu  can be reconstructed. Results 21 , uu  of the 

flatness based design have been used for the initial 
approximation of the sequence u  in all the horizons.  
 

 
Fig. 2. The scheme of the 2D crane. 
 
It follows from the equilibrium of the internal forces 
that the line AB  in the direction of the horizontal 
rope 1L  is the bisectrix of the angle γ2  between PB  

and BC . Hence the magnitudes of the internal forces 

3T  for 2L  and 1T  for 1L  are related by 31 2 TCT γ= . 

By using the flat output all the variables discribing 
the 2D crane can be determined by (8). In order to 
avoid the first and second order symbolic 
differentiation of the nonlinear expressions for 

321 ,, LLL , numerical differentiation was applied 

(see spline, unmkpp, mkpp in MATLAB). Finally the 
flatness based input torques 21,uu  for the motors can 

be determined, where iJ  and iρ  denote the inertia 

and the radius of the winch, respectively. 
 
Assuming zero derivatives until order five in the 
initial and final positions, the 11th order polynomial 
connecting ),( 00 zx  and ),( 11 zx  has the form 
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where FTt /=τ  is the normalized time and the 

coefficients for both )(τx  and )(τz  are  

.252.0,386.1,080.3

,465.3,980.1,462.0
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Neglecting the feedforward compensated friction and 
the centripetal and Coriolis effects (because of the 
slow angular velocities of typical cranes) the basic 
equations of the underactuated system are  
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The system is submitted to constraints with respect to 

1L  and 2L  hence Lagrange multiplicators could 

have been used. Fortunately, instead of this relatively 
complicated method, the equilibrium between 
internal forces can be exploited, see (Kiss, 2001), 
who developed a form of the dynamic model for the 

choice TLLx )),(,,,,( 33
���� βαγβαγ −−=  where 

const=α . However the measured outputs are 

321321 ,,, LLLLLL ��� ++  which depend on these state 

variables in a nonlinear way making necessary the 
use of nonlinear state estimation and some 
modifications of the predictive control algorithm of 
(Kim and Shim, 2003). Hence a new model has been 

developed using TLLLLLLx ),,,,,( 321321
���= . The 

idea is the use of the cosine theorem by which 
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For 1L  and 2L  the expressions in (8) can be used. 

By elementary geometry and using 
))(()2/( βαγπϕ −+−= , 

))(2( βαγπθ −+−= , 

it yields 
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The main problem is the computation of 3T  from the 

state variables which is needed in (11). This can be 
performed using θθ CTgzmSTxm 33 )(, =+−= ����  for 

the load, from which it follows 
 

.)((,0)( 3TgzCxSmgzSxC =++−=++ �������� θθθθ  (14) 

The remaining part is based on carefully performed 
symbolic differentiation to find the Jacobian )(dx  

and Hessian )2( xD  of the necessary functions, for 

example in the case of )(tx  
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The dynamic model in MATLAB notation is the 
following: 
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Unfortunately, for predictive control A  and b  have 
to be differentiated once more, see (3).  
An important question is the appropriate choice of 
the sampling time T  so that the approximation of the 
continous time system by the discrete time one in (4) 
is accurate enough. For this purpose a stright line 
motion of the load is designed by using the above 

flatness technique resulting in the open loop control 
signals )(1 tu  and )(2 tu  and the flatness based rope 

length and load position. The parameters of the small 
size 2D crane model were rad4454.0=α , 

m1662.0=k , m351.0=l , 24
21 kg/m10 −== JJ  

and m025.021 == ρρ . It was experimentally 

proved that for )(1 tu , )(2 tu  and s002.0=T  the 

discrete time approximation reproduces the results 
)(),(),( 321 tLtLtL  determined by the flatness 

technique. It is clear that the small sampling time is 
the consequence of the small size model (1:80 
reduction) and for real crane much larger sampling 
time is possible.  
 
The optimization has been performed by using 
conjugate gradient technique. Satisfactory accuracy 
of the optimisation has been reached within 
reasonable time, see Fig. 3, however it is far away of 
the real time expectations in the case of the small 
size model. 
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Fig. 3. Behaviour of the small size model of the 2D crane during predictive control. 
 
 
 

4. PREDICTIVE CONTROL OF A WHEELED 
MOBILE ROBOT 

 
The third problem, which will be investigated in the 
paper, is the control of a wheeled mobile robot. It is 
known (Warren et al., 2001) that both position 
control and tracking can be performed by using 
nonlinear time variable dynamic state feedback. 
Nonlinear predictive control is an alternative method 
for both type of problems. 
 
The control is divided into 3 levels. High level 
control designs the motion of the reference mobile 
robot in the form rrr vx ϑcos=� , rrr vy ϑsin=�  and 

rr ωϑ =� . Low level control realizes the control of 

the mobile robot according to the control outputs of 

the middle level based on the kinematic model. Only 
the high and  middle levels have been investigated. 

State, output and input are Tyxx ),,(: ϑ= , xy =:  and 
Tvu ),(: ω= , respectively.  The system model is 

T
c uxuxuuxf ),sin,cos(),( 23131= . 

The derivatives icic ufxf ∂∂∂∂ /,/  needed for NPC 

can easily be determined. sT 02.0=  is suitable for 

discrete time approximation of the continuous time 
system if the speed is in the order of sm /5.0 . 

Horizon length 10=N  has been chosen. The 

reference robot’s T
rrvu ),(: ω=  is used in NPC as 

initial approximation of the control sequence in the 
first horizon. Constant plus linear disturbances 
reduced on the mobile robot inputs have been  
assumed and estimated by using extended Kalman 



 

     

filter. Optimization has been performed by using 
conjugate gradient technique. Satisfactory accuracy 
of the optimization has been reached within 

reasonable time fulfilling real time expectations, see 
Fig. 4.  

 

0 2 4 6 8 10 12 14
0

5

10
Real and reference vehicle pose

x
xr
y
yr
th
thr

0 2 4 6 8 10 12 14
-2

-1

0

1

2
Velocity (u1) and angular velocity (u2)

u1
u2

0 2 4 6 8 10 12 14
-0.4

-0.2

0

0.2

0.4
Real and estimated disturbances

time in sec

xd1h
d1
xd2h
d2

 
 
Fig. 4. Behaviour of the mobile robot during predictive control. 
 
 
 

5. CONCLUSIONS 
 
The experiments were performed on a multiprocessor  
system consisting of three computers. On the first 
computer runned the NPC control and the extended 
Kalman filter under QNX real-time operating system. 
Another process managed the receipt of the sensory 
information and the sending of the controller outputs 
to the system. The actual system (robot arm, crane or 
mobile robot) was simulated as separate QNX 
process on the first computer. This process 
communicated with the other parts by using 
messages. The simulated system can easily be 
substituted in future experiments by real systems 
saving the whole controller architecture. On the 
second computer (running also under QNX) were 
performed the off-line design of the reference signals 
for the robot arm, the flatness based path and driving 
torque design for the crane and the design of the path 
of the reference mobile robot, respectively. The third 
computer runned under Windows2000 and 
documented the real control, state and output 
information in graphical form. 
 

The results in the three examples show that nonlinear 
predictive control can be effectively used not only in 
the process control but also in the control of 
uncertain moving systems including fully actuated 
robots, and underactuated cranes and vehicles. 
Nonlinear predictive control is able to improve the 
control performances and can take into consideration 
the real time system constraints. The time needed for 
the convergence of the online numerical optimization 
can be guaranteed for ms25=T  sampling time and 

TN 10=  horizon length in case of standard 
processors and QNX real time operating system. If 

needed, further fine interpolation can be applied. 
 

These give real chance also for applications in more 
complicated fields like robot cooperation, formation 
motion of aircraft systems and cooperation between 
underground and aerial vehicles. 
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