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Abstract: Nonlinear grey-box identification of industriabots is considered. A three-
step identification procedure is proposed in which pararadte rigid body dynamics,
friction, and flexibilities can be identified only using maesments on the motor. In the
first two steps, good initial parameter estimates are deigch are used in the last step,
where the parameters of a nonlinear physically paramegrimdel are identified directly
in the time domain. The procedure is exemplified using retd l@m an experimental
industrial robotCopyright(©) 2005 IFAC
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1. INTRODUCTION there could also be a need to re-tune robots at the cus-
tomer site due to wear or other changing conditions.
System identification in robotics is a vast research This means that there is an increasing need for good
area and can be divided into, at least, three differentidentification procedures.
levels or application areas. These levels involve the
estimation of the kinematic description, the dynamic
model (often divided into rigid body and flexible body

In the work presented here, a three-step identification
procedure is proposed in which parameters for rigid
dynamics), and the joint modeé.g, motor inertia, pqdy dynam|f:s, friction, and flexibilities can be |Fien—
- ' . tified only using measurements on the motor side of
gearbox elasticity and backlash, motor characteristics, 22 . o
the flexibility. The main point is the last step, where

and friction parameters). Some results on the latter . .
. . . .~ the parameters of a nonlinear physically parameter-
two areas are mentioned in Section 4. An overview .

. PRI : - ized model (a nonlinear grey-box model) are identified
of identification in robotics can also be found in directly in the time domain. The first two Stens aive
(Kozlowski, 1998). y : ps g

special attention to the problem of finding good ini-
Nominal parameter values can, for the kinematics andtial parameter estimates for the iterative optimization
rigid body dynamics, often be obtained from CAD routine. The procedure is exemplified using real data
models. Most of the joint model parameters are often from an experimental industrial robot.
measured in a test ben(_:h. Flexibilities and friction pa- The work reported here is closely related to the prob-
rameters are harder to find and therefore tuned after as; . . w2 i
o lems considered in, for exampl&gtringet al., 2003;
sembly. However, to obtain high accuracy, all parame- a
: Isakssonet al, 2003). In QOstring et al, 2003), a
ters must usually be tuned by the use of experimental : . L
; : . method is applied where inertial parameters as well as
data. The development rate of new industrial robots is arameters describing the flexibility can be identified
also high, with several kinds of robots and different P 9

confiaurations to tune each vear. For top performance directly in the time domain. This is done by utilizing
9 year. PP 'a user-defined model structure in the System Identifi-

cation Toolbox ($rB). However, only linear models

1 supported by VINNOVAs Center of Excellence ISIS at were considered in their work. (Isakssenal., 2003)
Linkoping University.




consider grey-box identification of a two-mass model

r Pa
with backlash, where black-box modeling is used to Ts, d
find initial parameter values. T, Pm \N\N O
The paper is organized as follows. In Section 2 the O

nonlinear grey-box identification problem is briefly

described and Section 3 shows the nonlinear robot 77777 Tf

model used for identification. The three-step identifi-

cation procedure is presented in Section 4. In Section 5Fig. 1. The two-mass flexible model of the robot arm.

the data collection is described, and Section 6 shows 3. ROBOT MODEL

the results from applying the proposed identification

procedure to the experimental data. Finally, Section 7 The industrial robot that will be studied in this paper

contains some conclusions and notes on future work. js for movements around an axis not affected by
gravity, modeled by a nonlinear two-mass flexible
model which is illustrated in Figure 1. A two-mass
model is probably too simple to describe the true

2. NONLINEAR GREY-BOX IDENTIFICATION system (See, for examp|e(")$tring et al, 2003) or

Figure 3), but it can still be used as an illustration of

The starting point for the nonlinear grey-box identifi- the proposed identification procedure.

cation is the continuous time state space model struc- . . . - .
ture P The differential equations describing the dynamics of

the robot arm are

i(t) = f(t,x(t),0,u(t)) (1a) Jm@m +1d(TPm — Po) + Tf +17s =T (4)
y(t) = h(t,z(t), 0, u(t)) +e(t) (1b) Japa — d(rpm — Pa) —Ts =0 (5)

where f and h are nonlinear functionsz(¢) is the where J,,, and J, are the moments of inertia of the
state vectory(t) andy(t) are input and output signals, motor and arm respectively, is the gear ratioy is
e(t) a white measurement disturbance signal, and the motor torque and is the damping parameter.
denotes time. Finally is the vector of unknown The spring and gear friction torques, and 7; re-
parameters. Given a set of input/output-data the aimspectively, are often approximately modeled by linear
is to determine the parameter vector that minimizes amodels (see, for exampleQétringet al, 2003)). In

criterion like this work, nonlinear models will be used to capture
N the effect of the Coulomb friction and to get a more
V() = 1 Z £2(t,0) 2) realistic model of the spring. The torque of the spring

N & is modeled as

wheree (t) denotes the prediction error Ts = k1(rom — 0a) + ka(rom — a)®  (6)

. whereyp,, andy, are the angles of the motor and arm
t,0) =y(t) — 9(t,0 3 m @

=(t,0) = y(t) = 9(t,9) (3) respectively, and:; and ks are the parameters of the
The experiments presented in this paper will utilize the spring. The torque due to friction is modeled as
nonllpear grey—box' model strugtuan_GREY, gvall- Tt = Fypm + F.5gn(ém) @)
able in a beta version of a nonlinear extension to the ) o
System Identification Toolbox (88), (Ljung, 2003). ~ WhereE, andf.. are the viscous and Coulomb friction
The model structursLGREY is similar to theaDGREY coefficients. A third nonlinearity of practical impor-
model structure in 88. The model can be either a t@nce is the presence of backlash in the gearbox, but
discrete or continuous time state space model, and iithis problem is Igft for future work. See also (Isaksson
is defined in a Matlab m-file/mex-file. In the current €t al. 2003). Using (4) to (7), a nonlinear state space
version of the software, only OE-models can be used, M0del of the system can be derived. The motor torque,
i.e. only additive white noises(t), on the output. The 7 IS useéd as input, and with the states defined as

predictiony(¢|0) then becomes the simulated output 1 TPm — Pa
of the model (1) with the input(¢) (withoute(t)) for = |z | = Gm (8)
the current parameter vectér The data set{y, u}, T3 Pa

is put into anIDDATA object andd is estimated by

. o . the state space equations become
applying a prediction error method, which performs a P q

numerical optimization of the criterion (2) by an itera- &1 =rey — T3 (9a)
tive numerical search algorithm. This search algorithm - i(_ Fozs — Fysen(as)
involves simulation of the system for different values 2T T v¥2 7 e ST

of . The user specifies an initial parameter vector and

ot ; . _ —rd(ras — ws) = ki@ — rhgal +u) (9
it is also possible to fix some componentsénTo rd(raz =) = rhyzy —rkary+u) - (90)

speed up the numerical optimization, the simulation 3 = i(d(m? ~a3) + kvt + kgzc?) (9c)
model is implemented in a mex-file (C-code). Ja



4. IDENTIFICATION PROCEDURE sion. A two-mass model (or coupled two-mass mod-
els for multivariable cases) is then sufficient to de-

The aim is to identify all parameters in the robot scribe the dynamics. Weaker (more compliant) robot
model, described in Section 3, using experimental datastructures will in addition introduce significant flexi-
and the nonlinear grey-box identification procedure bilities in the links and their connections. Therefore
described in Section 2. An inherent problem of itera- higher order models are sometimes needed in order
tive search routines is that only convergence to a localto get a sufficient description of the system. Many
minimum can be guaranteed. In order to converge todifferent methods are described in the literature (Behi
the global minimum, a good initial parameter estimate and Tesar, 1991; Ferretét al, 1994; Pfeiffer and
is important. Therefore a three-step identification pro- Holzl, 1995; Johanssoet al., 2000; Albu-Schffer
cedure is proposed where the first two steps find initial and Hirzinger, 2001). They differ in, for example, as-
parameter values and in the third step, the nonlinearsumed model structure, required measurement signals,
grey-box identification procedure is applied. and complexity of the identification method.

Identification of flexibilities is more involved than the
identification of rigid body dynamics. The main rea-
son is that now typically only a subset of the state
variables are measured and one can therefore not use
linear regression. This could of course be solved by
adding sensors, see.g, (Pfeiffer and Hblzl, 1995),
(Grotjahnet al., 2001; Gautier and Poignet, 2001; Sw- whe_re jo_int_parameters are estimated by fixation of
everset al,, 1997; Pfeiffer and Klzl, 1995). The stan- the'l'lnks n f|xtgrgs and using force Sensors, or (Albu-
dard procedure includes a dynamic model, linear in Sctaffer and Hirzinger, 2001.)’ where joint torgue sen-
the parameters, that is characterized by ten inertial pa-Sors are used. T hgse solutions are expensive "’?”d the
rameters per link. This representation is redundant, butgxperlments quite involved and therefore not desirable

there are methods to find a minimal dimensional pa- :f adsggglgr sol_ut;on et>_<|sts. I?h(l?je_rg(ljund %n% ?0\&
rameter vector, callebase parametershat character- and, ), an interesting method is described for the

ize the dynamic model. Usually a friction model with idgntificatipn of masses,.s_prings and damperg, on!y
two parameters per link is used, describing viscous using applled torque andqutmovements. The ident-
and Coulomb friction. This model is not sufficient to flcatlo_n is based onan e§t|m_ated I_:requency Response
correctly describe dynamic friction, see (Armstrong- Fun_ctlon (FR_F) in combination with the solution of
Heélouvry et al, 1994), but compensates the major an inverse eigenvalue problem. See also (qulehd
frictional effects on the identification of rigid body al., 2001) for an extension to systems containing cou-

dynamics. The robot is moved along some (optimized) ple(: |rr:1ert|la}|te;-rms, V\i/rr::cﬂﬁlsdthsl ct?]s%fzxiﬁnglt|vana:jb[[e
trajectory and applied torque and joint movements areSYS€Ms. Here, a simpihie €ino € used 1o

recorded. The parameters are then estimated using inoPtain initial values for the flexibilities in the two-

ear regression. Since the main interest here is to findmatsﬁ’ rgodel, seedSec'cllonKG.Z.t?r;ezt:gggd agso agply the
initial values, parts of this step could also be replaced method proposed in (Isakssenal, ), based on

by nominal values from CAD models. If, on the other black-box identification.
hand, (some) parameters can be estimated with high

accuracy in this step, they could be fixed during the
third step, leading to a lower dimensional iterative
search.

4.1 Step 1: Initial values for rigid body dynamics and
friction

There exists a vast amount of literature on the identi-
fication of the rigid body dynamics, see, for example,

4.3 Step 3: Nonlinear grey-box identification

Combining the estimates from step 1 and 2 gives an
For the robot model in Section 3, the rigid body initial parameter estimate, and the nonlinear grey-box
dynamics and friction is identification method described in Section 2 can now
. . , be applied.

(Jm + 7’2Ja)§0m + Foom + Fesgngy, =7 (10) PP
which can be written as linear regression
J’HL + T2J(L

(Em ém seném) Fy =7 (1) The data used for identification are real data collected
Fe from an experimental robot. For this kind of applica-
The parameter vector can then be determined as thdion it is necessary to use feedback control while data
solution to a standard least-squares problem. are collected, both for safety reasons and in order to
keep the robot around its operation point. An experi-
mental control system is used, which makes it possible
4.2 Step 2: Initial values for flexibilities to use off-line computed reference signals for the joint
controllers. The identification will therefore be carried
The major flexibility in an industrial robot is nor- out using closed loop data, which might lead to biased
mally located at the joint level, due to the transmis- estimates (see (Ljung, 1999) for details).

5. DATA COLLECTION



For the different steps in the identification procedure,
different excitation signals are needed. In step 1, the
rigid body dynamics and friction parameters should
be excited without introducing any oscillations due to
the flexibilities. Therefore a low frequency excitation
is preferred. In step 2, on the other hand, the whole
frequency band should be excited where notch andg
peak frequencies in the frequency response function =
are expected. The influence of static friction should
also be reduced, so a broadband excitation with as few
zero velocity crossings as possible is selected. Finally,
for step 3 a data set (or a combination of data sets) is
needed that excite all free parameters in the model.
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The properties of the excitation signal will of course 10 Frequency (rad/s) 1

affect the quality of the estimated parameters. Since

the system is nonlinear, not only the spectrum will Fig. 2. Magnitude of the FRF for data sets 2 (thin line)
matter, but also the amplitude and the actual wave- and 3 (thick line) from motor torque to motor
forms. It is common to optimize the excitation sig- acceleration.

nal according to some criterion, see, for example, non-causal low-pass filtering (filtfilt in Matlab) and
(Sweverset al, 1997), but that is outside the scope of cenra) difference algorithms.

this paper. The following three excitation signals will

be used as reference speeds/, for the controller.

They are all sampled at 2kHZ'(= 0.5 ms). 6.2 Step 2

Data set 1: Triangle wave signal, 6.25 s of data, with
amplitude 40rad/s and period time 5s.

Data set 2; Multisine signal (sum of sinusoids), 5 s of
data, with flat amplitude spectrum in the frequency
interval 1-40 Hz with a crest factor of 1.55, period
time 5s and a peak value of 5rad/s. The multisine
signal is superimposed on a square wave with am-
plitude 8rad/s and period time 5s.

Dataset 3: Similar to data set 2, but the multisine
signal has a peak value of 10 rad/s and the amplitude s(Jas® 4 k)
of the square wave is 12 rad/s. $3Jodm + 2T Fy + s - k(Jm +172J,) + kF,

The last two data sets mainly differ in amplitude and with 1/.J,, as the high frequency gain arwtl(li)

can therefore be used to see nonlinear effects on the\/m as the notch frequency. Using the FRFs in
estimates. For details on the excitation signals, see ¢ '

. . Figure 2, the following numerical values are achieved.
e.g.(Pintelon and Schoukens, 2001; Ljung, 1999). For data set 2&.77[7%] — 0.0126 andwif] — 35.19, and
for data set 3/ = 0.0120 andw’’ = 37.70. The
6. RESULTS estimate ofJ,, is taken as the average vaIU(_a fqr the

two data sets/,,, = 0.0123. Since the gear ratio, is

The physical parameters in the robot model from Sec- Kown, an estimaté, = 790 is found by combining
tion 3 will here be identified by applying the proposed (12) andJ,, = 0.0123. Knowing J,, the spring
three-step identification procedure from Section 4, us- stiffness k1" for data set Is dgrlved by using the
ing the experimental data described in Section 5. The@pproximate relationl;) = VKl Ja, which for the
gear ratior = 1/224.3 is known. two data sets givek'?) = 9.78 - 10° andkl®l = 1.12-

108. Since the two amplitudes give different spring

constants, it is probably fair to conclude that there is a
6.1 Step 1 nonlinear effect present in the experimental data. The

damping is hard to estimate and its initial value is here
Using data set 1 together with the linear regression Simply set to zero.

(11) gives the following parameter estimates

The FRFs for data sets 2 and 3 from motor torque
to motor acceleration can be seen in Figure 2. Note
especially that the notch frequency is higher for the
data set with larger amplitude. For a linear system,
these estimates should be similar (except for noise).
For a linear two-mass model, the approximate transfer
function (ignoring the dampingi) from motor torque

to motor acceleration is given by

For a higher order model and/or a multivariable model,

T + 12T, 0.0280 the procedure described in (Hovlaatlal, 2001) can
F, = 10.0136 (12) be used in this step.
F, 0.642

To find initial estimates fok; andks, the following ad
The velocity and acceleration used in the regressor, sedoc procedure is used. The spring constaftom the
(11), are obtained from position measurements usingFRFs can, in some sense, be regarded as an “average



Table 1. Estimated parameters, where the Table 3. Difference in model fit for theB

initial model nD comes from the first two model, compared to Table 2, when each

steps and the other models are estimated in parameter is perturbed20%,/ — 20%.

the third step using the denoted data sets. Saase Saasei a3

P ata se ata se ata se
For then8 model, the sta.nd.ard deviation of y A— T 800 —094—107
the parameter estimate is included as well. Jo —851/-534  503-945  1.08/—7.36
. k1 0.13/ 0.02 —2.73/-2.55 —3.93/—4.14

'\E"Sotdzgta, ”ﬁm ”112 "? s mi b3 ks —0.01/—0.01 —0.05/ 0.06 —0.11/ 0.08

= - ' ! o d 0.03/—0.06 —0.09/ 0.02  0.12/—0.38
Jm (x10%) © 123 126 122 1.21+0.00181 Fy —579/-1.65  2.46/-4.23  0.70/—1.84
Jo (x107%) 079  1.07 1.11  1.13+0.00209 F. 1471823 —011/-2L.5 —1.25-9.13

k1 (x1076) 0814 1.42 1.46 1.4640.00346
ks (x10719) 5.4 3.77  4.69 3.7240.186

d (x1073) 0 2.73 3.08 2.6340.0488
F, (x102) 1.36  1.18 1.36 1.3040.00235
1
Fe (x107) 642 668 6.23 6.44+0.00488 tially improved by the nonlinear grey-box identifica-
Table 2. Model fit when validating esti- tion step. However, to be fair, the initial estimates
mated models on data sets 1,2 and 3. from step 1 and 2 (theD model) could probably be

= — — — improved by using optimal excitation. There are no
Datasell 814l 9719 9716 9639 major @fferences in model fit when vglldgtlng Wllth'
Dataset? 328 6154 6059 62.33 estimation data compared to cross validation. This is
Dataset3 4995 74.43 7442 74.94 also reasonable since the signal-to-noise ratio is quite
large. For thenmB model, the relative importance of
data set 1 gets lower, which also shows up in the
increased model fit for data sets 2 and 3.

spring constant”. Reasonable estimatesifoand k3
can then be found by minimizing
e 4] [4] 4] 2 To analyze the relative importance on the model fit
kD2 (1) — k2l (1) — ks(2 (2))?
ZZ (( 21 () = kaa (1) = s (1)) ) for each parameter, the estimated moni@lis used
(14) and each parameter is perturbef0%, one at a time.
where k! and 2! () are the estimated spring con- In Table 3 the difference in model fit can be seen for

stants and spring deflection, respectively, for data setsthe three data sets. For data set 1, one can note that
i = 2,3. Since the state, is not measured, it is sim-  the parameters describing the flexibility have a small

ulated using the model (9) with the estimated nominal influence, compared to the rigid body dynamics and

parameters and a linear spring modek kx;. friction parameters. The nonlinear stiffness parameter,
ks, does not significantly affect the model fit. Remov-
ing it gives almost no reduction in model fit. This is

6.3 Step 3 a puzzling result, since estimated FRFs (see Figure 2)
as well as test bench measurements show an amplitude

Combining the estimates from steps 1 and 2 gives dependent gearbox stiffness. A more detailed analysis
the initial modeln® in Table 1. The quality of the Of how the nonlinearities affect the estimate is there-

estimated models is assessed using the model fit fore needed, including more experiments and other
model structures.

=2 t=1

_ \/Zi\le(y(t) — () (15) As an alternative sensitivity analysis, the covariance
21\1 (y(t) — )2 matrix for the estimated parameters can allso be stud-
=1 ied. The asymptotic accuracy of a certain parame-
wherey(t) is the measured output (the motor veloc- ter relates to how the parameter affects the predicted
ity), 9(¢) is the simulated output angl is the mean  model output. Loosely speaking; VA,(G)[VA,(Q)]T
value of the measured output. For the estimation, datawill asymptotically be proportional to the inverse of
set 1 is combined with data sets 2 and/or 3 (using the parameter covariance matrix (see (Ljung, 1999) for
merge in $18) according to Table 1. Including data a thorough treatment). Comparing the standard devia-
set 1 is motivated by the fact that if only data sets 2 tions in Table 1 also shows that the parameter, and
and/or 3 are used, the model fit is improved when val- to some extent the dampinfj are hard to accurately
idating on data sets 2 and 3, but the estimated param-estimate.
eters are unrealistie(g, negative Coulomb friction)
and the model fit for data set 1 is low. The optimiza-
tion is carried out for 30 iterations, giving parameter ), can be seen together with the estimated FRFs
estimates and models shown in Table 1. The estlmatedfF
or data sets 2 and 3. One can clearly see the close

models_a_re v_ahdgted using the three data sets and thEéorrespondence, which further validates the estimated
model fit is given in Table 2.

model. However, to capture the two resonance peaks
Comparing the model fit for the different models in around 60 and 80rad/s in the FRF, (at least) a three-
Table 2, one can notice that the model fit is substan- mass model would be needed.

fit =100 | 1

In Figure 3 a Bode diagram for the estimated model
n8, ignoring the nonlinear model parameteks and
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Frequency (rad/s)

Fig. 3. Magnitude of the FRF for data sets 2 (thin line)
and 3 (thick line) from motor torque to motor
velocity together with the estimated modes
(dash-dotted line).

7. CONCLUSIONS

A three-step identification procedure has been pro-
posed for the identification of rigid body dynamics,
friction, and flexibilities, only using measurements on

the motor side. The procedure has been exemplified

using experimental data from an industrial robot to-
gether with a flexible two-mass model where nonlin-
ear spring stiffness and Coulomb friction have been

added. The estimated physical parameters have realis-

tic numerical values and give a model with high model

Behi, F. and D. Tesar (1991). Parametric identification
for industrial manipulators using experimental
modal analysisIEEE Trans. Robot. Automat.
7(5), 642-652.

Berglund, E. and G. E. Hovland (2000). Automatic
elasticity tuning of industrial robot manipula-
tors. In: Proceedings of the 39th IEEE Confer-
ence on Decision and Contrtdydney, Australia.
pp. 5091-5096.

Ferretti, G., G. Magnani and P. Rocco (1994). Esti-
mation of resonant transfer functions in the joints
of an industrial robot. In2nd IFAC Symposium
on Intelligent Control and Control Applications,
SICICA 94 \ol. 1. Budapest. pp. 371-376.

Gautier, M. and P. Poignet (2001). Extended kalman
filtering and weighted least squares dynamic
identification of robot. Control Engineering
Practice9(12), 1361-1372.

Grotjahn, M., M. Daemi and B. Heimann (2001).
Friction and rigid body identification of robot
dynamics.International Journal of Solids and
Structures38, 1889-1902.

Hovland, G. E., E. Berglund and S. Hanssen (2001).
Identification of coupled elastic dynamics us-
ing inverse eigenvalue theory. I®roceedings
of the 32nd ISR (International Symposium on
Robotics) pp. 1392-1397.

Isaksson, A., R. Lindkvist, X. Zhang, M. Nordin and

M. Tallfors (2003). Identification of mechanical

parameters in drive train systems. IRAC Sys-

tem Identification Symposium SYSID 2003

fit and fairly good correspondence to FRF measure-Johansson, R., A. Robertsson, K. Nilsson and M. Ver-

ments. However, the nonlinear spring stiffness is not
significant in the selected data sets.

There are a number of aspects of the presented re
sults that are subjects for future work. One important
problem is to find a model structure that explains the

amplitude dependent properties of the system. This

will probably involve higher order models as well as
additional nonlinearities. A further topic is to apply
the method to a multivariable system. There are no
principal problems in the proposed identification pro-
cedure, but the last step involving the iterative numeri-

cal search would be more time consuming and perhaps

numerically sensitive since the system is highly reso-
nant.
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