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Abstract: This paper presents a strategy for finding optimal controls of nonlinear
systems subject to random excitations. The method is capable to generate global
control solutions when state and control constraints are present. The solution
is global in the sense that controls for all initial conditions in a region of the
state space are obtained. The approach is based on the Bellman’s Principle of
optimality, the cumulant neglect closure method and the Short-time Gaussian
approximation. Nonlinear problems with non-smooth terms and range control
bounds are considered in the examples. The controlled system responses derived
are simulated and sucessfully validated by using the Generalized Cell Mapping
method. Copyright c©2005 IFAC.
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1. INTRODUCTION

The optimal control of stochastic systems is a
difficult problem, particularly when the system
is strongly nonlinear and constraints are present.
Given its complexity, we usually resort to numer-
ical methods, Kushner and Dupuis (2001). While
some numerical methods of solution to the Hamil-
ton Jacobi Bellman (HJB) equation are known,
they usually require knowledge of the bound-
ary/asymptotic behavior of the solution, Bratus
et al. (2000). Numerical strategies to find deter-
ministic optimal controls based on the Bellman’s
principle of optimality (BPO) are available Crespo
and Sun (2000). In this paper, these ideas are ex-
tended to stochastic optimal control. The method,
that involves both analytical and numerical steps,
offers several advantages: (i) it can be applied
to strongly nonlinear systems, (ii) it takes into
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account state and control constraints and (iii) it
leads to global solutions, from where topological
features can be extracted, e.g. switching curves.
Former developments can be found in Crespo and
Sun (2002) and Crespo and Sun (2003).

2. STOCHASTIC OPTIMAL CONTROL

2.1 Problem Formulation

Consider a system governed by the stochastic
differential equation (SDE) in the Stratonovich
sense dx(t) = m(x(t),u(t))dt+σ(x(t),u(t))dB(t),
where x (t) ∈ Rn is the state vector, u(t) ∈ Rm

is the control, B(t) is a vector of independent
unit Wiener processes and the functions m(·) and
σ(·) are in general nonlinear functions of their
arguments. Itô’s calculus leads to

dx(t) =
(
m +

1
2

∂σ

∂x
σT

)
dt + σdB(t) (1)



The corresponding Fokker-Planck-Kolmogorov equa-
tion (FPK) is given by

∂ρ

∂t
= − ∂

∂x

[
ρ

(
m +

1
2

∂σ

∂x
σT

)]
+

1
2

∂2

∂x2

[
ρσσT

]
(2)

where ρ(x, t0|x0, t0) is the conditional probability
density function (PDF) of the state. Let the cost
functional be

J(u,x0, t0, T ) = E

[
φ(x(T ), T ) +

∫ T

t0

L(x,u)dt

]
(3)

where E[·] is the expected value operator, [t0, T ]
is the time interval of interest, φ(x(T ), T ) is the
terminal cost and L(x(t),u(t)) is the Lagrangian
function. The problem formulation is to find the
control u(t) ∈ U for t ∈ [t0, T ] in Equation
(1) that drives the system from the initial con-
dition x(t0) = x0 to the target set defined by
Ψ(x(T ), T ) = 0 such that J is minimized. The
fixed final state condition leads to control solu-
tions of the feedback type, i.e. u(x).

2.2 Bellman’s Principle of Optimality

Let V (x0, t0, T ) = J(u∗,x0, t0, T ) be the value
function or optimal cost function, Yong and Zhou
(1999). The BPO is prescribed by V (x0, t0, T ) =
infu∈U E[β], where

β =
∫ t̂

t0

L(x,u)dt+
∫ T

t̂

L(x∗,u∗)dt+φ(x∗(T ), T )

where t0 ≤ t̂ ≤ T. Consider the problem of finding
the optimal control for a system starting from xi

in the time interval [iτ, T ]. Define the incremental
and the accumulative costs as

Jτ = E

[∫ (i+1)τ

iτ

L(x,u)dt

]
(4)

JT = E

[
φ(x∗(T ), T ) +

∫ T

(i+1)τ

L(x∗,u∗)dt

]
(5)

where τ is a discrete time step, {x∗(t),u∗(t)} is
the optimal solution pair over the time interval
[(i + 1)τ, T ]. In this context, the BPO is given by
V (xi,iτ, T ) = infu∈U {Jτ + JT }. The incremental
cost Jτ is the cost to march one time step forward
starting from the deterministic initial condition
xi. The system moves to an intermediate set of
the state variables. The accumulative cost JT

is the optimal cost of reaching the target set
Ψ(x(T ), T ) = 0 starting from this intermediate
set and is calculated through the accumulation
of incremental costs over time intervals between
(i + 1)τ and T , i.e. V (x((i + 1)τ),(i + 1)τ, T ) for
the processed state space.

At the intermediate state, the continuity condi-
tion x((i + 1)τ) = x∗

i+1 must be imposed in

the probabilistic sense. Notice that x((i + 1)τ)
is a random variable. To quantify the continuity
condition, let Ω be the extended target set such
that x∗

i+1 ∈ Ω. Hence, the condition implies that
the support of x((i + 1)τ) should mostly lie on
the processed state space Ω. Notice however, that
ρ(x, τ |x0 , 0) covers the entire state space no mat-
ter how small τ is. For a given control, define PΩ

as
PΩ =

∫
x∈Ω

ρ(x, τ |xi, 0)dx (6)

then PΩ is the probability of reaching the ex-
tended target set Ω in time τ starting from xi.
The controlled response x(t) starting from a set
of initial conditions xi will become a candidate for
the optimal solution when PΩ is maximal.

3. SOLUTION APPROACH

To evaluate the expected values in Equation (5),
ρ(x, τ |x0 , 0) is needed. For a given feedback con-
trol u = f(x), x(t) is a stationary Markov process,
Lin and Cai (1995). For a small τ , ρ(x, τ |x0 , 0)
is approximately Gaussian within an error of or-
der O(τ2), Risken (1984). This is usually refered
to as the Short-Time Gaussian Approximation
(STGA). The state dynamics can be derived from
Equation (1), leading to a set of coupled differen-
tial equations. Such set is closed when the dynam-
ics is linear. For nonlinear systems the cumulant
neglect closure method (CNC) can be used for
closing, Lin and Cai (1995). According to the
STGA, the CNC of order two is used here to ap-
proximate the conditional density function. Since
this approximation is good locally, a partition of
the state space is required for accurate results.
Therefore, the state space is divided into multiple
regions, called cells, whose dynamics is well ap-
proximated by the STGA. A CNC of higher order
will refine the dynamics of the cell. Such practice
will allow for either larger cells or more accurate
estimations of the costs. This feature will be useful
in the cases where considerably different controls
lead to comparable costs.

3.1 Backward Search Algorithm

The backward search algorithm starts from the
last segment of the time interval. Since the final
state is fixed, a family of optimal solutions for
all initial conditions surrounding the target is
easily found. The optimal control in the interval
[iτ, T ] is determined by minimizing the sum of
the incremental and the accumulative cost leading
to V (xi,iτ, T ) subject to the continuity condition
introduced above. The numerical procedure is pre-
sented next. Discretize a finite state region D ⊂
Rn into a countable number of parts/cells. Let U



be a set consisting of a countable number of ad-
missible controls ui for i = 1, 2, ..., I. The control
is assumed to be constant over the time intervals.
Let Ω ⊂ Rn denote the discretized version of the
target set Ψ(·) = 0 and JT = E[φ(x(T ), T )] be the
terminal cost. In this framework, the algorithm is
as follows

(1) Find all the cells that surround the target set
Ω. Denote the corresponding cell centers zj .

(2) Construct the conditional probability density
function ρ(x, τ |zj , 0) for each control ui and
for all cell centers zj . Call every combination
(zj ,ui) a candidate pair.

(3) Calculate the incremental cost Jτ (zj ,ui), the
accumulative cost JT (z∗k,u∗

ı̂ ) and PΩ for all
candidate pairs, where z∗k ∈ Ω is an image
cell of zj and u∗

ı̂ is the optimal control of z∗k
found in previous iterations.

(4) Search for the candidate pairs that minimize
Jτ (zj ,ui) + JT (z∗k,u∗

ı̂ ) and satisfy PΩ <
Θmax{PΩ}, where 0 � Θ < 1 is a factor
set in advance. Denote such pairs as (z∗j ,u

∗
i ).

(5) Save the minimized accumulative cost func-
tion JT (z∗j ,u

∗
i ) = Jτ (z∗j ,u

∗
i )+JT (z∗k,u∗

ı̂ ) and
the optimal pairs (z∗k,u∗

ı̂ ).
(6) Expand the target set Ω by including the

cells z∗j .
(7) Repeat the search from Step (1) to Step (6)

until the initial condition x0 is reached.

As a result, the optimal control for all the cells in
Ω is found. The choice of image cells, i.e. x((i +
1)τ), could certainly by biased. This however, is
avoided by using (i) non-uniform integration times
such that the growth of Ω is gradual, i.e. mapping
most of the probability to neighboring cells, and
(ii) by restricting the potential optimal pairs to
be candidate pairs with high PΩ. These consid-
erations led to consistent global control solutions
regardless of the cell size, Crespo and Sun (2000).
The resulting controlled dynamics of the condi-
tional PDF is simulated using the Generalized
Cell Mapping Method (GCM), Crespo and Sun
(2002).

4. EXAMPLES

4.1 Non-linear Oscillator with Dry Friction

Consider the non-linear system

ẍ+µ(g+v̈)sgn(ẋ)+2ζẋ+ω2
0x+εx3 = f̈+u(t) (7)

where x(t) is the horizontal sliding motion of a
mass block placed on a moving foundation with
rough contact surface and u(t) is a force satisfying
|u| ≤ û = 1, Sun (1995). ζ is the viscous
damping coefficient, µ is the dry friction damping
coefficient, g is the gravitational acceleration, ωo is
the natural frequency of the linear system and ε is

the non-linear stiffness coefficient. Assume that f̈
and v̈ satisfy E[f̈ ] = 0,E[v̈] = 0, E[v̈(t)f̈(t′)] =
2Dvfδ(t − t′), E[v̈(t)v̈(t′)] = 2Dvδ(t − t′) and
E[f̈(t)f̈(t′)] = 2Dfδ(t − t′). Let x1 = x, x2 = ẋ
and the Lagrangian be L = αx2

1 + βx2
2 + γu2 The

corresponding SDE in the Stratonovich sense is
given by

dx1 = x2dt (8)

dx2 = (−µgsgn(x2)− 2ζx2 − ω2
0x1 − εx3

1 + u)dt

− µsgn(x2)dB1 + dB2

where B1 and B2 are dependent delta correlated
Gaussian white noises with zero mean. Following
the rules of the Itô calculus, we convert Equation
(8) into a set of SDE in the Itô sense

dx1 = x2dt (9)

dx2 = [−µgsgn(x2)− 2ζx2 − ω2
0x1 − εx3

1+

µ2Dvsgn(x2)sgn′(x2) + µDvf sgn′(x2) + u]dt+

2[µ2Dvsgn2(x2) + 2µDvf sgn(x2) + Df ]1/2dW

where W (t) is a unit Wiener process satisfying
E[W (t)] = 0, E[W (t)W (t′)] = t− t′ where t > t′.
An infinite hierarchy of moment equations for the
state variables can be derived from the Itô Equa-
tion applying the expected value operator and us-
ing independence. Defining mnm = E[xn

1xm
2 ], and

using the analytical expressions for the expected
values, we obtain the differential equations for the
first two order moments

ṁ10 = m01

ṁ01 = µgsgn(m01) erf(|m01|/
√

2σ2)− 2ζm01−
ω2

0m10 − εm10(3σ2
1 + m2

10)+

µDvf (2/
√

2πσ2) exp(−1
2
(m01/σ2)2) + u,

ṁ11 = σ2
2 − 2ζc12 − ω2

0σ2
1 − 3εσ2

1(σ2
1 + m2

10)−

µg
√

2/π(c12/σ2) exp(−1
2
(m01/σ2)2)−

µDvf (c12m01/
√

2/πσ3
2) exp(−1

2
(m01/σ2)2)+

m10ṁ01 + ṁ10m01

ṁ20 = 2c12 + 2m10ṁ10

ṁ02 = −4ζσ2
2 − 2ω2

0c12 − 6εc12(σ2
1 + m2

10)−

2µg
√

2/πσ2 exp(−1
2
(m01/σ2)2)−

µDvf

√
2/π(m01/σ2) exp(−1

2
(m01/σ2)2)+

2µ2Dv + 2Df + 2m01ṁ01+

4µDvf sgn(m01) erf(|m01|/
√

2σ2) (10)

where c12 = m11 − m01m01 is the covariance of
x1 and x2, σ2

1 = m20 −m2
10 is the variance of x1

and σ2
2 = m02 − m2

01 is the variance of x2. The
initial conditions required to integrate Equations
(10) from t = 0 to t = τ are specified by the
coordinates of a cell center (x1, x2), i.e. m10(0) =
x1, m01(0) = x2, m20(0) = 0, m02(0) = 0 and
m11(0) = 0. The joint probability density of the



response and the corresponding costs can be then
readily calculated.

Notice that the system is parametrically and ex-
ternally excited and the diffusion term is state
dependent. The region defined by x1 ∈ [−2, 2]
and x2 ∈ [−2, 2] is discretized with 25× 25 = 625
uniform cells. The parameters of the system are
set as follows: µ = 0.05, ζ = 0.1, ω0 = 1,
ε = 1, Dv = 0.1, Df = 0.1, and Dvf = 0. The
Lagrangian of the cost function is evaluated using
α = β = γ = 0.5 and the control set is uniformly
discretized into 11 levels u ∈ {−1,−0.8, · · · , 1}.

The vector field of the mean of the uncontrolled
response is shown in Figure 1. There is a re-
gion on the x1-axis close to the origin, where
the mean trajectories get trapped. Such strip is
highlighted in the figure with a thick line. When
the term µgsgn(m01) erf(|m01|/

√
2σ2) in Equation

(10) becomes dominant, a never ending sequence
of changes in the sign of the velocity takes place.
This phenomenon forces the response to switch in-
definitely about the strip without having a net dis-
placement. Starting from a uniformly distributed
initial condition in D = (x1, x2) ∈ [−2, 2]×[−2, 2],
the time evolution of the probability density of the
response is calculated. It was found that 67% of
the response stays in D, converging to th PDF
in Figure 2. Stationarity is reached after 10 time
units.

Figure 3 shows the vector field of the mean tra-
jectory for the controlled response. The size of
the arrows about the origin is enlarged to en-
able better observation. Abrupt changes in the
velocity are still present about the x1 axis are
present, but the trapping strip is not. These jumps
show that the velocity just before and just after
reaching maximum elongation of the spring differ
in magnitude. Starting from the same uniformly
distributed initial condition, the time evolution of
the controlled system response was studied. Fig-
ure 4 shows the corresponding stationary density
function reached after 7 time units. It was found
that 80% of the response stays in the admissible
domain.

In order to evaluate the control performance in
a global basis, the leakage of the probability to
outside of the domain D must be taken into con-
sideration. For PDFs which are not fully contained
in D the calculation of the expected cost in the
cellular domain is insufficient due to the use of a
single cell, i.e. the sink cell, to represent D̄. With
this in mind, we propose the following measure to
evaluate the costs:

Jd(t′) =
E [L(x(u(t′)),u(t′))]d

Pd(t′)
(11)

where E[·]d and Pd are the expected value oper-
ator and the probability of the response on the

Fig. 1. Vector field of the mean trajectories of the
uncontrolled response.

Fig. 2. Upper view of the Stationary PDF for the
uncontrolled response.

domain D at t = t′, given a uniform probability
distribution at t = 0. For cases in which the
entire PDF remains within D at all times, the total
cost in Equation (3) can be easily calculated by
integrating Jd from t′ = t0 to t′ = T . Figure 5
shows the time evolutions for Jd and Pd for both
the uncontrolled and controlled system responses.

By comparing with the uncontrolled response, we
conclude that (i) the controlled response reaches
the target with minimum cost, (ii) the stationary
PDF is closer to the desired target set, (iii) the
convergence to the stationary PDF is faster and
(iv) a higher percentage of the probability is kept
in the admissible domain. Because the system
starts from a uniformly distributed PDF, these
results validate the efficacy of the global control
solution and of the methodology.

4.2 Range Bounded Control for the Van der Pol
Oscillator

Consider the system

ẍ + θ(x2 − 1)ẋ + Ω2x = u(t) + w(t) (12)



Fig. 3. Vector field of the mean trajectories of the
controlled response.

Fig. 4. Upper view of the stationary PDF for the
controlled response.

Fig. 5. Time evolution of the normalized cost
Jp and Pd for the uncontrolled (—) and
controlled (−−) responses.

where w(t) is a Gaussian white noise process
satisfying E[w(t)] = 0, E[w(t)w(t + t′)] = 2Dδ(t′)
and u(t) is bounded with |u| ≤ û. The same cost
function as in the previous example is considered
herein. Let x1 = x and x2 = ẋ. The SDE in the
Stratonovich sense for the system is given by

dx1 = x2dt

dx2 = (−θ(x2
1 − 1)x2 − Ω2x1 + u)dt + dW

where the drift and diffusion terms are given by
the vector m = [x2,−θ(x2 − 1)ẋ−Ω2x + u]T and

σ = [0, 1]T respectively. In this case, the Wong-
Zakai correction term is zero. The corresponding
SDE in the Itô sense is given by

dx1 = x2dt

dx2 = (−θ(x2
1 − 1)x2 − Ω2x1 + u)dt + (2D)1/2dW

where W (t) is a unit Weiner process satisfying
E[W (t)] = 0 and E[W (t)W (t + t′)] = t′. The
moment equations of the state variables are

ṁ10 = m01

ṁ01 = θ(m01 −m21)− Ω2m10 + u

ṁ20 = 2m11 (13)

ṁ02 = 2θ(m02 −m22)− 2Ω2m11 + 2um01 + 2D

ṁ11 = θ(m11 −m31)− Ω2m20 + um10 + m02

The higher order moments are approximated us-
ing the Gaussian closure as explained. The pa-
rameters of the system are set as θ = 1, Ω = 1,
α = 0.5, β = 0.5, γ = 0 and D = 0.2. The
region defined by x1 ∈ [−4, 4] and x2 ∈ [−4, 4]
is discretized with 25 × 25 = 625 uniform cells.
When γ = 0, the control is found to be bang-
bang. Thus, the control set is bi-level u ∈ {−1, 1}.
The steady state PDF with the limit cycle of the
uncontrolled system is shown in Figure 6. At the
peak locations of the PDF, the response moves
slower along the limit cycle.

We now study the effect of the bound û in the op-
timal control. Several problems, satisfying û ≤ 1
were considered. Time evolutions of the moments
and E[L] taking the distribution of Figure 6 as
initial condition and û = 0.5 are shown in Figure
7. The corresponding steady state PDF of the
controlled response is shown in Figure 8. Notice
that the control is unable to break the limit cycle
behavior. However, the resulting steady-state cy-
cle is moved closer to the target than in the uncon-
trolled case. More importantly, the control starts
building up a ’bridge’ between the two regions
with higher probability i.e. where the dynamics
is slower, moving probability out of the limit cy-
cle and placing it at the origin. This mechanism
causes the formation of a third peak in the loca-
tion of the target. For higher control bounds this
third peak becomes more dominant. Results for
û = 1 are shown in Figure 9. The corresponding
steady state PDF is shown in Figure 10. For this
bound, the control solution has completely elim-
inated the limit cycle. This leads to a stationary
PDF with means very close to the target and small
covariances. However, the traces of the ’bridge’ are
still present.

5. CONCLUSIONS

This paper applies the methodology proposed in
Crespo and Sun (2003) to study the control of



Fig. 6. Steady state PDF of the uncontrolled Van
der Pol oscillator

Fig. 7. Time evolution of the controlled response
for û = 0.5

Fig. 8. Stationary PDF of the controlled response
for û = 0.5

a non-smooth non-linear system with parametric
and external excitations and the effects of control
bounds on the optimal stabilization of the Van
der Pol oscillator. Even though the computational
demands restrict the methodology to low state
dimensional systems, the solutions provided are
very difficult to obtain otherwise.
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