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Abstract: In this paper, we consider the problems of stochastic stability and sliding
mode control for a class of linear continuous-time systems with stochastic jumps,
in which the jumping parameters are modelled as a continuous-time, discrete-state
homogeneous Markov process with right continuous trajectories taking values in a
finite set. By using Linear matrix inequalities (LMI) approach, sufficient conditions
are proposed to guarantee the stochastic stability of the underlying system and a
reaching motion controller is designed such that the resulting closed-loop system
can be driven onto the desired sliding surface in a limited time. It has been shown
that the sliding mode control problem for the markovian jump systems is solvable
if a set of coupled linear matrix inequalities (LMIs) have solutions. Simulation
studies show the effectiveness of the control scheme. Copyright (©2005 IFAC
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1. INTRODUCTION

A large class of physical systems have variable
structures subject to random changes, which may
result from the abrupt phenomena such as com-
ponent and interconnection failures, parameters
shifting, tracking, and the time required to mea-
sure some of the variables at different stages.
Systems with this character may be modelled
as hybrid ones, that is, to the continuous state
variable, a discrete random variable called the
mode, or regime, is appended. The mode de-
scribes the random jumps of the system parame-
ters and the occurrence of discontinuities. One of

the most important hybrid systems is the so-called
Markovian jumping system (MJS), in which
the mode-process is a continuous-time discrete-
state Markov process taking values in a finite set.
In engineering applications, frequently occurring
dynamical systems which can be represented by
different, forms depending on the value of an as-
sociated Markov chain process are termed jump
systems. Research into this class of system and
their applications span several decades. For some
representative prior work on this general topic, we
refer the reader to (Boukas et al., 2002a; Boukas
et al., 2002b; Mahmoud and Shi, 2003; Mah-



moud and Shi, 2002; Shi et al., 1999b; Shi et
al., 1999a; Shi and Boukas, 1997) and the refer-
ences therein.

In another active research area, the so called slid-
ing mode control has attractive features to keep
systems insensitive to the uncertainties on the
sliding surface. Sliding mode control as a gen-
eral design tool for robust control systems has
been well established, see for example, (Itis, 1976)
(Xia and Jia, 2003b; Xia and Jia, 2002; Xia and
Jia, 2003a) and the references therein. The mo-
tivation for this research stems from the fact that
both sliding mode control systems and markovian
jump system (or hybrid system) are quite impor-
tant in theory investigation and practical applica-
tions. The work conducted in this paper not only
contributes to the theory development, but also
solves the practical problems, which has already
been reported on in the literature, such as those
occurring in manufacturing systems, telecommu-
nication systems, internet based implement and
power systems, etc (see for example, (Boukas et
al., 2002a; Kushner, 1967; S.Willsky, 1976) and
the references therein).

In this paper, we consider the problem of stochas-
tic sliding mode control for a class of linear con-
tinuous systems with Markovian jump param-
eters. The jumping parameters are treated as
continuous-time, discrete-state Markov process.
Concepts of stochastic stability and stochastic
stabilization for the underlying systems are intro-
duced. The sliding surface and reaching motion
controller for the system will be designed. The
condition for the existence of linear sliding sur-
faces is derived. The solution to the condition can
be used to characterize linear sliding surfaces, and
by selecting suitable reaching law, the reaching
motion controller is proposed. The above prob-
lems are solved in terms of a finite set of coupled
linear matrix inequalities (LMIs). Finally, a nu-
merical example is included to demonstrate the
effectiveness of the theoretical results obtained.

Notations. The notation used in this paper is
quite standard. In the sequel, the Euclidean norm
is used for vectors. We use Wt W= X\W)
, Tr(W) and ||W]| to denote, respectively, the
transpose, the inverse, the eigenvalues, the trace
and the induced norm of any square matrix W.
We use W > 0 (>, <, < 0) to denote a symmetric
positive definite (positive semidefinite, negative,
negative semidefinite) matrix W with A,,, (W) and
Au (W) being the minimum and maximum eigen-
values of W and I to denote the n x n identity
matrix. The Lebesgue space £3[0, T consists of
square-integrable functions on the interval [0, T']
equipped with the norm |[.||2. £]-] stands for math-
ematical expectation. Sgn(-) sign function, that
is, sgn(z) = 1,if z > 0, sgn(z) = 0,if z = 0,

and sgn(z) = —1,if x < 0. Given a probability
space (2, F,P) where Q is the sample space, F
is the algebra of events and P is the probability
measure defined on F. Sometimes, the arguments
of a function will be omitted in the analysis when
no confusion can arise.

2. PROBLEM FORMULATION AND
PRELIMINARIES

We consider a class of stochastic systems with
Markovian jump parameters in a fixed probability
space (Q, F,P):

&(t) = A(ne)a(t) + Bn)[u(t) + F(n)w ()], (1)
Mo =1, 1 >0

where z(t) € R"™ is the state vector; u(t) € R™
is the control input, w € R! is the disturbance,
while {n;,t € [0, 7]} is a finite-state Markovian
process having a state space S 2 {1,2,.....,v},
generator (a;;) with transition probability from
mode ¢ at time ¢ to mode j at time t+9 ,14,j € S:

pij = Pr(nes =3 [ne =1)

_ aij5+0(6)7 Zf 7’75.77 (2)
1+ a6 + o(9), if i=7
Qi = — > Qim o, 05 >0
m=1,m#i
Vi,jeS,i#] (3)

where § > 0 and limgo 0(4)/d = 0.

For each possible value n; = ¢, i € S, we will
denote the system matrices associated with mode
i by

>

A(m) 2 AGi), B(m) = B(i), F(n)

where A(i), B(i) and F'(i) are known real constant
matrices of appropriate dimensions which describe
the nominal system. It is assumed that

IF@w@) < f(@),i €S (4)

F(i)

where f(i),i € S are positive scalars, ||-|| denotes
the Euclidean norm of a vector and its induced
norm of a matrix..

Remark 2.1. The model of the form (1) is a hy-
brid system in which one state x(t) takes val-
ues continuously and another state 7, referred
to as the mode or operating form, takes values
discretely in S. This kind of system can be used
to represent many important physical systems
subject to random failures and structure changes,
such as electric power systems (S.Willsky, 1976),



control systems of a solar thermal central re-
ceiver (Sworder and Rogers, 1983), communica-
tions systems (Athans, 1987), aircraft flight con-
trol (Moerder et al., 1989), control of nuclear
power plants (Petkovski, 1987) and manufactur-
ing systems (Boukas et al., 1995; Boukas and
Yang, 1996).

In order to obtain a regular form of systems (1),
we can choose a nonsingular matrix T'(n;) such
that

where Ba(n¢) € R™*™ is nonsingular. For conve-
nience, let us partition

o = |

where Uy (;) € R™™ and Us () € R**(»~™) are
two sub-blocks of a unitary matrix resulting from
the singular value decomposition of B(7;), that is,

B) = [T Do) [ o ™

(n—m)xm

@

where () € R™*™ is a diagonal positive-
definite matrix and V(n;) € R™*™ is a unitary
matrix((Kim et al., 2000)). By the state transfor-
mation z = T(n¢)x, system (1) has the regular
form

0 = A+ | e e
+ Flnu(t)

where A(n) = T () A(n:)T~" (). System (5) can
be written as:

21(t) = Avr(ne)z1 () + Ara(ne)z2(t) (6)
Zy(t) = Ao1 (ne) 21 () + Aza(ne)22(t) +
By (ne)[u(t) + F(n)w(t)]

where z; € R"™ ™, z, € R™ and

(7)

Ay () = U3 () A(e) Uz (),
Aiz(ne) = U3 (0e) A(ne) U (n:)
Az (ne) = UY (ne) A(n:)Us ()
Ao () = UL (ne) A(ne ) U (ne).-

It is obvious that the first equation of system
(6) represents the sliding motion dynamics of the
system (5), and hence the corresponding sliding
surface can be chosen as follows:

s(t) = [Cl(nt) 02(7”)] Z (8)
= Ci(nt)z1 + Ca(ne)z2 = 0

where C;(i) is invertble for any i € {1,2,...,s}.
Let C(n) = CyL(n)Ci(m) € ™™ and
substitute zo = —C(n;)z1 to (6) gives the sliding
motion

Z1(t) = [Au(ne) — Ar2(me)C(ne)]z1(t)  (9)

Let us recall the definition of stochastic stability
for system (9).

Definition 2.1. For system (9), the equilibrium
point 0 is stochastically stable, if for any 21 (0) and
meES

/8 {llz1(t, 21(0))[|*} dt < +o0.
0

The following result shows that the stochastic
stability of system (9) is equivalent to a set of
v intercoupled algebraic Lyapunov-type equations
have solutions.

Lemma 2.1. (Feng et al., 1992; 7) Consider sys-
tem (9), then the following statements are equiv-
alent:
(a) System (9) is stochastically stable;
(b) For any given positive definite matrices
N(k), k € S, there exist positive
definite matrices M (k), k € S, satisfying

AT (k)M (k) +M (k)A(k) +Zaij(j) (10

+N(k) =0, k€ S.

)

where A(k) = [A1; (k) — A2 (k)C(K)].

Remark 2.2. In (Ji and Chizeck, 1990; Shi and
Boukas, 1997), it has been proved that for sys-
tem (9), all the concepts of stochastically sta-
ble, asymptotically mean square stable and expo-
nentially mean square stable are equivalent, and
any of them can imply almost surely (asymptoti-
cally) stable. Lemma 2.1 also provides the neces-
sary and sufficient conditions for asymptotically
mean square stability and exponentially mean
square stability, and sufficient conditions for al-
most surely (asymptotically) stability of system
(9). Also, note that the left hand side of (2.1)
being less than zero also implies the statement
(a) in Lemma, 2.1.

In the following, attention is focused on the design
of gain C(k) € R™*("=™) and a reaching motion
control law u(t) for each k € S such that

1) The sliding motion (9) is stochastically stable;
and



2) The system (6)-(7) is stochastically stable with
the reaching control law w(t).

3. MAIN RESULTS

The first result of designing sliding surface can be
stated as follows.

Theorem 1: The reduced order system (9) is
stochastically stable if there exists symmetric
positive-definite matrices P(k) € R™*™ k € S
and general matrix Q(k) € R™* (=™ [ € S such
that

B II(k) O * ok - * % ]
1
ap P(k) a1 0 00 --00
aZ,P(k) 0 a 00 --00
K :
o‘kj(k—l)P(k) 0 0 as 0 00| <0 (11)
aZ o Pk) 00 0 a4 00
K oo
ag(‘,fl)P(k) 00 --00 ---a5 0
L a2 P(k) 0 0 -0 0 - 0 as

Moreover, the sliding surface of the system (6) is

s(t) = C1(k)z1 (1) + Ca(k)za(t) = 0, k€S (12)

where a; = —P(1),ay = —P(2),a3 = —P(k —
1),ay = =Pk +1), a5 = —Pv —-1), ag =
—P(v), Ci(k) and Cy(k) are appropriately fac-
torization of Q(k)P~1(k), that is, Cy  (k)C1 (k) =

QP! (k),k € S, I(k) = P(k)AT, (k) +

Avi (k) P(k)+ape P(k) = A1 (k)Q(k) = QT (k) Afy (k).

Proof. From Lemma 2.1, System (9) is stochasti-
cally stable if only if for any given positive definite
matrices N(k), k € S, there exists positive defi-
nite matrices M (k), k € S, satisfying

+N(k)=0keS.  (13)

which is equivalent to the following inequalities

ATGOM(R) + MOR)AG) + 3 g M(j) < 014)
for k € S. Pre- and post-multiplying inequality
(14) by M ~1(k) gives

MY (E)AT (k) + A(k)M L A(k)+

M) e MG)M T (#) < 0, ke s, (1)

Let P(k) = M~1(k),k € S yields
P(k)AT (k) + A(k)P(k) + cgr P (k)

v

1 1
+PH)( Y Pt G)PE) <0 (10
Jj=1,j#k
Applying Schur complement formula gives
B A(k) * ok eee ok ok see k% ]
1
a,?lP(k) air 0 -0 0 --- 0 0
a?P(k) 0 ax--0 0 -0 0
) :
O‘k?(k——l)P(k) 0 0 a3 0 00| <0 (17)
aE(k+1)P(k) 0 0 0 a4 0 0
. : :
a,f(ul_l)P(k) 0 0--00 --as?0
L a?,P(k) 0 0 -~ 0 0 -+ 0 as ]

where k € S, A(k) = P(k)AT (k) + A(k)P(k) +
arpP(k). Let Q(k) = C(k)P(k), then (17) is
equivalent to (11).

Next the result of designing reaching motion con-
troller is given.

Theorem 2: Assume the condition in Theo-
rem 1 holds, i.e., inequalities (11) have solutions
P(k) € R™*™ k€ S, Q(k) € R™*(»™) k¢ S,
the linear sliding surface is given by (12), and
there exist Q(k)andO(k) satisfying the following
inequalities:

—Q(k)O(k) — OT (K)Q(k) + Y oK) < 0 (18)

where O(k), k € S are selected such that (18) have
feasible definite positive matrix solutions (k).

Then the following control makes the sliding sur-
face s(z(t)) = 0 stochastically stable and globally
attractive in finite time.

u(t) = —(Co(k)B2(k)) [ C1 (k) Ca(k) ] A(K)2(t)
+O(k)s(t) + (e(k) + f(k))sgn(Q(k)s(t))]  (19)
where €(k),k € S are given positive constants.

Proof: We will complete the proof by showing
that the control law (19) can not only make the
system trajectory stochastically stable but also
globally attractive in finite time. From the sliding
surface

s(t) = [C1(ne) Cam)] 2(t) = Clm)=(t)

let us consider the function

V(t)= s (2(1)Q(k)s(=(t)) (20)



The weak infinitesimal operator 3%[-] of the pro-
cess {z(t),n,t > 0} for (5) at the point {t,z,k}
is given by :

SEV] = 6V/6t+z (t)OV )0z |y, =k
+ Z aimV(t,z,k,m)

m=1

(21)

From (12), differentiating the function along the
solutions of (5) yields:

with control (19) then,

SiV] = sT(OQK)[-O(K)s(t) + F(k)w(t) — (e(k)
+ (k) sgn(Qk)s(®))] + [-O(k)s(t) +
(e(k) + F(k)w(t) + f(k))sgn(Q(k)s(t))]"

v

Q(k)s(t) + ST(t)(Z ar;Q(k))s(t)

= ST(t)(—Q(k)G(k) -

Z ;2

( (k) + f(k))sgn(Q(k)s(t))]
From (4) and (18), we have

oT(k)Q(k) +

) + 257 ()UK [F (k)w(t)

S2V] < 257 (ORI (R)w(t) — (k)
£(k)) sgn((k)s(t)) (24)
< “2e(k) (k)5
Note that
1K) = (PEsT()T P(PYST (1))
> An(PIIPET @) %)
and
V(t) = sTOQR)s) = 2 RO (26)

we have

SE[V] < —26(k) Amin(QK))) 2 (V (2, 2,4))F (27)

a =

Then, it follows from (Kushner, 1967), by letting
z(t =0,1) = 2o, that

E[V (t, z,4)|n0] < —26(13)(AW»n(Q(k)))é,ngr (28)
V(Z[), 770) 2

Since the left side of (28

1
< V(z0,m0)2 + then V (z(t)) reaches zero in
~ 2e(k)(Amin (2(K))) 2 .
finite time, which means the state stochastically

converges to sliding surface in finite-time.

) is non-negative, and

4. A NUMERICAL EXAMPLE

In this section, an illustrative example is con-
structed to verify the design method developed in
this paper. Let generator for the Markov process
governing the mode switching be

-4 4
 —
=[5 4]

For the two operating conditions (modes), the
associated data are:

Mode 1 and Mode 2 as:

jen)

} ,w(t) = 0.01sin(t)

S
—~~
—
A
Il
| —
—
o
—
&
—~
—
—
Il
| —
—_ =

a= ] %50 =[] 0 = sotan

Taking T'(1) = {(1) ?] ,T(2) = ﬁ) é}, using
Theorem 1 and LMI method, we have P(1)
2.3957, Q(1) = —0.6727, P(2) = 2.2267, Q(2)
0.5243. Then, C(1) = —0.0702,C(2) = 0.25,
Ca(1) = 0.1059,C>(2) = 0.45. Taking O(1) =
0.8 and ©(2) = 0.54, by Theorem 2 and LMI
techniques, we have (1) = 1.9658 and Q(2) =
2.1037. Choosing f(1) = f(2) = 0.01 and (1) =
€(2) = 0.2, we have the following simulation
results:
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5. CONCLUSIONS

In this paper, the problems of stochastic stability
and sliding mode control for a class of linear
continuous-time systems with stochastic jumps
has been considered. In term of LMI, sufficient
conditions are proposed to guarantee the stochas-
tic stability of reduced-order systems. Then, a
reaching motion controller is designed such that
the resulting closed-loop system can be driven
onto the desired sliding surface in a limited time.
It has been demonstrated that if a set of coupled
linear matrix inequalities has solutions, then the
sliding mode control problem can be solved.
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