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Abstract: This paper addresses estimation of poles and zeros in closed loop systems.
For many quantities of interest, e.g. frequency function estimates, overparameterization
results in a large increase of the variance but this is not the case for estimates of non-
minimum phase zeros and unstable poles. Variance expressions that are asymptotic in
model order and sample size are derived and for some systems it is found that open loop
and closed loop experiments give the same accuracy. Copyright ©2005 IFAC
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1. INTRODUCTION

Quantification of the variance of estimated poles and
zeros is closely related to variance quantification for
estimated frequency functions as all these problems
deal with quadratic forms based on the covariance
matrix of the underlying parameter estimate. The lat-
ter problem has received significant interest. In the
mid-eighties, an expression for the asymptotic (as the
sample size grows) variance of estimated frequency
functions was presented in (Ljung and Yuan, 1985;
Ljung, 1985). It showed that the variance increases
proportionally to the model order regardless of model
structure as the model order becomes large. An alter-
native asymptotic variance expression with, for many
model structures, improved accuracy was proposed in
(Ninness et al., 1999). In (Xie and Ljung, 2001) and
(Ninness and Hjalmarsson, 2004) expressions that are
exact for finite model orders were derived for the vari-
ance of estimated frequency functions. Closed loop es-
timation is treated in the same framework in (Ninness
and Hjalmarsson, 2003).

Parallel to this, there has been a series of results
regarding the accuracy of non-minimum phase ze-
ros estimated in open loop. As mentioned above
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the variance of an estimate usually increases pro-
portionally with the model order, but estimates of
non-minimum phase zeros only suffer from a mod-
erate increase in the variance. This was shown for
FIR-models in (Lindqvist, 2001) and ARX-models
in (Hjalmarsson and Lindqvist, 2002). More general
models, such as output-error and Box-Jenkins, were
treated in (Mårtensson and Hjalmarsson, 2003).

In this paper these results are extended to closed
loop identification of non-minimum phase zeros and
unstable poles. The main result still holds for closed
loop identification: using high order models when
estimating non-minimum phase zeros and unstable
poles only gives a small increase in the variance.

In Section 2 the parameter estimation method is de-
scribed. Estimation of poles and zeros is introduced
in Section 3 and closed loop identification of ARX-
systems is covered in Section 4. Direct and indirect
identification methods are compared in Section 5. Sec-
tion 6 describes a method that can be applied to some
model structures other than ARX and the main con-
clusions are summarized in Section 7.



2. PARAMETER ESTIMATION

The setup is the standard prediction error method, see
e.g. (Ljung, 1999), which is briefly outlined in the
following. Assume a model structure parameterized
by the vector θ ,

yt = G(q,θ)ut +H(q,θ)et , (1)

where G(q,θ) and H(q,θ) are rational transfer func-
tions, H(q,θ) is monic and {et} is a zero-mean white
noise sequence. The parameter vector is estimated by
minimizing the sum of squared prediction errors,

θ̂N = argmin
θ

1
N

N

∑
t=1

ε2
t (θ), (2)

where the prediction error is given by

εt(θ) =
1

H(q,θ)
(yt −G(q,θ)ut) . (3)

Assume that there exists a description of the underly-
ing true system within the model structure, i.e. there
is a parameter vector θ o and a zero-mean white noise
sequence {eo

t } with variance λ0 such that

yt = G(q,θ o)ut +H(q,θ o)eo
t . (4)

Then, under some mild conditions, the parameter esti-
mate has the statistical properties

lim
N→∞

θ̂N = θ o
, w.p.1, (5)

lim
N→∞

N Cov θ̂N = λ0
(
Eψt(θ o)ψT

t (θ o)
)−1

, (6)

ψt(θ o) = −
∂

∂θ
εt(θ)

∣∣∣∣
θ=θ o

. (7)

In this paper, the notation Cov θ̂ = limN→∞ N Cov θ̂N
and var θ̂ = limN→∞ N var θ̂N is used.

3. POLES AND ZEROS

In this section the variances of estimated poles and ze-
ros are related to the covariance matrix of the parame-
ter estimates. For non-minimum phase zeros of ARX-
systems, identified in open loop, there are asymptotic
(in model order) results that relate the variance di-
rectly to the true system.

An ARX-system is described as

yt =
B(q,θ)

A(q,θ)
ut +

1
A(q,θ)

et , (8)

where

A(q,θ) = A(q,θa) = 1+a1q−1 + · · ·+anaq−na ,

(9a)

B(q,θ) = B(q,θb) = b1q−1 + · · ·+bnbq−nb . (9b)

The parameter vectors are

θa =
(
a1 · · · ana

)T
, θb =

(
b1 · · · bnb

)T
, (10)

θ T =
(
θ T

a θ T
b
)
. (11)

The poles pk and zeros zk are defined as the roots of
the polynomials

pk : zn +a1zna−1 + · · ·+ana = 0, (12a)

zk : b1znb−1 + · · ·+bnb = 0. (12b)

Let the zeros be denoted by zo
k = zk(θ o), ẑk = zk(θ̂)

and similarly for the poles. The variances of the esti-
mated poles and zeros can be calculated using a first
order Taylor approximation, see (Lindqvist, 2001).
For a discussion on the accuracy of these Taylor
approximations, see (Vuerinckx et al., 2001). The
asymptotic variances of the estimated poles and zeros
are

var p̂k =
|po

k |
2

|Ã0(po
k)|

2
ΓT

n (po
k)PaΓn(po

k), (13a)

var ẑk =
|zo

k |
2

|B̃0(zo
k)|

2
ΓT

m(zo
k)PbΓm(zo

k), (13b)

where the following notation is used

Γn(z) =
(
z−1 · · · z−n)T

, (14)

Ã0(q) =
A(q,θ o

a )

1− po
kq−1 , B̃0(q) =

B(q,θ o
b )

1− zo
kq−1 , (15)

P = Cov θ̂ =

(
Pa Pab
Pba Pb

)
. (16)

The parameter covariance Cov θ̂ can now be calcu-
lated, see (6) and (7). The ARX-model (8) can be
expressed in predictor form

ŷt = θ T ψt(θ) (17)

where the gradient of the prediction error is

ψt(θ) =

(
−Γna(q)yt
Γnb(q)ut

)
(18)

and the parameter covariance is

P = λ0

(
Ryy −Ryu
−Ruy Ruu

)−1

, [Ruv](i, j) = Eut−ivt− j.

(19)
The following result will be useful in the sequel.

Lemma 3.1. Suppose that |z|> 1 is a zero of B(q) and
that yt = B(q)

A(q)ut + 1
A(q)et is a stable system. Let et be

a zero-mean white noise sequence with variance λ ,
independent of ut and let ut = Q(q)vt where Q(q) is
a minimum phase transfer function and vt is a zero-
mean white noise sequence with variance 1. Further,
let na = nb = n. Then it holds that

lim
n→∞

ΓT
n (z)PbΓn(z) =

λ |z|−2

(1−|z|−2)|Q(z)|2
(20)

Proof: See (Hjalmarsson and Lindqvist, 2002). 2

Now, by combining (13b) and (20) the asymptotic (in
model order) variance of a non-minimum phase zero
estimated in open loop can be expressed in terms of
the true system and the input filter.
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Fig. 1. Closed loop system.

4. CLOSED LOOP IDENTIFICATION

Closed loop identification of ARX-systems is ad-
dressed in this section. Lemma 3.1 can not be ap-
plied directly in this scenario since the input is cor-
related with the output. A special parametrization of
the closed loop system will circumvent this problem.

Assume that the ARX-system (8) (with θ = θ 0) is
operating in a stable closed loop where the linear
time-invariant (LTI) feedback controller is assumed
to be known and minimum phase. The input {ut} is
generated as

ut = rt −F(q)yt (21)

where F(q) = C(q)
D(q) and

C(q) = c0 + c1q−1 + · · ·+ cncq−nc ,

D(q) = 1+d1q−1 + · · ·+dnd q−nd .
(22)

The reference signal rt is assumed to be a known
sequence of filtered white noise. The closed loop
system is depicted in Figure 1.

The closed loop system can be written in the following
form, (where the argument q is dropped)

ut =
A(θa)D

A(θa)D+B(θb)C
rt −

C
A(θa)D+B(θb)C

et ,

yt =
B(θb)D

A(θa)D+B(θb)C
rt +

D
A(θa)D+B(θb)C

et .

(23)

Here the closed loop system is parameterized in the
open loop parameters θ . Since the controller is as-
sumed to be known and LTI, there is no difference
between using direct identification with the open loop
model (8) and using indirect identification with ei-
ther of the closed loop models (23), see (Forssell and
Ljung, 1999). The covariance matrix of the parameter
estimate is given by (19).

In open loop where ut and et are independent, Lemma
3.1 can be applied to get an expression for the asymp-
totic variance of the poles and zeros (if they are non-
minimum phase). In closed loop there is feedback
from et to ut and Lemma 3.1 can not be used. How-
ever, this problem can be avoided by parameterizing
the closed loop system in another way. Consider indi-
rect identification in the closed loop model structure

ut =
A(θa)D
X(θx)

rt −
C

X(θx)
et , (24a)

yt =
B(θb)D
X(θx)

rt +
D

X(θx)
et , (24b)

where

X(θx) = 1+ x1q−1 + · · ·+ xnx q−nx (25)

and
nx ≥ max{na +nd ,nb +nc}. (26)

Notice that the parametrizations above are of ARX-
type where rt takes the role of the input (cf (8)). The
reason for introducing these parametrizations is that r
and e are independent in closed loop operation. This
will allow the application of Lemma 3.1.

By introducing ya = 1
C u− D

C r and yb = 1
D y the closed

loop models (24) can be written in predictor form as
linear regressions

ŷa
t = ηT

a ψt(ηa), ŷb
t = ηT

b ψt(ηb), (27)

where the parameter vectors and regression vectors are
defined as

ηa =

(
θa
θx

)
, ψt(ηa) =


 Γna(q)D(q)

C(q) rt

−Γnx(q) 1
C(q)ut


 ,

ηb =

(
θx
θb

)
, ψt(ηb) =

(
−Γnx(q) 1

D(q)yt

Γnb(q)rt

)
.

(28)

In this treatment the ARX-system (8) is assumed to
have either one unstable pole pk or one non-minimum
phase zero zk. The system is estimated in either the
model structure (24a) or (24b), depending on whether
the system has a non-minimum phase zero or unstable
pole. The poles or zeros are calculated from the esti-
mates of θa in (24a) or θb in (24b) respectively. If the
model order is increased, the accuracy of the estimated
poles and zeros can be evaluated using Lemma 3.1.
The results are presented in Theorem 4.1 and Theorem
4.2 below.

Theorem 4.1. Let rt = Q(q)vt , where vt is a zero-mean
white noise sequence with variance 1 and Q(q) is
a minimum phase transfer function. Suppose that an
unstable ARX-system (8) with stabilizing feedback
(21) is identified in the model structure (24a) with
nx = na = n. Let po

k be the unstable pole. Then, for
high model orders, the variance of the estimated pole
is

lim
n→∞

var p̂k =
λ0

(1−|po
k |
−2)

|F(po
k)|

2

|Ã(po
k)|

2|Q(po
k)|

2
.

(29)
Proof: Let r̃t = D

C rt and ẽt =−et . Then the gradient of
the prediction error is, see (28),

ψt(ηa) =

(
Γna r̃t
−Γnx ỹt

)
, ỹt =

A
X

r̃t +
1
X

ẽt . (30)

Now the parameter covariance is

P =

(
Pa Pax
Pxa Px

)
= λ0

(
Rr̃r̃ −Rr̃ỹ
−Rỹr̃ Rỹỹ

)−1

(31)

and according to Lemma 3.1 this gives

lim
na→∞

ΓT
na(po

k)PaΓna(po
k) =

λ0|po
k |
−2|F(po

k)|
2

(1−|po
k |
−2)|Q(po

k)|
2

(32)
and together with (13a) we get the result (29). (Note
that r̃t = Q

F vt .) 2



Theorem 4.2. Let rt = Q(q)vt , where vt is a zero-
mean white noise sequence with variance 1 and Q(q)
is a minimum phase transfer function. Suppose that
an ARX-system (8) with stabilizing feedback (21)
is identified in the model structure (24b) with nx =
nb = n. Let zo

k be a non-minimum phase zero of the
system. Then, for high model orders, the variance of
the estimated zero is

lim
n→∞

var ẑk =
λ0

(1−|zo
k |
−2)

1

|B̃(zo
k)|

2|Q(zo
k)|

2
. (33)

Proof: The proof is equivalent to the proof of Theorem
4.1. Here we have

ψt(ηb) =

(
Γnx ỹt
−Γnbrt

)
, ỹt =

B
X

rt +
1
X

et , (34)

which gives

lim
nb→∞

ΓT
nb

(zo
k)PbΓnb(z

o
k) =

λ0|zo
k |
−2

(1−|zo
k |
−2)|Q(zo

k)|
2 (35)

and together with (13) we get the result (33). 2

Remark 1: In the asymptotic expressions (29) and (33)
the variance is normalized with N. The convergence in
model order is exponential and for finite sample sizes
and model orders the variance is approximately (29)
and (33) divided by N.

Remark 2: It is worth noting that the variance for the
estimated non-minimum phase zero given in (33) is
exactly the same as when the system is identified in
open loop, see (Hjalmarsson and Lindqvist, 2002).
This means that for high model orders the variance is
independent of the controller. The same can be noted
for unstable poles (29) if the reference signal is chosen
as rt = Q(q)F(q)vt .

5. DIRECT VS. INDIRECT IDENTIFICATION

In the previous section the asymptotic variance for
poles and zeros estimated with the parametrizations
(24) were derived. We now shift the attention to the di-
rect paramerization (8). We will relate the correspond-
ing pole/zero estimates to those of (24). It is shown
that direct identification gives better or equal variance
compared to the indirect method but if the model order
is increased sufficiently they perform equally well.

There is a direct relation between the parameters ηi
in the closed loop model (24) and θ in the open loop
model (8). The relation is given by

ηi = Πiθ +πi, i ∈ {a,b}. (36)

The matrices Πa and Πb and the vectors πa and πb
are defined in Appendix A. The following relation
holds for the parameter covariances. This is similar
to the results on ARMAX modelling in (Forssell and
Ljung, 1999).

Lemma 5.1. The relation between the covariance of η̂i
and θ̂ is

Cov θ̂ =
[
ΠT

i (Cov η̂i)
−1Πi

]−1
. (37)

Proof: It is straightforward to establish that

ΠT
i ψt(ηi) = ψt(θ) (38)

where ψt(θ) and ψt(ηi) are given in (18) and (28).
Now this gives the relation

Cov θ̂ = λ0
(
Eψt(θ)ψT

t (θ)
)−1

=

λ0
(
ΠT

i EψT
t (ηi)ψt(ηi)Πi

)−1
=
[
ΠT

i (Cov η̂i)
−1Πi

]−1

(39)

which concludes the proof. 2

Now we return to the expression for the variance of
estimated poles and zeros (13a) and (13b). Introduce
the vectors

Γa =

(
Γna
0

)
and Γb =

(
0

Γnb

)
, (40)

where the 0’s represent zero vectors of appropriate
lengths. Then the following relations hold for esti-
mated poles and zeros

var p̂k ∝ ΓT
a (po

k)(Cov θ̂)Γa(po
k) (41)

var ẑk ∝ ΓT
b (zo

k)(Cov θ̂)Γb(zo
k). (42)

Now the arguments of Γi are dropped and Lemma 5.1
gives

ΓT
i (Cov θ̂)Γi = ΓT

i
[
ΠT

i (Cov η̂i)
−1Πi

]−1 Γi. (43)

It is easily verified that ΠT
i Γi = Γi and from (Wahlberg

and Ljung, 1992) we get the following inequality

ΓT
i
[
ΠT

i (Cov η̂i)
−1Πi

]−1 Γi ≤ ΓT
i (Cov η̂i)Γi. (44)

This means that indirect identification with the models
(24) gives larger (or equal) variance than indirect
identification with the model (8), i.e.

var p̂k(θ̂) ≤ var p̂k(η̂a)

var ẑk(θ̂) ≤ var ẑk(η̂b).
(45)

Numerical calculations and simulations suggests that
when the model orders are increased the inequalities
in (45) becomes equalities, i.e. direct and indirect
identification give the same asymptotic variance.

Conjecture 5.1. Let the ARX-system (8) operate in
closed loop with the feedback (21). Let the open loop
system be identified directly from the signals ut and yt .
For high model orders the variance of estimated non-
minimum phase zeros and unstable poles will be the
same as if the systems were identified in the closed
loop models (24). This means that the asymptotic
variance will be given by (29) and (33). 2

5.1 Simulations

Conjecture 5.1 is supported by Monte Carlo simula-
tions of an ARX-system with a non-minimum phase
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Fig. 2. Simulations of ARX-system in open and closed
loop. Main figure: Variance of the estimated
nmp-zero. Solid - open loop. Dashed - closed
loop. Dotted - asymptotic variance. Enclosed fig-
ure: Spectrum of the input signals. Dotted - open
loop. Solid - closed loop.

zero. This example also exemplifies the case when
open loop and closed loop experiments give the same
accuracy, see Section 4.

The simulated system is

yt = q−1+1.1q−2

1−0.9−1 ut +
1

1−0.9−1 et (46)

where et is zero mean white noise with variance 0.01.
Both open loop and closed loop operation is consid-
ered. The inputs are chosen as

Open loop: ut = rt (47)

Closed loop: ut = rt −
1−0.5q−1

1+0.3q−1 yt , (48)

where rt is zero mean white noise with variance 1.

The systems are simulated for 5,000 time steps for
a number of different model orders. The system is
identified with the direct method from ut and yt . Each
case is evaluated by 5,000 Monte Carlo simulations
and the variance of the estimated non-minimum phase
zero is calculated. Figure 2 shows the results of the
simulations. Although the input spectra are very dif-
ferent, for high model orders the open loop and closed
loop experiments give the same accuracy. The simu-
lated variances are also in good agreement with the
asymptotic value.

5.2 Some special cases

There are some special cases where direct and indirect
identification are equal for finite model orders. These
are the cases when Πi is invertible and there is a
one-to-one relationship between θ and η . Two such
situations are described next. Πa is invertible when
F(q) = c0

D(q) and Πb is invertible when F(q) = C(q).

In these cases it is easy to show that ΓT
i Π−1

i = ΓT
i and

(43) becomes

ΓT
i (Cov θ̂)Γi = ΓT

i (Cov η̂)Γi (49)

which means that direct and indirect identification
give the same variance. Actually the two methods give

yt

ut

et

rt

−
C(q)

D(q)

B(q)

A(q)

Fig. 3. OE-system with feedback

the exact same estimates of the poles and zeros, i.e.
θ̂a(θ̂) = θ̂a(η̂a) and θ̂b(θ̂) = θ̂b(η̂b).

6. OTHER MODEL STRUCTURES

The results above regard ARX-systems, but there are
also some other model structures that can be treated.
Only one such example will be presented here but the
outlined methodology apply to a variety of different
feedback systems. Consider the following closed loop
output error (OE) system with a non-minimum phase
zero. The system is depicted in Figure 3,

yt =
B(q,θb)

A(q,θa)
ut + et (50)

ut = rt −
C(q)

D(q)
yt . (51)

The zeros of B(q) are estimated directly from the sig-
nals {yt} and {ut} in the model (50). In (Mårtensson
and Hjalmarsson, 2003) it is shown that the asymptotic
variance of the zero estimate is

lim
nb→∞

var ẑk = lim
nb→∞

|zo
k |

2

|B̃(zo
k)|

2
ΓT

nb
(zo

k)PbΓnb(z
o
k), (52)

where

Pb = λ0R−1
ũũ , ũt =

1
A(q,θ 0)

ut . (53)

The following result was established in (Lindqvist,
2001)

Lemma 6.1. Suppose that |z| > 1 and let ut = Q(q)vt
where Q(q) is a zero mean white noise sequence with
variance 1. Then it holds that

lim
n→∞

ΓT
n (z)R−1

uu Γn(z) =
|z|−2

(1−|z|−2)|Q(z)|2
. (54)

Proof: See (Lindqvist, 2001). 2

In order to apply Lemma 6.1 to (53) a spectral fac-
torization must be performed. Define the sensitivity
function S = AD

AD+BC which is minimum phase since
the closed loop system is assumed to be stable and the
controller itself is assumed to be minimum phase. The
signal ũt can be written

ũt =
S(q,θ 0)

A(q,θ 0)

(
rt −

C(q)
D(q)et

)
. (55)

Now let the reference signal be filtered white noise
rt = Q(q)vt where vt is independent of et and has zero
mean and variance 1. It is possible to find a minimum
phase transfer function K(q) such that

|K(eiω)|2 = |Q(eiω)|2 +
|C(eiω)|2

|D(eiω)|2
λ0 (56)



Table 1. Transfer function parameters.

b1 b2 b3 b4 b5 f0 g1
1.00 -2.39 1.52 -0.032 -0.13 0.6 -0.8
c0 c1 c2 c3 d1 d2 d3

1.00 0.51 -0.086 -0.026 -1.72 0.98 -0.185

and the input signal can be represented by

ut =
S(q)

A(q)
K(q)υt (57)

where υt is a white noise sequence with zero mean
and variance 1. Lemma 6.1 can now be applied and
since B(zo

k) = 0 we get S(zo
k) = 1. If the model order is

increased the variance of an estimated non-minimum
phase zero is

lim
nb→∞

var ẑk =
λ0|A(zo

k)|
2

(1−|zo
k |
−2)|K(zo

k)|
2 . (58)

6.1 Simulations

The relevance of the expression for the asymptotic
variance (58) will be evaluated for a FIR-system. FIR
is a special case of OE where A(q) = 1. The simulated
system, with a zero at 1.3 is

yt = (b1q−1 + · · ·+b5q−5)ut + et (59)

ut = f0
1+g1q−1 rt −

c0+c1q−1+···+c3q−3

1+d1q−1+···+d3q−3 yt (60)

where the parameters are given in Table 1. The sys-
tem is simulated where rt and et are zero mean white
noises with variances 1 and 0.1. The system is identi-
fied in the model structure

ŷt = b1ut−1 · · ·+bnut−n, (61)

for different model orders. The variance of the esti-
mated zero is evaluated by Monte Carlo simulations.
The system is estimated 10,000 times with different
noise realizations and each simulation has a duration
of 10,000 time steps. The results are presented in Table
2. The last entry, denoted with ∞ shows the asymptotic
variance given in (58). The simulations show good
agreement with the asymptotic expression.

Table 2. Simulations of the FIR-system.

n 5 10 20 ∞
N ·var ẑk 0.289 0.315 0.318 0.315

7. CONCLUSIONS

In this paper we have derived expressions for the
asymptotic (in model order and data) variance of esti-
mates of unstable poles and non-minimum phase zeros
that are identified in closed loop ARX-systems. For
high order ARX-models, direct and indirect identifica-
tion turns out to be equally accurate. For some cases it
is shown that closed loop and open loop experiments
give the same variance when estimating poles and
zeros. Output error- and FIR-systems are treated with
a methodology that involves spectral factorization.
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APPENDIX A : SOME DEFINITIONS

The following notation is used in the text

Πd =




1 0
d1 �

| � 1
dnd d1
0 � |
| � dnd
0 0


,Πc =




c0 0
| �

cnc c0
0 � |
| � cnc
0 0


,πd =




d1
|

dnd
0
|
0


,

Πa =
( I 0

Πd Πc

)
,Πb =

(Πd Πc
0 I

)
,πa =

(
0

πd

)
,πb =

(
πd
0

)
.
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