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1. INTRODUCTION

A feasible methodology for system identification has
to generate reliable models, which are capable of re-
producing the dynamical behavior of a system with
given accuracy, while allowing the efficient imple-
mentation of its algorithms. Considering the available
computational resources, theefficiencyof an imple-
mentation is characterized by the computational bur-
den/time that is used to complete a given identification
experiment while handling arbitrarily large data-sets.

The main contribution of this paper is, therefore,
the development of computationally efficient and nu-
merically reliable tools to implement the principle
of Separable Leats Squares (SLS) for the identifica-
tion of composite local linear state-space models. The
method is based on the use of numerically efficient
tools, e.g. theQR-decomposition, and efficient algo-
rithms to compute the gradients for the cost functions
and the main matrices of the SLS method. As dis-
cussed e.g. in Bergboer et al. (2002), the use of tools
like the QR-decomposition allows a straightforward

handling of large data sets while avoiding computa-
tional problems arising from dimensionality growth.

Verdult et al. (2002) proposed to use composite local
linear state-space models to approximate nonlinear
systems. This approach fits into the broader class de-
nominated by operating regime decomposition meth-
ods (Murray-Smith and Johansen 1997) and it can be
interpreted as the division of the operating range of the
nonlinear system into smaller regimes, in which the
nonlinear system is approximated by a linear model.

Recently, Borges et al. (2004) proposed an approach,
which consists of combining the principle of SLS with
the projected gradient search method, for the identifi-
cation of composite local linear state-space models.
Similar approaches have been proposed by Verdult
(2002) in the case of bilinear state-space systems, and
by Ribarits et al. (2004) in the case of linear time-
invariant systems.

The principle of SLS (Golub and Pereyra 1973) al-
lows to solve nonlinear optimization problems in two



consecutive steps: initially part of the parameters are
estimated using a nonlinear optimization procedure.
Afterwards, the remaining parameters are estimated
using linear least squares optimization and the knowl-
edge of the optimal parameters estimated in the first
step. A key issue is the definition of a mapping
from the space of parameters estimated by linear least
squares into the space of parameters estimated using
nonlinear optimization. Bruls et al. (1999) proposed
the identification of linear time-invariant systems us-
ing the principle of SLS and specific parameteriza-
tions of system matrices.

The concept of projected gradient search (McKelvey
and Helmersson 1997; Lee and Poolla 1999) is used
here to deal with the problem of parameterizing
the system matrices. Rather than choosing a specific
parametrization, this method allows to use fully pa-
rameterized system matrices by restricting the update
parameters in the optimization process to directions
that result in an effective update of the cost function.

This paper is organized as follows: Section 2 briefly
reviews the use of SLS combined with projected gra-
dient search for the identification of composite local
linear state-space models. Section 3 discusses an ef-
ficient implementation of this methodology, as well
as some efficient tools to compute the gradients for
the cost functions. The discussion of these efficient
implementations is presented in Section 4 using simu-
lations results. Finally, in Section 5 some conclusions
are drawn.

2. COMPOSITE LOCAL LINEAR MODELS

Similarly to Verdult et al. (2002), the composite local
linear state-space models are defined as:

xk+1 =
s∑

i=1

pi (φk) (Aixk + Biuk + Oi) (1)

yk = Cxk + vk (2)

wheres is the number of local models,xk ∈ Rn is
the state vector,uk ∈ Rm is the input,yk ∈ R`

is the output,vk ∈ R` is a white-noise sequence
and pi (φk) ∈ Rs are the weighting vectors. The
weighting vectorspi (φk) ∈ Rs are parameterized
using normalized radial basis functions:

pi (φk) =
ri (φk; ci, wi)∑s

j=1 rj (φk; cj , wj)
(3)

with,

ri = exp
(
− (φk − ci)

T
diag (wi)

2 (φk − ci)
)

(4)

whereφk ∈ Rq is the scheduling vector,ci is the cen-
ter andwi the width of thei-th radial basis function.

The goal is to determine, from a finite number of mea-
surements of the inputuk and outputyk, the matrices
Ai, Bi, Oi, C, and the centersci and widthswi that

describe the radial basis functions. Let the vectorsc
andw consist of the centersci andwi, respectively.
Let θ parameterize the system matricesAi, Bi, Oi and
C. The estimation of parametersθ, c andw, is based
on the minimization of the following cost function:

JN (θ, c, w) = ET
NEN (5)

whereEN = YN − ŶN denotes the error vector, with
YN a vector containingN samples of the measured
outputs and̂YN a vector containing the outputs of the
estimated model.
2.1 Separable least squares

Given the state-space system (1)–(2), the estimated
output for a given time instantk is given by:

ŷk = C

(
k−1∏

i=0

Ai

)
x0+

k−1∑

j=0

C




k−1∏

h=j+1

Ah


 G (p(φj)⊗ ũj) (6)

where the symbol⊗ denotes the Kronecker product,

Ak :=
∑s

i=1 Aipi(φk), ũj :=
[
uT

j 1
]T

, and

p(φk) :=
[
p1(φk) p2(φk) · · · ps(φk)

]

G :=
[
B1 O1 B2 O2 . . . Bs Os

]

Equation (6) can be further simplified by considering
k ∈ [1, . . . , N ] and assuming the initial state equal to
zero, as follows,

ŶN = Φ(η) θ` (7)

where

η :=




θn

w
c


 , θ` := vec(G) , θn :=

[
vec(A)
vec(C)

]

with A :=
[
A1 A2 . . . As

]
. Matrix Φ(η) is defined

as,

Φ(η) :=




0
(p(φ0)⊗ ũ0)

T ⊗ C
...

N−2∑

j=0

(p(φj)⊗ ũj)
T ⊗ C




N−2∏

h=j+1

Ah







(8)

From (7)EN can be written as,

EN = YN − Φ(η)θ` (9)

For a fixedη, minimizing the norm ofEN with respect
to θ` yields

θ̂` (η) = Φ(η)†YN (10)

with Φ† =
(
ΦT Φ

)−1 ΦT . By evaluating equation (9)

for θ` = θ̂` (η), it is possible to define a new error
vector,

ẼN (η)= EN (θ`, η)|
θ`=θ̂`(η)

= (I − P (η)) YN

(11)



whereP (η) = Φ(η)Φ(η)†. The principle of SLS from
Golub and Pereyra (1973) states that the optimization

problem of estimating
(
η̂, θ̂`

)
=

(
θ̂, ŵ, ĉ

)
using the

cost function (5) is equivalent to, first, estimateη̂ by
minimizing

J̃N (η) := ẼT
N ẼN (12)

which is independent ofθ` and, then, estimatêθ` using
the linear least squares optimization (10).

2.2 Projected gradient search

Full parameterizedA andC matrices are used along
the optimization process. A major drawback of using
full parameterized matrices for the identification of
composite local linear state-space models, is the re-
dundancy that is introduced in the optimization proce-
dure. This redundancy results from the nonuniqueness
of the cost function values (Borges et al. 2004; Lee
and Poolla 1999; McKelvey and Helmersson 1997).
A way to cope with this problem is to use projected
gradient search. Consider the following matrix

M(A,C) :=
s∑

i=1

ΠT
i ⊗

[
AΠT

i

CΠT
i

]
−A⊗

[
In

0`×n

]

(13)

whereΠi :=
[
0n×(i−1)n In 0n×(s−i)n

]
. Assuming

(Ai, C) is observable, withi ∈ {1, . . . , s}, then the
matrix M(A,C) has full column rank and its left null-
spaceQ2 is given as

M(A,C) =
[Q1 Q2

] [R1

0

]
(14)

The matrixQ2 can be used in a projected gradient
search using a Levenberg-Marquardt type of update
equationη(i+1) = η(i) + d(i). Taking into account
the projection of the gradient, the parameter update is
given by:

d(i) = −Q2

(
QT

2 ΨT
NΨNQ2 + λI

)−1

QT

2 ΨT
NEN

(15)

with,

ΨN :=
∂EN

∂ηT
, Q2 :=

[Q2 0
0 I

]T

Note thatQ2 only operates on theθn part ofη.

3. EFFICIENT IMPLEMENTATION

In Section 2 the combined use of separable least
squares with projected gradient is proposed for the
identification of composite local linear models. In the
present section the efficient implementation of such
approach is discussed. This discussion will consider
the computation of matrixΦ, including the handling
of large data sets, and the computations of the value
and gradients for the SLS cost function.

3.1 Computation of the matrixΦ

Kronecker products are used in equation (8) to com-
pute the matrixΦ(η). An efficient implementation
should avoid the direct use of such products. Below
an alternative method to compute the columns ofΦ
by simulating a set of linear systems is proposed. The
output of the state-space model (1)–(2) can be written
as:

yk = C

(
k−1∏

i=0

Ai

)
x0+

ms∑
α=1

n∑

β=1




k−1∑

j=0


C

k−1∏

h=j+1

Ah


Eα,β (pj ⊗ ũj)

︸ ︷︷ ︸
yα,β(k)




bα,β

(16)

whereEα,β is an auxiliary input matrix, with dimen-
sionsn× (m + 1)s, that is equal to zero everywhere,
except for Eα,β (i, j)|(i=α,j=β) = 1. The terms in
equations (16) and (6) are related such that, if sev-
eral realizations ofyα,β(k) are stacked in a column-
wise manner, and the values ofbα,β are stacked as
a column-vector, then the following construction for
matricesΦ andθ` of equation (7) results:

Φ(η) =
[
y1,1 y2,1 y1,2 · · · yn,s(m+1)

]
(17)

θ` =
[
b1,1 b2,1 b1,2 . . . bn,s(m+1)

]T
(18)

Therefore,Φ can be constructed by performing(m +
1)ns simulations of the following systems:

xα,β (k + 1) =
s∑

i=1

pi (φk) (Ai xα,β (k) + Eα,βũk)

(19)

yα,β (k) = Cxα,β (k) (20)

wherexα,β(0) = 0 are used as initial conditions, and
the pair of indices(α, β) varies as indicated in (17).

3.2 Computation of matrices with large data sets

Matrix Φ(η) has dimensionsNl×ns(m+1). There-
fore, depending on the number of variables and data
samples, the handling ofΦ(η) along the optimiza-
tion process can be troublesome. A way to cope with
this dimensionality problem is to factorize the matrix
Φ(η) using, e.g., theQR-decomposition ofΦ (η), as
follows,

Φ = QR =
[
Q1 Q2

] [
R1

0

]
= Q1R1 (21)

Using matricesQ1 andR1, the computation of e.g. the
vector of parameterŝθ` is quite straightforward,

θ̂` = Φ†YN = R−1
1 QT

1 YN (22)

This approach can be further refined if the following
QR-decomposition is considered,

[Φ YN ] = Q R =
[
Q1 Q2

] [
R1 r
0 0

]
(23)



According to (Golub and Van Loan 1996), an estima-
tive for the number of flops used in this factorization
is presented in Table 1. The optimum value forθ` is
now given as,

θ̂` = R−1
1 r (24)

wherer = QT
1 YN . The inversion ofR1 in (24) is com-

putationally expensive and should be avoided. Since
R1 results from theQR-decomposition directly with
an upper triangular shape,θ̂` can be computed using
backward replacement in the following equation,

R1θ̂` = r (25)

When huge data sets are used, the computation of
Φ(η), or itsQR-decomposition, may render the iden-
tification procedure unfeasible. In these cases it is still
possible to overcome this problem by exploiting the
special structure proposed in Section 3.1 to compute
Φ(η) using an iterative procedure. The approach then
is to compute the matrixΦ(η) by block-rows of size
Nb and, from one batch computation to the other, to
store the last value of the state vectorxα,β and the
matricesQ1 andR1, as follows:
• The value of the state vector computed in the

last iteration of the previous batch computation
is stored, and then used as the initial state for the
next batch computations, i.e.,

x
batch#(j+1)
α,β (0) = x

batch#(j)
α,β (Nb)

• The matricesQ1 andR1 are updated using the
iterative procedure described in Algorithm 1,
whereMATLAB based notation and functions are
used.

Algorithm 1: Iterative procedure to compute the ma-
tricesQ1 andR1.
[Q1, R1] = qr(Φ(1 : Nb, :), 0)
[nr, nc] = size(R1)
for i = Nb + 1 : Nb : N −Nb

[Qa, R1] = qr([R1; Φ(i : i + Nb, :)] , 0)
Q1 = [Q1 ∗Qa(1 : nr, :); Qa(nr + 1 : end, :)]

end

Due to the computational burden that results from
computing the blocks-rows of matrixΦ, and their
QR-decomposition, the procedure described in Algo-
rithm 1 should be used only if a huge number of data
samples is to be used. Actually, this iterative approach
is efficient only in those cases when the limit of the
computer physical memory is reached and the soft-
ware has to run using the virtual, or swap, memory.
In this cases, the delay due to the access to the swap
medium causes an increase in the computational time,
which necessarily results in a decrease of performance
for the algorithm. In these cases the iterative procedure
is much more efficient than the non-iterative proce-
dure.

3.3 Computation of the SLS-cost function value

Using theQR-decomposition ofΦ, which is given
in (23), the computation of the SLS-cost function

value becomes straightforward. The error vector can
be computed as follows,

ẼN = YN −Q1Q
T
1 YN = YN −Q1r (26)

where the products are performed from right-to-left.
The cost is then computed by replacing the result of
(26) in equation (12).

3.4 Computation of gradients

A main step in any gradient based optimization is
the computation of cost function gradients. Since a
least squares optimization problem is considered in
this paper, the computation of gradients for the error
vector are rather treated. The relation of gradients for
the cost function and the error vector is the following:

∂J̃N

∂ηj
= ẼN

∂ẼN

∂ηj
(27)

In this part two distinct approaches to compute the
gradients ofẼN are proposed:
(1) To compute directly the gradient of̃EN ;
(2) To compute the gradient of̃EN using the gradi-

ent ofEN and computinĝθ`.

Computing the gradients using Approach (1)The
gradient ofẼN with respect toηj is given by:

∂ẼN

∂ηj
= − (I − P )

∂Φ
∂ηj

Φ†YN

− (
Φ†

)T ∂ΦT

∂ηj
(I − P ) YN (28)

A more efficient procedure to compute the gradient of
ẼN is to use,

∂ẼN

∂ηj
= − (

I −Q1Q
T
1

) ∂Φ
∂ηj

R−1
1 QT

1 YN

− (
R−1

1 QT
1

)T ∂ΦT

∂ηj

(
I −Q1Q

T
1

)
YN (29)

whereΦ† is computed as in (22) andP = Q1Q
T
1 . The

products are calculated from right-to-left.

Based on the efficient approach introduced in Sec-
tion 3.1, the gradients ofΦ(η) are computed using,

∂Φ
∂ηj

=
[

Y
ηj

1,1 Y
ηj

2,1 Y
ηj

1,2 Y
ηj

2,2 · · · Y
ηj

n,(m+1)s

]
(30)

Each column of (30) is the result of simulating the
following state-space system:

X
ηj

α,β (k + 1) =
s∑

i=1

∂pi (φk)
∂ηj

(Ai xα,β (k) + Eα,β ũk)

+ pi (φk) AiX
ηj

α,β (k) + pi (φk)
∂Ai

∂ηj
xα,β (k)

(31)

Y
ηj

α,β (k) =
∂C

∂ηj
xα,β (k) + C X

ηj

α,β (k) (32)

where the following notation is used,



X
ηj

α,β (k) =
∂xα,β (k)

∂ηj
(33)

Y
ηj

α,β (k) =
∂yα,β (k)

∂ηj
(34)

the stateXηj

α,β (0) in (31) is initialized with zero.

The computation of (30) can be done efficiently if the
state-space system (31)–(32) is implemented sequen-
tially by blocks according to the computed gradient,
e.g., ifηj is an element ofA then the computations in
(31)–(32) simplify to,

X
ηj

α,β (k + 1) =
s∑

i=1

pi (φk)AiX
ηj

α,β (k)

+ pi (φk)
∂Ai

∂ηj
xα,β (k) (35)

Y
ηj

α,β (k) = C X
ηj

α,β (k) (36)

The same reasoning is applied to the computation of
gradients with respect to the remaining variables of
the parameter vectorη. If the input data is used as
scheduling vector in equations (1)–(2), i.e.φk = uk,
then the computations of the gradients forpi (uk) are
simplified, as shown by Verdult (2002). An estimative
of the number of flops used to compute the gradient
(29) is presented in Table 1.

Computing the gradients using Approach (2)From
equation (11) the following relation for the gradients
of the error vectors trivially result:

∂ẼN (η)
∂ηj

=
∂EN (θ`, η)

∂ηj

∣∣∣∣
θ`=θ̂`

(37)

A similar expression is presented by Ribarits et al.
(2004), but only for the case of LTI systems and using
the cost functions. In equation (37) the gradient of
EN (θ`, η) with respect toηj is computed using the
chain rule,

∂EN (θ`, η)
∂ηj

=
∂EN (θ`, η)

∂ηj
+

∂EN (θ`, η)
∂θ`

∂θ` (η)
∂ηj

(38)

Since the principle of SLS considersθ` = θ̂` (η), the
gradient ofEN (θ`, η) with respect toθ` is equal to
zero at the optimum̂θ`(η). Thus (37) simplifies to:

∂ẼN

∂ηj
=

∂EN

(
θ̂` (η) , η

)

∂ηj
(39)

Based on this equality, two distinct approaches to
compute the gradients of̃EN with respect toηj are
proposed:
a. To compute the gradient ofEN using,

∂EN

(
θ̂` (η) , η

)

∂ηj
= − ∂Φ

∂ηj
θ̂` (40)

where∂Φ/∂ηj is constructed as in the previous
section andθ̂` is computed using backward re-

placement in (25). An estimative of the number of
flops used to compute (40) is presented in Table 1.

b. To compute the gradient ofEN using,

∂EN

(
θ̂` (η) , η

)

∂ηj
= −∂ŶN

∂ηj
(41)

The gradient ofŶN consists of the outputs from the
following state-space systems:

Xηj (k + 1)=
s∑

i=1

∂pi (φk)
∂ηj

(
Aixk+B̂uk + Ô

)
+

pi (φk) AiX
ηj (k) + pi (φk)

∂Ai

∂ηj
xk (42)

Ŷ ηj (k) =
∂C

∂ηj
x (k) + C Xηj (k) (43)

where the following notation has been used,

Xηj (k) =
∂x (k)
∂ηj

(44)

Ŷ ηj (k) =
∂ŷ (k)
∂ηj

(45)

and whereB̂ andÔ are obtained from̂θ`(η).

These computations also require the state vectorxk,
which results from simulating the composite local
linear state-space model (1)–(2), whereB (η) is used
instead. The matrixB (η) is built up by reshaping the
elements of̂θ`, which are computed at each iteration
using backward replacement in (25). An estimative of
the number of flops to compute (41) is presented in
Table 1.

4. SIMULATION EXPERIMENTS

In this part Monte-Carlo experiments are used to show
the performance of the implementations proposed in
Section 3. Consider the following MIMO system from
(Narendra and Parthasarathy 1990),

y
(1)
k+1 =

0.8
(
y
(1)
k

)3

+
(
u

(1)
k

)2

u
(2)
k

2 +
(
y
(2)
k

)2

y
(2)
k+1 =

y
(1)
k + y

(1)
k y

(2)
k +

(
u

(1)
k−1 − 0.5

) (
u

(2)
k + 0.8

)

2 +
(
y
(2)
k

)2

The system has, therefore, two inputs and two out-
puts. The input signals for the Monte-Carlo experi-
ment,u(1)

k andu
(2)
k , are uncorrelated white-noise input

sequences that are generated at each experiment. The
initial models used in the output-error optimization
algorithm were obtained using the PI-MOESP method
of Verhaegen (1994). Initially, a global state-space
linear model is estimated using this subspace method.
Afterwards, each local linear model is initialized using
this global linear model and the algorithm proceeds as
described in Section 2. The weights were uniformly
initialized in the interval between -1 and 1. The size of



Table 1. Estimative for the number of flops used in several computations of Section 3.

Flops
ComputeΦ, Eq. (17) 2` nN ((m + n + 5) s + `)

QR-decomposition, Eq. (23) 2` nN
(
m2ns2

)
ComputeY

ηj

α,β
, Eq. (32), orŶ

ηj

N , Eq. (43) 2` nN
(
2sn3 +

(
3�2s + `

)
n2 + `2n + (4n + 2m)s2

)
Computêθ`, Eq. (25) m2n2s2

Gradient using Appr. 1.), Eq (29) 2` nN
((

2sn3 +
(
3�2s + `

)
n2 + `2n + (4n + 2m)s2

)
mns + 8ms

)
Gradient using Appr. 2.a), Eq (40) 2` nN

(
2sn3 +

(
3�2s + `

)
n2 + `2n + (4n + 2m)s2

)
mns

Gradient using Appr. 2.b), Eq (41 ) 2` nN
(
2sn3 +

(
3�2s + `

)
n2 + `2n + (4n + 2m)s2

)

Table 2. Mean times to compute the gradi-
ents using approaches of Section 3.4.

Appr. 1 Appr. 2.a) Appr. 2.b)
Mean time [s] 7.208 5.744 0.162

the data samples for each experiment isN = 1 000.
At each experiment the value of the cost function and
the gradients are computed and the computational-
time it takes is stored. Similarly to Verdult (2002), a
composite local linear state-space model consisting of
four third-order local linear models was selected for
the identification experiments. This means that there is
a total of#(η) = 50 variables for the nonlinear part
of the SLS optimization, and#(θ`) = 36 variables
for the linear part. The experiments were simulated
in MATLAB 6.5, over a Linux operating system. The
processor is Pentium 4, 2.8 GHz, with 512 KB of
RAM. Table 2 shows the mean computation times for
the Monte-Carlo experiments. It is shown that Ap-
proach 2.b) is the methodology that presents better
performance in the computation of gradients for the
error vector. This result is coherent with the values
for the flops presented in Table 1. The mean time of
Approach 2.a) is higher than Approach 2.b) because
the computation of themns columnsY ηj

α,β , for matrix
∂Φ
∂ηj

, constitutes the main computational burden in the
algorithm. In Approach 1.), additionally to the burden
of computing the gradient ofΦ, also the projection
described in (29) has to be computed, resulting in a
even longer mean computation time for this approach.

5. CONCLUSIONS

An efficient implementation of the separable least
squares identification of composite local linear state-
space systems is described in this paper. Due to the
large size of the SLS optimization matrices, the mem-
ory required by the algorithms, as well as the re-
spective computational-times, are the bottleneck of
an effective implementation of such approach. These
problems were addressed in this paper using an im-
plementation based on the use of efficient algorithms
to compute the SLS matrices, as well as on the use of
mathematically efficient tools to handle large data-sets
in the identification procedure. Furthermore, also the
computation of gradients for the cost functions was
addressed and three different methods were proposed.
By means of simulation experiments the most efficient
method to compute the gradients for the SLS opti-

mization method was selected. The final conclusion
is that the proposed efficient approach results in an
increase of performance by reducing the computation
times of the SLS optimization.
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