
1. INTRODUCTION

A hot strip mill is composed of a roughing mill, a
finishing mill, and a coiler. In the finishing mill, a sheet
bar transported from the roughing mill is further reduced
to the final thickness. The resulting strip is then coiled
to form the finished coil of steel strip.

In the finishing mill, to achieve the required reduction,
final qualities and tolerances, several passes of rolling
are executed by tandem rolling with 6 or 7 successive
stands in the presence of interstand tension. The tension
indispensable to prevent the strip from skidding
between stands and to diminish edge waves or center
buckles of the strip which may cause pinching or
rupturing of the strip. Therefore tension control is the
key to successful mill operations. The looper
implemented between each pair of adjacent stands
fulfills an important role in tension control. Processing
of each strip starts up with threading of the strip through
the stands. The looper is raised above the passline just
after the leading end of the strip passes through the
downstream stand so that the looper comes into contact
with the strip and eventually forms a loop of the stored

strip between the stands. Both tension and looper angle
control in this phase is normally performed in an ad
hoc manner; a constant value is given as the looper
motor torque reference and the feedback control does
not start until the looper comes into contact with the
strip. Feedback control of the tension and looper angle
starts only after the transient behaviour in this start-up
phase has settled.

There exist mutual interactions between the tension and
looper angle, which has been considered the main
problem in tension and looper control. Several
multivariable control schemes have been applied to this
problem. Among them are interaction decoupling
(Kotera and Watanabe, 1981), optimal control (Seki, et
al., 1987), H∞ control (Imanari, et al., 1997) and
decentralized control (Asano, et al., 2000). All of them
are, however, intended only for feedback control after
the start-up phase.

This paper presents a new control design method for
tension control in the start-up phase. In the proposed
method, strip tension and looper trajectories are
simultaneously optimized throughout the start-up phase
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which consists of the non-contact and contact modes.
First, a discrete-time piecewise affine model is derived
to describe the discontinuous dynamics of this system.
Next, the optimal manipulated variables are calculated
within a model predictive control framework. An
approximate solution method is also presented for ease
of online optimization. Furthermore, the proposed
method is applied to generate the optimal feedforward
control input which can be used as a good alternative
to the conventional constant torque reference. This is
very practical because the optimization can be done
offline prior to rolling operations. Simulation results
are shown with respect to the offline optimization to
demonstrate the control performance compared to the
conventional ad hoc control.

This research was conducted within the hybrid system
working group of the Control Forum in the Division of
Instrumentation, Control and System Engineering, the
Iron and Steel Institute of Japan (ISIJ).

2. HYBRID SYSTEM MODELING

2.1  Nomenclature

 J Looper inertia
θ Looper angle
σ Interstand tension
 q Looper torque
 qref Looper torque reference
 D Looper damping constant
TACR Time constant of looper motor ACR
 h Strip thickness
 b Strip width
β Strip angle with passline
ρ Strip density
 g Gravitational constant
 l Half of length between stands
 r Looper arm length
WL Looper weight
 rL Distance between axis and center of gravity

of looper
θG Offset angle between center of gravity of looper

and looper angle
 E Young’s modulus of strip

 f Forward slip
 L Interstand strip length
VR Roll velocity
VRref Roll velocity reference
TASR Time constant of mill motor ASR

2.2 Dynamic Equations

The looper dynamics shown in Fig.2 is described by
the following equations:

J q K K K DS L
˙̇ { ( ) ( )} ( ) ˙θ δ θ σ θ θ θσ= − + − − ,

˙ ( )q
T

q q
ACR

ref= − −
1

,

where Kσ , KS  and KL  denote the looper load torque
by the tension, strip weight and looper weight,
respectively, and are given as follows:

K bhrσ θ θ β( ) cos sin= 2 ,
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θ= 2 ,

K W grL L L G( ) cos( )θ θ θ= + .
δ  is a 0-1 variable which denotes the two modes shown
in Fig. 3; δ = 1 in the contact mode(C-mode) and δ = 0
in the non-contact mode(N-mode). The mode transition
rule is given as follows:
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where θmin  is the looper angle when the looper is raised
to the passline.

The tension dynamics is governed by the following
equations:
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The looper angular velocity and the tension at the
transition from the N-mode to the C-mode is assumed
as follows:

˙( ) ˙( )θ ε θt t= −1
, if N-mode → C-mode,

σ σ ε θ( ) ( ) ˙( )t t t= +− −2
, if N-mode → C-mode,

where ε1  and ε2  are each an appropriately estimated
constant, ˙( ) : lim ˙( )θ θ τ

τ
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τ
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= .

2.3 Piecewise Affine Model

The dynamics equations are linearized around an
operating point of each mode. Then both linear models
are unified based on the coordinate system of the C-
mode to obtain a piecewise affine model. Let xc and xn
denote the value of x at the operating point of the C-
mode and N-mode, respectively. Then the operating
point of each mode is described by ( , , , , )θ σc c c Rcq V0
and ( , , , , )θ σn n n Rnq V0 , respectively, for a set of state
variables ( , ˙, , , )θ θ σ q VR

.

C-mode; Let x denote the variation of x at the operating
point of the C-mode, namely, x x xc= − . The following
equations are assumed to hold at the operating point:

q q K K Kc refc c S c L c= = + +σ θ σ θ θ( ) ( ) ( ) , V VRc Rrefc= .

Then the following equations are derived by linearizing
Eqs. (1)-(5) with δ = 1 around the operating point:
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N-mode; Let x̃  denote the variation of x at the operating
point of the N-mode, namely, x̃ x xn= − . The following
equations are assumed to hold at the operating point:

q q Kn refn L n= = ( )θ  and V VRn Rrefn= .

Then the following equations are derived by linearizing
Eqs. (1)-(5) with δ = 0 around the operating point:
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Substituting the relationship between both coordinate
systems, ˜ ( )x x x xc n= + − , into Eq. (7) yields the
following representation:
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The tension is measured by a tensiometer mounted on
the looper, so it is unmeasurable in the N-mode.
Therefore, it is assumed that the roll velocity is not
manipulated and thus its reference VRref  is kept constant
in the N-mode. As for the C→N mode transition, the
following is assumed:

V t V tRref Rref( ) ( )= − ,  if C-mode →  N-mode.

A block diagram representation of the linear model for
each mode is shown in Figs. 4 and 5. Fig. 5 clearly
shows that the N-mode model does not contain any
interactions between the tension and looper dynamics,
because the looper and the strip do not have contact
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with each other.

State Space Model; Let the state and input vectors be
denoted by x  and u, respectively:

x q V u q VR
T

ref Rref

T
= [ ] = [ ]θ θ σ,  ˙ ,  ,  ,   ,  ,  .

Then, the piecewise affine model is derived from Eqs.
(6) and (8) as follows:

N-mode    ẋ A x B u an
c

n
c

n
c= + + , if Cx c+ ≤ 0 ,

C-mode   ẋ A x B uc
c

c
c= +  , if Cx c+ ≥ 0 ,

N→C-mode x t E x t enc nc( ) ( )= +− ,

if Cx t c( )− + = 0  and N→C-mode,

C→N-mode x t x t( ) ( )= − ,

if Cx t c( )− + = 0  and C→N-mode,

where An
c , Bn

c , an
c , Ac

c , Bc
c  and Enc  contains constants

obtained from Eqs. (6) and (8), and

C c c= [ ] = −1 0 0 0 0 ,  minθ θ .

 The N→C-mode reflects the jump of the state vector

x  at the N→C-mode transition assumed in Eq. (6) .
Discretizing Eq. (11) with the sampling period dT  and
adding a discrete variable I ∈{ , }0 1  yield the following
discrete-time piecewise affine model:

N-mode: 

x k A x k B u k a

I k I k

Cx k c I k

n n n( ) ( ) ( )

( ) ( )

( ) , ( )

+ = + +

+ =

+ ≤ =









1

1

0 0  if  
,

C-mode: 

x k A x k B u k

I k I k

Cx k c I k

c c( ) ( ) ( )

( ) ( )

( ) , ( )

+ = +

+ =

+ > =









1

1

0 1  if  
,

N→C-mode: 

x k A E x k A e B u k

I k

Cx k c I k

c nc c nc c( ) ( ) ( )

( )

( ) , ( )

+ = + +

+ =

+ > =









1

1 1

0 0  if  
,

C→N-mode: 

x k A x k B u k

I k

Cx k c I k

n n( ) ( ) ( )

( )

( ) , ( )

+ = +

+ =

+ ≤ =









1

1 0

0 1  if  
,

where

A en
A dTn

c

= , B e d Bn
A

dT

n
cn

c

= ∫ τ τ
0

, a e d an
A

dT

n
cn

c

= ∫ τ τ
0

,

A ec
A dTc

c

=  and B e d Bc
A

dT

c
cc

c

= ∫ τ τ
0

.

3. MODEL PREDICTIVE CONTROL

This section proposes a new method for optimizing
the input vector within a model predictive control
framework based on the discrete-time piecewise affine
model. The control problem considered here is to raise
the looper from the initial position in the N-mode to
the operating point of the C-mode. A faster response of
the looper is preferred, but the looper should not bump
the strip not to disturb the strip tension. Let J denote
the following cost function over the control horizon
[ , ]k k N+ −1 :

J x k u x i Qx i u i Ru iT

i k

k N
T( ( ), ) { ( ) ( ) ( ) ( )}= +

=

+ −

∑
1

+ + + +x k N Px k N NT
s( ) ( ) γ ,

where Ns  is the time corresponding to the N→C-mode
transition, γ  is a weight γ > 0, Q and R are matrices
Q ≥ 0 and R > 0 , and P is a positive definite matrix
satisfying the following algebraic Riccati equation:

P A PA A PB R B PB B PA Qc
T

c c
T

c c
T

c c
T

c= − + +−( ) 1 .

The third term in Eq. (13) is the penalty for staying
within the N-mode and the N→C-mode transition time
can be adjusted by tuning its weight γ .

If N is sufficiently large, the state x enters an invariant
set including the origin in the C-mode within
[ , ]k k N+ and thus the following equation holds in the

(13)

Fig. 4  Linearized model for the C-mode
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cost function (13):

x k N Px k N

x i Qx i u i Ru i

T

u

T

i k N
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min { ( ) ( ) ( ) ( )}

+ + =

+
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∞
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Consequently, the optimal control input is given by the
following equation after time k +N:

  u k B PB R B PA x kc
T

c c
T

c( ) ( ) ( )= − + −1    if C-mode.

The optimal control law for the C-mode which
minimizes the cost function (13) becomes nonlinear,
complicated and impractical. Therefore, for more
practical control laws, Eq. (14) is imposed as the input
constraint in the C-mode and the optimization problem
is subject to it.

In addition, the following assumption is imposed:
Assumption 3.1  With the input restriction imposed by
Eq. (14), the region of the C-mode, Cx c+ > 0 , is an
invariant set.

With the above assumption, the N→C-mode transition
occurs only once at time Ns  in the optimal mode
sequence:

Cx i c i k k k Ns( ) ,  ,  , . . . ,  + ≤ = + + −0 1 1,

Cx i c i k N k N k Ns s( ) ,  ,  , . . . ,  + > = + + + + −0 1 1

Fixing Ns  yields the following optimization problem:

 min ( ( ), )
( ), ,...,q k i i N

ref
ref s

J x k q
+ =0

  s.t. (12), (14), (15),

which results in a strictly convex quadratic program.
Let the optimal control input sequence and the  the cost
function obtained by solving the quadratic problem be
denoted by q i x k Nref s

* ( , ( ), ) , i k k k Ns= + +, , ...,1 ,and
J x k Ns

*( ( ), ) , respectively. The optimal N→C-mode
transition time Ns

*  is obtained by solving the quadratic
program N −1 times as follows:

N J x k Ns
N N

s
s

*

 { , ,..., }

*arg min ( ( ), )=
∈ −0 1 2

In accordance with the receding horizon strategy, the
first control input q k x k Nref s

* *( , ( ), )  is implemented on
the real plant at time k to obtain x k( )+1 , which is used
to update the optimization problem (17) as a new initial
condition.

However, this control law is still impractical for the
tension control, which requires the sampling period of
0.02 (sec). Therefore, the following approximate
solution method is proposed for ease of online
optimization.

Step 1: Solve the optimization problem (17) at time k =
0 to obtain Ns

*( )0 .
Step 2: Solve the optimization problem (16) for
N N ks s= −*( )0  to obtain q i x k Ns

*( , ( ), ) , i k k= +, ,1
. . . , k Ns+ , and implement q k x k Ns

*( , ( ), ) .
Step 3: Repeat Step 2 at time k +1. For k Ns≥ +1, use
the control input given by Eq. (14).

If the N→C mode transition does not occur at time

k Ns= *( )0  due to modeling errors or disturbances, Ns is
reset to 1 in Step 2 at time k Ns= *( )0 . On the contrary,
if the mode transition occurs at time ′ <k Ns

*( )0 , the
control input given by Eq. (14) is applied for time
k k> ′ . In this algorithm, the number of the quadratic
programs to be solved at each sampling time is reduced
to one by fixing the optimal mode transition time
Ns

*( )0 .

The least time-consuming and still meaningful way of
utilizing this problem formulation is to use the optimal
control input sequence at time k = 0, q i x k Ns

* *( , ( ), ( ))0 ,
i Ns= 0 1, , ..., , as a feedforward input sequence in the
N-mode and the control input given by Eq. (14) after
the N→C mode transition. In this case, the optimization
can be done offline prior to rolling operations, which is
very practical and feasible with usual process
computers.

4. SIMULATION RESULTS

Performance of the conventional and proposed control
schemes is compared by simulations. The simulator
consists of the discrete-time piecewise affine model (12)
and the two control schemes, which are alternatively
used in the simulations. In the conventional control, a
constant torque reference is applied in the N-mode and
the optimal control law (14) is applied after the N→C
mode transition. In the proposed control, the optimal
c o n t r o l  i n p u t  s e q u e n c e  q i x Nref s

* *( , ( ), ( ))0 0 ,
i Ns= 0 1, , ..., , is applied in a feedforward manner in
the N-mode and the optimal control law (14) is applied
after the N→C mode transition. Since the same Q and
R are used for both control schemes, the difference
between the two control schemes is only the looper
motor reference qref  in the N-mode. No modeling errors
or disturbances are considered in the simulations, so
the control input in the proposed control coincides with
that obtained by solving the optimization problem (17)
at each sampling time. Therefore, it is relevant to
evaluate the performance of the proposed control
scheme by these simulations.

It is assumed that the strip is 1000 mm in width and 3
mm in thickness in the adjacent stands to be considered.
[ , ] [ . ( ), . ( )]θ σc c = 0 350 9 8rad MPa  is assumed for the
operating point of the C-mode. [ , ] [ , ]minθ σ θ σn n c=
= [ . ( ), . ( )]0 175 9 8rad MPa  is assumed for the operating
point of the N-mode. The initial looper angle θ( )0  is
assumed to be 0 rad. Therefore, the control problem
considered here is to raise the looper from the initial
angle θ( ) ( )0 0= rad  in the N-mode through the
operating point of the N-modeθn = 0 175. ( )rad to the
operating point of the C-mode θc = 0 350. ( )rad while
keeping the tension at σ σn c= = 9 8. ( )MPa .The initial
state vector is given as follows:

x T VL R

T

T

( ) ( )  ˙ ( )  ( )  ( )  ( )

.     

0 0 0 0 0 0

0 350 0 0 0 0

= [ ]
= −[ ]

θ θ σ

.

The length of control horizon N is 100 and the sampling
period dT is 0.02 (sec).

(14)

(15)

(16)

(17)



Fig. 6, 7 and 8 summarize the simulation results. The
N→C mode transition occurs at the same time 0.18
sec ( Ns = 9 ) in both cases, which results from adjusting
the constant looper torque reference in the conventional
control and γ in the cost function (13) in the proposed
control. The results can be summarized as follows:
(1) The looper motor torque in the conventional control
increases due to the constant torque reference until the
mode transition and then suddenly decreases in
accordance with a big control move by the optimal
control in the C-mode. In the proposed control, the
looper motor torque, on the contrary, decreases after
the initial rise.
(2) As a result, in the conventional control, the looper
keeps accelerating while in the N-mode and bumps
against the strip and pushes it up, resulting in a rapid

increase of the tension. In the proposed control, the
looper decelerates before the mode transition, which
alleviates the bump and decreases the increase in the
tension by approximately 40 %.
(3) The settling time of the tension and looper angle is
slightly longer in the proposed control scheme, but it is
within the acceptable range.

In the proposed control, the looper motor torque is
optimized throughout the transient response in the start-
up phase, which enables a smooth transition from the
N-mode to the C-mode. The optimal control input
sequence can be a good alternative to the conventional
constant torque reference.

5. CONCLUSIONS

A new control design method has been proposed for
tension control in the start-up phase. In the proposed
method, based on a hybrid system approach, strip
tension and looper trajectories are simultaneously
optimized throughout the start-up phase which consists
of the non-contact and contact modes. First, a discrete-
time piecewise affine model is derived to describe the
discontinuous dynamics of this system. Next, the
optimal manipulated variables are calculated within a
model predictive control framework. An approximate
solution method is also presented for the ease of online
optimization. Furthermore, the proposed method is
applied to generate the optimal feedforward control
input instead of the conventional ad hoc control input.
Simulation results in the case of the feedforward
control have showed that the transient responses of the
tension and looper angle can be improved. Online
optimization is still challenging for this control problem
which requires a short sampling period of 0.02 (sec).
The assumptions imposed in the problem formulation
and solution should be assessed from a theoretical and
practical point of view. Robustness of the control
scheme to modeling errors and disturbances needs to
be clarified. Further investigations would be devoted
to these open questions within the hybrid system
working group in the ISIJ.
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Fig. 6  Looper angle, tension and looper angular
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Fig. 8  Roll velocity and its reference

Fig. 7  Looper torque and its reference


