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Abstract: Nonlinear grey-box identification of industrialrobots is considered. A three-
step identification procedure is proposed in which parameters for rigid body dynamics,
friction, and flexibilities can be identified only using measurements on the motor. In the
first two steps, good initial parameter estimates are derived which are used in the last step,
where the parameters of a nonlinear physically parameterized model are identified directly
in the time domain. The procedure is exemplified using real data from an experimental
industrial robot.Copyright c© 2005 IFAC.
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1. INTRODUCTION

System identification in robotics is a vast research
area and can be divided into, at least, three different
levels or application areas. These levels involve the
estimation of the kinematic description, the dynamic
model (often divided into rigid body and flexible body
dynamics), and the joint model (e.g., motor inertia,
gearbox elasticity and backlash, motor characteristics,
and friction parameters). Some results on the latter
two areas are mentioned in Section 4. An overview
of identification in robotics can also be found in
(Kozlowski, 1998).

Nominal parameter values can, for the kinematics and
rigid body dynamics, often be obtained from CAD
models. Most of the joint model parameters are often
measured in a test bench. Flexibilities and friction pa-
rameters are harder to find and therefore tuned after as-
sembly. However, to obtain high accuracy, all parame-
ters must usually be tuned by the use of experimental
data. The development rate of new industrial robots is
also high, with several kinds of robots and different
configurations to tune each year. For top performance,
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there could also be a need to re-tune robots at the cus-
tomer site due to wear or other changing conditions.
This means that there is an increasing need for good
identification procedures.

In the work presented here, a three-step identification
procedure is proposed in which parameters for rigid
body dynamics, friction, and flexibilities can be iden-
tified only using measurements on the motor side of
the flexibility. The main point is the last step, where
the parameters of a nonlinear physically parameter-
ized model (a nonlinear grey-box model) are identified
directly in the time domain. The first two steps give
special attention to the problem of finding good ini-
tial parameter estimates for the iterative optimization
routine. The procedure is exemplified using real data
from an experimental industrial robot.

The work reported here is closely related to the prob-
lems considered in, for example, (Östringet al., 2003;
Isakssonet al., 2003). In (̈Ostring et al., 2003), a
method is applied where inertial parameters as well as
parameters describing the flexibility can be identified
directly in the time domain. This is done by utilizing
a user-defined model structure in the System Identifi-
cation Toolbox (SITB). However, only linear models
were considered in their work. (Isakssonet al., 2003)



consider grey-box identification of a two-mass model
with backlash, where black-box modeling is used to
find initial parameter values.

The paper is organized as follows. In Section 2 the
nonlinear grey-box identification problem is briefly
described and Section 3 shows the nonlinear robot
model used for identification. The three-step identifi-
cation procedure is presented in Section 4. In Section 5
the data collection is described, and Section 6 shows
the results from applying the proposed identification
procedure to the experimental data. Finally, Section 7
contains some conclusions and notes on future work.

2. NONLINEAR GREY-BOX IDENTIFICATION

The starting point for the nonlinear grey-box identifi-
cation is the continuous time state space model struc-
ture

ẋ(t) = f(t, x(t), θ, u(t)) (1a)

y(t) = h(t, x(t), θ, u(t)) + e(t) (1b)

wheref and h are nonlinear functions.x(t) is the
state vector,u(t) andy(t) are input and output signals,
e(t) a white measurement disturbance signal, andt
denotes time. Finallyθ is the vector of unknown
parameters. Given a set of input/output-data the aim
is to determine the parameter vector that minimizes a
criterion like

VN (θ) =
1

N

N
∑

t=1

ε2(t, θ) (2)

whereε(t) denotes the prediction error

ε(t, θ) = y(t) − ŷ(t, θ) (3)

The experiments presented in this paper will utilize the
nonlinear grey-box model structureNLGREY, avail-
able in a beta version of a nonlinear extension to the
System Identification Toolbox (SITB), (Ljung, 2003).
The model structureNLGREY is similar to theIDGREY

model structure in SITB. The model can be either a
discrete or continuous time state space model, and it
is defined in a Matlab m-file/mex-file. In the current
version of the software, only OE-models can be used,
i.e. only additive white noise,e(t), on the output. The
prediction ŷ(t|θ) then becomes the simulated output
of the model (1) with the inputu(t) (without e(t)) for
the current parameter vectorθ. The data set,{y, u},
is put into anIDDATA object andθ is estimated by
applying a prediction error method, which performs a
numerical optimization of the criterion (2) by an itera-
tive numerical search algorithm. This search algorithm
involves simulation of the system for different values
of θ. The user specifies an initial parameter vector and
it is also possible to fix some components inθ. To
speed up the numerical optimization, the simulation
model is implemented in a mex-file (C-code).
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Fig. 1. The two-mass flexible model of the robot arm.

3. ROBOT MODEL

The industrial robot that will be studied in this paper
is, for movements around an axis not affected by
gravity, modeled by a nonlinear two-mass flexible
model which is illustrated in Figure 1. A two-mass
model is probably too simple to describe the true
system (see, for example, (Östring et al., 2003) or
Figure 3), but it can still be used as an illustration of
the proposed identification procedure.

The differential equations describing the dynamics of
the robot arm are

Jmϕ̈m + rd(rϕ̇m − ϕ̇a) + τf + rτs = τ (4)

Jaϕ̈a − d(rϕ̇m − ϕ̇a) − τs = 0 (5)

whereJm andJa are the moments of inertia of the
motor and arm respectively,r is the gear ratio,τ is
the motor torque andd is the damping parameter.
The spring and gear friction torques,τs and τf re-
spectively, are often approximately modeled by linear
models (see, for example, (Östring et al., 2003)). In
this work, nonlinear models will be used to capture
the effect of the Coulomb friction and to get a more
realistic model of the spring. The torque of the spring
is modeled as

τs = k1(rϕm − ϕa) + k3(rϕm − ϕa)3 (6)

whereϕm andϕa are the angles of the motor and arm
respectively, andk1 andk3 are the parameters of the
spring. The torque due to friction is modeled as

τf = Fvϕ̇m + Fc sgn(ϕ̇m) (7)

whereFv andFc are the viscous and Coulomb friction
coefficients. A third nonlinearity of practical impor-
tance is the presence of backlash in the gearbox, but
this problem is left for future work. See also (Isaksson
et al., 2003). Using (4) to (7), a nonlinear state space
model of the system can be derived. The motor torque,
τ , is used as input,u, and with the states defined as

x =





x1

x2

x3



 =





rϕm − ϕa

ϕ̇m

ϕ̇a



 (8)

the state space equations become

ẋ1 = rx2 − x3 (9a)

ẋ2 =
1

Jm

(

− Fvx2 − Fc sgn(x2)

− rd(rx2 − x3) − rk1x1 − rk3x
3
1 + u

)

(9b)

ẋ3 =
1

Ja

(

d(rx2 − x3) + k1x1 + k3x
3
1

)

(9c)



4. IDENTIFICATION PROCEDURE

The aim is to identify all parameters in the robot
model, described in Section 3, using experimental data
and the nonlinear grey-box identification procedure
described in Section 2. An inherent problem of itera-
tive search routines is that only convergence to a local
minimum can be guaranteed. In order to converge to
the global minimum, a good initial parameter estimate
is important. Therefore a three-step identification pro-
cedure is proposed where the first two steps find initial
parameter values and in the third step, the nonlinear
grey-box identification procedure is applied.

4.1 Step 1: Initial values for rigid body dynamics and
friction

There exists a vast amount of literature on the identi-
fication of the rigid body dynamics, see, for example,
(Grotjahnet al., 2001; Gautier and Poignet, 2001; Sw-
everset al., 1997; Pfeiffer and Ḧolzl, 1995). The stan-
dard procedure includes a dynamic model, linear in
the parameters, that is characterized by ten inertial pa-
rameters per link. This representation is redundant, but
there are methods to find a minimal dimensional pa-
rameter vector, calledbase parameters, that character-
ize the dynamic model. Usually a friction model with
two parameters per link is used, describing viscous
and Coulomb friction. This model is not sufficient to
correctly describe dynamic friction, see (Armstrong-
Hélouvry et al., 1994), but compensates the major
frictional effects on the identification of rigid body
dynamics. The robot is moved along some (optimized)
trajectory and applied torque and joint movements are
recorded. The parameters are then estimated using lin-
ear regression. Since the main interest here is to find
initial values, parts of this step could also be replaced
by nominal values from CAD models. If, on the other
hand, (some) parameters can be estimated with high
accuracy in this step, they could be fixed during the
third step, leading to a lower dimensional iterative
search.

For the robot model in Section 3, the rigid body
dynamics and friction is

(Jm + r2Ja)ϕ̈m + Fvϕ̇m + Fc sgn ϕ̇m = τ (10)

which can be written as linear regression

(

ϕ̈m ϕ̇m sgn ϕ̇m

)





Jm + r2Ja

Fv

Fc



 = τ (11)

The parameter vector can then be determined as the
solution to a standard least-squares problem.

4.2 Step 2: Initial values for flexibilities

The major flexibility in an industrial robot is nor-
mally located at the joint level, due to the transmis-

sion. A two-mass model (or coupled two-mass mod-
els for multivariable cases) is then sufficient to de-
scribe the dynamics. Weaker (more compliant) robot
structures will in addition introduce significant flexi-
bilities in the links and their connections. Therefore
higher order models are sometimes needed in order
to get a sufficient description of the system. Many
different methods are described in the literature (Behi
and Tesar, 1991; Ferrettiet al., 1994; Pfeiffer and
Hölzl, 1995; Johanssonet al., 2000; Albu-Scḧaffer
and Hirzinger, 2001). They differ in, for example, as-
sumed model structure, required measurement signals,
and complexity of the identification method.

Identification of flexibilities is more involved than the
identification of rigid body dynamics. The main rea-
son is that now typically only a subset of the state
variables are measured and one can therefore not use
linear regression. This could of course be solved by
adding sensors, see,e.g., (Pfeiffer and Ḧolzl, 1995),
where joint parameters are estimated by fixation of
the links in fixtures and using force sensors, or (Albu-
Scḧaffer and Hirzinger, 2001), where joint torque sen-
sors are used. These solutions are expensive and the
experiments quite involved and therefore not desirable
if a simpler solution exists. In (Berglund and Hov-
land, 2000), an interesting method is described for the
identification of masses, springs and dampers, only
using applied torque and joint movements. The identi-
fication is based on an estimated Frequency Response
Function (FRF) in combination with the solution of
an inverse eigenvalue problem. See also (Hovlandet
al., 2001) for an extension to systems containing cou-
pled inertia terms, which is the case for multivariable
systems. Here, a simplified method will be used to
obtain initial values for the flexibilities in the two-
mass model, see Section 6.2. One could also apply the
method proposed in (Isakssonet al., 2003), based on
black-box identification.

4.3 Step 3: Nonlinear grey-box identification

Combining the estimates from step 1 and 2 gives an
initial parameter estimate, and the nonlinear grey-box
identification method described in Section 2 can now
be applied.

5. DATA COLLECTION

The data used for identification are real data collected
from an experimental robot. For this kind of applica-
tion it is necessary to use feedback control while data
are collected, both for safety reasons and in order to
keep the robot around its operation point. An experi-
mental control system is used, which makes it possible
to use off-line computed reference signals for the joint
controllers. The identification will therefore be carried
out using closed loop data, which might lead to biased
estimates (see (Ljung, 1999) for details).



For the different steps in the identification procedure,
different excitation signals are needed. In step 1, the
rigid body dynamics and friction parameters should
be excited without introducing any oscillations due to
the flexibilities. Therefore a low frequency excitation
is preferred. In step 2, on the other hand, the whole
frequency band should be excited where notch and
peak frequencies in the frequency response function
are expected. The influence of static friction should
also be reduced, so a broadband excitation with as few
zero velocity crossings as possible is selected. Finally,
for step 3 a data set (or a combination of data sets) is
needed that excite all free parameters in the model.

The properties of the excitation signal will of course
affect the quality of the estimated parameters. Since
the system is nonlinear, not only the spectrum will
matter, but also the amplitude and the actual wave-
forms. It is common to optimize the excitation sig-
nal according to some criterion, see, for example,
(Sweverset al., 1997), but that is outside the scope of
this paper. The following three excitation signals will
be used as reference speed,ϕref

m , for the controller.
They are all sampled at 2 kHz (T = 0.5 ms).

Data set 1: Triangle wave signal, 6.25 s of data, with
amplitude 40 rad/s and period time 5 s.

Data set 2: Multisine signal (sum of sinusoids), 5 s of
data, with flat amplitude spectrum in the frequency
interval 1-40 Hz with a crest factor of 1.55, period
time 5 s and a peak value of 5 rad/s. The multisine
signal is superimposed on a square wave with am-
plitude 8 rad/s and period time 5 s.

Data set 3: Similar to data set 2, but the multisine
signal has a peak value of 10 rad/s and the amplitude
of the square wave is 12 rad/s.

The last two data sets mainly differ in amplitude and
can therefore be used to see nonlinear effects on the
estimates. For details on the excitation signals, see,
e.g.(Pintelon and Schoukens, 2001; Ljung, 1999).

6. RESULTS

The physical parameters in the robot model from Sec-
tion 3 will here be identified by applying the proposed
three-step identification procedure from Section 4, us-
ing the experimental data described in Section 5. The
gear ratior = 1/224.3 is known.

6.1 Step 1

Using data set 1 together with the linear regression
(11) gives the following parameter estimates





Jm + r2Ja

Fv

Fc



 =





0.0280
0.0136
0.642



 (12)

The velocity and acceleration used in the regressor, see
(11), are obtained from position measurements using
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Fig. 2. Magnitude of the FRF for data sets 2 (thin line)
and 3 (thick line) from motor torque to motor
acceleration.

non-causal low-pass filtering (filtfilt in Matlab) and
central difference algorithms.

6.2 Step 2

The FRFs for data sets 2 and 3 from motor torque
to motor acceleration can be seen in Figure 2. Note
especially that the notch frequency is higher for the
data set with larger amplitude. For a linear system,
these estimates should be similar (except for noise).
For a linear two-mass model, the approximate transfer
function (ignoring the damping,d) from motor torque
to motor acceleration is given by

s(Jas2 + k)

s3JaJm + s2JaFv + s · k(Jm + r2Ja) + kFv

(13)
with 1/Jm as the high frequency gain andωn =
√

k/Ja as the notch frequency. Using the FRFs in
Figure 2, the following numerical values are achieved.
For data set 2,J [2]

m = 0.0126 andω
[2]
n = 35.19, and

for data set 3,J [3]
m = 0.0120 andω

[3]
n = 37.70. The

estimate ofJm is taken as the average value for the
two data sets,Jm = 0.0123. Since the gear ratio,r, is
known, an estimateJa = 790 is found by combining
(12) and Jm = 0.0123. Knowing Ja, the spring
stiffnessk[i] for data seti is derived by using the
approximate relationω[i]

n =
√

k[i]/Ja, which for the
two data sets givesk[2] = 9.78 · 105 andk[3] = 1.12 ·
106. Since the two amplitudes give different spring
constants, it is probably fair to conclude that there is a
nonlinear effect present in the experimental data. The
damping is hard to estimate and its initial value is here
simply set to zero.

For a higher order model and/or a multivariable model,
the procedure described in (Hovlandet al., 2001) can
be used in this step.

To find initial estimates fork1 andk3, the following ad
hoc procedure is used. The spring constantk from the
FRFs can, in some sense, be regarded as an “average



Table 1. Estimated parameters, where the
initial model m0 comes from the first two
steps and the other models are estimated in
the third step using the denoted data sets.
For them3 model, the standard deviation of
the parameter estimate is included as well.

Model: m0 m1 m2 m3
Est. data: Init. 1,2 1,3 1,2,3
Jm (×102) 1.23 1.26 1.22 1.21±0.00181
Ja (×10−3) 0.79 1.07 1.11 1.13±0.00209
k1 (×10−6) 0.814 1.42 1.46 1.46±0.00346
k3 (×10−10) 5.4 3.77 4.69 3.72±0.186
d (×10−3) 0 2.73 3.08 2.63±0.0488
Fv (×102) 1.36 1.18 1.36 1.30±0.00235
Fc (×101) 6.42 6.68 6.23 6.44±0.00488

Table 2. Model fit when validating esti-
mated models on data sets 1,2 and 3.

m0 m1 m2 m3
Data set 1 84.44 97.12 97.46 96.39
Data set 2 32.8 61.54 60.59 62.33
Data set 3 49.95 74.43 74.42 74.94

spring constant”. Reasonable estimates fork1 andk3

can then be found by minimizing

3
∑

i=2

N
∑

t=1

(

(

k[i]x
[i]
1 (t) − k1x

[i]
1 (t) − k3(x

[i]
1 (t))3

)2
)

(14)
wherek[i] and x

[i]
1 (t) are the estimated spring con-

stants and spring deflection, respectively, for data sets
i = 2, 3. Since the statex1 is not measured, it is sim-
ulated using the model (9) with the estimated nominal
parameters and a linear spring modelτs = kx1.

6.3 Step 3

Combining the estimates from steps 1 and 2 gives
the initial modelm0 in Table 1. The quality of the
estimated models is assessed using the model fit

fit = 100



1 −

√

∑N

t=1(y(t) − ŷ(t))2
√

∑N

t=1(y(t) − ȳ)2



 (15)

wherey(t) is the measured output (the motor veloc-
ity), ŷ(t) is the simulated output and̄y is the mean
value of the measured output. For the estimation, data
set 1 is combined with data sets 2 and/or 3 (using
merge in SITB) according to Table 1. Including data
set 1 is motivated by the fact that if only data sets 2
and/or 3 are used, the model fit is improved when val-
idating on data sets 2 and 3, but the estimated param-
eters are unrealistic (e.g., negative Coulomb friction)
and the model fit for data set 1 is low. The optimiza-
tion is carried out for 30 iterations, giving parameter
estimates and models shown in Table 1. The estimated
models are validated using the three data sets and the
model fit is given in Table 2.

Comparing the model fit for the different models in
Table 2, one can notice that the model fit is substan-

Table 3. Difference in model fit for them3
model, compared to Table 2, when each

parameter is perturbed+20%/ − 20%.

Data set 1 Data set 2 Data set 3
Jm −4.51/−0.81 0.77/−8.09 −0.94/−10.7
Ja −8.51/−5.34 5.03/−9.45 1.08/−7.36
k1 0.13/ 0.02 −2.73/−2.55 −3.93/−4.14

k3 −0.01/−0.01 −0.05/ 0.06 −0.11/ 0.08
d 0.03/−0.06 −0.09/ 0.02 0.12/−0.38
Fv −5.79/−1.65 2.46/−4.23 0.70/−1.84

Fc −14.7/−8.23 −0.11/−21.5 −1.25/−9.13

tially improved by the nonlinear grey-box identifica-
tion step. However, to be fair, the initial estimates
from step 1 and 2 (them0 model) could probably be
improved by using optimal excitation. There are no
major differences in model fit when validating with
estimation data compared to cross validation. This is
also reasonable since the signal-to-noise ratio is quite
large. For them3 model, the relative importance of
data set 1 gets lower, which also shows up in the
increased model fit for data sets 2 and 3.

To analyze the relative importance on the model fit
for each parameter, the estimated modelm3 is used
and each parameter is perturbed±20%, one at a time.
In Table 3 the difference in model fit can be seen for
the three data sets. For data set 1, one can note that
the parameters describing the flexibility have a small
influence, compared to the rigid body dynamics and
friction parameters. The nonlinear stiffness parameter,
k3, does not significantly affect the model fit. Remov-
ing it gives almost no reduction in model fit. This is
a puzzling result, since estimated FRFs (see Figure 2)
as well as test bench measurements show an amplitude
dependent gearbox stiffness. A more detailed analysis
of how the nonlinearities affect the estimate is there-
fore needed, including more experiments and other
model structures.

As an alternative sensitivity analysis, the covariance
matrix for the estimated parameters can also be stud-
ied. The asymptotic accuracy of a certain parame-
ter relates to how the parameter affects the predicted
model output. Loosely speaking,EV

′

N (θ)[V
′

N (θ)]T

will asymptotically be proportional to the inverse of
the parameter covariance matrix (see (Ljung, 1999) for
a thorough treatment). Comparing the standard devia-
tions in Table 1 also shows that thek3 parameter, and
to some extent the dampingd, are hard to accurately
estimate.

In Figure 3 a Bode diagram for the estimated model
m3, ignoring the nonlinear model parameters (k3 and
Fc), can be seen together with the estimated FRFs
for data sets 2 and 3. One can clearly see the close
correspondence, which further validates the estimated
model. However, to capture the two resonance peaks
around 60 and 80 rad/s in the FRF, (at least) a three-
mass model would be needed.
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Fig. 3. Magnitude of the FRF for data sets 2 (thin line)
and 3 (thick line) from motor torque to motor
velocity together with the estimated modelm3
(dash-dotted line).

7. CONCLUSIONS

A three-step identification procedure has been pro-
posed for the identification of rigid body dynamics,
friction, and flexibilities, only using measurements on
the motor side. The procedure has been exemplified
using experimental data from an industrial robot to-
gether with a flexible two-mass model where nonlin-
ear spring stiffness and Coulomb friction have been
added. The estimated physical parameters have realis-
tic numerical values and give a model with high model
fit and fairly good correspondence to FRF measure-
ments. However, the nonlinear spring stiffness is not
significant in the selected data sets.

There are a number of aspects of the presented re-
sults that are subjects for future work. One important
problem is to find a model structure that explains the
amplitude dependent properties of the system. This
will probably involve higher order models as well as
additional nonlinearities. A further topic is to apply
the method to a multivariable system. There are no
principal problems in the proposed identification pro-
cedure, but the last step involving the iterative numeri-
cal search would be more time consuming and perhaps
numerically sensitive since the system is highly reso-
nant.
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Albu-Scḧaffer, A. and G. Hirzinger (2001). Parameter
identification and passivity based joint control
for a 7DOF torque controlled light weight robot.
In: Proceedings of the 2001 IEEE International
Conference on Robotics and Automation. Seoul,
Korea. pp. 2852–2858.

Armstrong-H́elouvry, B., P. Dupont
and C. Canudas de Wit (1994). A survey of mod-
els, analysis tools and compensation methods for
the control of machines with friction.Automatica
30(7), 1083–1138.

Behi, F. and D. Tesar (1991). Parametric identification
for industrial manipulators using experimental
modal analysis.IEEE Trans. Robot. Automat.
7(5), 642–652.

Berglund, E. and G. E. Hovland (2000). Automatic
elasticity tuning of industrial robot manipula-
tors. In: Proceedings of the 39th IEEE Confer-
ence on Decision and Control. Sydney, Australia.
pp. 5091–5096.

Ferretti, G., G. Magnani and P. Rocco (1994). Esti-
mation of resonant transfer functions in the joints
of an industrial robot. In:2nd IFAC Symposium
on Intelligent Control and Control Applications,
SICICA 94. Vol. 1. Budapest. pp. 371–376.

Gautier, M. and P. Poignet (2001). Extended kalman
filtering and weighted least squares dynamic
identification of robot. Control Engineering
Practice9(12), 1361–1372.

Grotjahn, M., M. Daemi and B. Heimann (2001).
Friction and rigid body identification of robot
dynamics.International Journal of Solids and
Structures38, 1889–1902.

Hovland, G. E., E. Berglund and S. Hanssen (2001).
Identification of coupled elastic dynamics us-
ing inverse eigenvalue theory. In:Proceedings
of the 32nd ISR (International Symposium on
Robotics). pp. 1392–1397.

Isaksson, A., R. Lindkvist, X. Zhang, M. Nordin and
M. Tallfors (2003). Identification of mechanical
parameters in drive train systems. In:IFAC Sys-
tem Identification Symposium SYSID 2003.

Johansson, R., A. Robertsson, K. Nilsson and M. Ver-
haegen (2000). State-space system identification
of robot manipulator dynamics.Mechatronics
10(3), 403–418.

Kozlowski, K. (1998).Modelling and Identification in
Robotics. Springer-Verlag.

Ljung, L. (1999).System Identification: Theory for the
User. 2nd ed. Prentice Hall. Upper Saddle River,
New Jersey, USA.

Ljung, L. (2003). System Identification Toolbox –
User’s Guide. The MathWorks Inc. Sherborn,
MA, USA.
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