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Abstrad — Takagi-Sugeno’s fuzzy models enable to represent a wide dass of non linea
modelsin a mmpad set of the state variables. According to this representation stabilization
conditions can be obtained and are usualy written as Linea Matrix Inequalities. Since the
obtained conditions are only sufficient, current reseaches try to lower the mnservatism of
the results. In this paper several matrix properties are used with the help of the dimination
lemmafor discrete TS models. Copyright © 20051FAC
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1. INTRODUCTION

Since nealy twenty yeas, Takagi-Sugeno's fuzzy
models (Takagi and Sugeno, 1985 have been used
to model and control non linea systems. Stability
and stabilization are mainly based on Lyapunov
functions (Wang, et a., 1996 Ma & a, 1998
Tanaka, et a, 1998; Yoneyama d al, 2000. These
latter are usually quadratic. Sometimes piecewise
quadratic functions are used (Johansson et a 1999
Feng and Wang, 2001). There ae dso some results
using mon linea functions, in the continuous case
(Blanco et al, 2001; Tanaka & al, 2001) and in the
discrete cae (Gueara ad Vermeiren, 2004.
Neverthelessin this case, the mmplexity of the LMI
problem has been serioudly increased.

In every case, the number of conditions put in the
form of LMI increases highly as the number of
models increases. Usualy the number of LMI is
about r(r+1)/2 with r the number of linear models

of the TS fuzzy model.

Several approadies have been developed to lower
the mnservatism of the cnditions. One gproad is
based on reducing the number of models (Lauber,
2003 Taniguchi et a, 2001, another one uses
matrix properties to reduce the cnservatism of the
conditions themselves (Guerra & a, 2003). Results
presented in this paper follow the latter idea

The paper is organized as follows. The second part
recdls useful mathematicd todls. The third part
presents the new conditions and part fourth
compares various conditions on an example.

2. TOOLS

2.1 Basic condtions

Let be aTakagi-Sugeno’s fuzzy model (Takagi and
Sugeno, 1985 with r the number of rules,

x(t) =B (t), %, (t), -, x, (t)é the state vector,
u(t) the control signal, y(t) the output, and z(t)
the premises variables. The fuzzy model is given by:

(D)= 3 0 (2(0) (Ax(t) +Bu (1)
0 - @

)= h(z)ex()

1=1

The non-linearities of the global model are due to the
terms h (z(t))=0, with the convex sum property,

ie. ih (z(t)) =1. Inthis paper is assumed that, i
=1

pairs (A, B ) arecontrollable.



The usual control law used to stabilize model (1) is
caled a PDC (Paralel Distributed Compensation)
and is given by (Wang et al, 1996):

u(1)=-3 h (2(0)Fix(t) @

The design of u(t) requires to obtain the feedback

gains F.. Several problems can be addressed,

robustness, performances and so on (Tanaka et al.
1998) (Liu and Zhang 2003). LMI tools (Boyd et al,
1994) are often a very convenient way to solve these
problems. Let be a quadratic Lyapunov function

V =x"Px with P>0. Then with X =P™* and
N, = FP™ isdefined:

v o =X *)C
x-an, X

The most basic conditions of stabilization are

presented theorem 1.

(©)

Theorem 1 (Wang et a, 1996) : Model (1) is globally
asymptotically stable in closed loop with the control
law (2) and the Y; defined in (3) if there exist:
X>0, N, i,jO{1...,r} suchthat:

g Y, <0 4
Oi,j i<j Y;+Y; <0 (5)

According to the work of (Guerra and Vermeiren,
2004 Guerra @ a, 2003) the following rotation is
defined. For scdar functions h(z)=20 and U,,

i0{L,...,r} matrices of the same dimension, we

note: U, :ih(z)ui .

r r

Similarly U, = zh(z)hj(z)Uij (6)

1=1 J=1

2.2 Properties

The following properties are useful to establish the
main result.

Lemma 1 (Conguence): Let X be a full rank
matrix. If Y >0 then:
XYXT >0 @)

Lemma 2 (Shu’s complement Boyd et al, 1994):
Matrices X, Y and R being of appropriate sizes,
we have:
¥ = XR™*X" >0 Y (*

- 208,
R>0 *" R{

(*) represents all terms induced by symmetry in a
symmetric matrix.

Lemma 3 The two next problems are equivalent:
()Find P=P" suchthat T+A'PA<O (g
i)Find P=P" L G gchthat:

T+AL +LA * O

<0 (10
E -I"+G"A P—G—GTB

It is a generdlizdion of a lemma proposed in
(Peaucdle @ al, 2000) that generalizes (Oliverira &
al, 1999).

Proaf:

(ii) implies (i): E ATE being a full row matrix
using the amngruence, lemma 1, gives the resuilt.

(i) implies (ii): consder L=05A"P and
G=05(P+P') with P'>0 an unspedfied matrix.
Thusthe condition (i) becomes:
GT-APA (*)O

. ( )D> 0
0-05P'A  P'

Applying the Shur’s complement (8) gives: (11) is
equivalent to: =T — ATPA-0.25A"P'A>0. Since
-T-A"PA>0 by hypothesis, an enough small

P'>0 such that (11) is stisfied can aways be
defined.

11

This lemma can be extended to matrices defined by
blocks. For example:

T + ATPA (*)O
T, 004
o T .0

(i) Find P =P" such that

12
(i) Find P=PT", L, L, and G suchthat
T+AL+LA () () O
E T,+L,A T, (*) E<o 13
H-L+G'A -L, P-G-G'H

Remark 1: (12) can be recovered from (13) using the
congruence with the row full rank matrix

O 0 AL

D1 oF

Lemma 4. (Peaucdle d@ a, 2000) The two next
problems are equivalent:

(i) Find P>0, suchthat: T+A'P+PA<0 (14
(i) Find P>0, L, G suchthat:

OT+AL"+LA *) O
EIA A (19
P-L +G A -G-G

This lemma is the pending of lemma 3 for the
continuous case. Similarly, it can be etended to
matrices defined by blocks, for example there is
equival ence between:



(i) Find P >0 such that
T, +ATP+PA (*)O
At ()D<0

(16)
g T T.0
(i) Find P>0, L;, L, and G suchthat
O, + AL +LA ) o
0 0 17)
0 L+LA T, <0
HP-L+G'A -L; -G-G'H

Several relaxations of conditions (4) and (5) have
been defined in the literature. The main idea is to
relax the crossed terms Yi+Y; by introducing a

new LMI depending on the whole terms Y + Y,

and Y;, . First results were proposed by Kim and Lee
(Kim and Lee, 2000). They were extended in (Liu
and Zhang, 2004), and we will use this latter
approach. The work presented in (Teixeira et a,
2003) can also be quoted, but it implies a serious
increase of the number of variables involved in the
problem.

Lemma 5. (Liu and Zhang, 2004) Consider matrices

Y; » the condition:

th(z)\ﬁi+ZZhhj(Z)(\cj +Y,)<0 (18)

is true if there exists Q and Q, =Qj (j >i) such
as the following conditions are satisfied:

i Y. +Q <0 (19)

Oi,j i<j Y;+Y,;+Q+Q <0 (20)

o () (*)O

Q Q 0

0: (*)I]> 0 (21)
0

82” - Qe QF

Lemma 6. (Boyd et al, 1994).
Consider the following condition:

G(2)+U (z2)XVT (2)+V(2)X'U" (2)>0 (22)
with z and X two variables. U and V do not

depend on X . Moreover X must be an unspecified
matrix with no constraint. Then (22) is equivalent to:

ép(z)—au (zUT (z)>0
£(2)-oV(z)v' (2)>0

with z thefirst variable, and c OR .

(23)

This result is based on the Finder's lemma and
enables to oltain an equivalent problem with a
reduced complexity, since we replace a unknown
meatrix by an unknown scdar.

Thislemma has two simplified versions:

If either U or V is the Identity matrix, then its
corresponding condition can be removed in (23).

If we have the simplified problem:

B ()%uxugﬂgxmwo, then (23)
s Gyl %)D %)D

reducesto: G(z)-oU (z)U" (z)>0 and G, (2) >0.

Lemma 7 (Inversion matrix lemma). Let be

A B,C,D matrices of appropriate dimension.

Then:

(A+BCD) = A~ A'BEC ™+ DA'BE DA™
(24)

The best previous conditions to guarantee the

stabili ty of the dosed loop for discrete fuzzy models

are recdled in the next theorem. With the same
notations as previoudly for theorem 1:

Theorem 2 (Liu and Zhang, 2003 : Fuzzy model (1)
is globally asymptoticdly stable in closed loop with
control law (2) and the Y; defined in (3) if there

exists matricess X >0, N,, Q >0, Qij:Q;
(j>i), i,jO{1...,r} suchthat: (19), (20) and (21)
hold.

Remark 2: Theorem 2 includes conditions of
theorem 1.

Remark 3: The number of LMI to chedk with
theorem 2 (excepted condition (21)) is equa to

r(r+1)/2.

3. MAIN RESULT

Theorem 3: The fuzzy mode (1) is globaly
asymptoticdly stable in closed loop with control law

(2) if there exists matricess X >0, U |, T, L
and L, such that:

B=T+TT-X>0 (25)
and for i 0{1,...,r}:

0 X *) ® O

FAT-BL B-BL-LB () 0

B L L,-U'B  U+U'-0l§
(26)

Moreover, the expression of the control law is:

u=-[BIB7B,H BIBAX @7)

Proof: The variation of the quadratic Lyapunov
function along the tragjectories of the closed loop

model, i.e: AV (k) =V (k+1)-V (k) <0 gives:
(Ax+BuU) P(Ax+Bu)-P<0 (28)

By applying lemma 3 with L =0, (28) is equivalent
to:



O P -(A -B,F,) GO
GG’ (A-BF) G*G'-P
G is invertible since the last block of (29) gives:
G+G' - P >0. Thus by congruence with the full-

-T

rank matrix 53 OT E (29) isequivaent to:
00 G C

0 G'PG™ -G'A +G'F,/B] U

>0
%—AZG'l +B,F,G* G'+GT -G PG'lE

(30)
thus defining the new variables G PG™" = X >0,
G™*=T and F,G™ =N,, (30) can be written as:

o X -T"Al +NIB! O

2550 (31)
%—AZT+BZNZ T+TT—XE
or.

0 X *) O

HAT T+T"-xH

o0 00 oo .ood
N NT 0
" H R TRE B

According to the simplified version of lemma 6, the
elimination lemma gives two following conditions:
T+T'-X>0

O X *) O

>0 (32
HAT T+T"-X-0B,B™H

From the last block of (32) we ca seethat if (32) is
verified then it exists at least one g <0. This
remark will be useful for the end of the prodf.

Now lemma 4 is applied on the term B,B! to
finally get the condition:

B X *) *) B

D—AZT B LI OT+T"-X O (*) D>O

CR T Beu-uerd :

g U L-U™B] U +UT-0lf
(33

Notice that inequality (32) can be recovered from
(33) by using the mngruence with the row full rank
g 0 0O

matrix: >0.
1 Bf

Conditions (33) are respeded with conditions of
theorem 3. Now we @n turn badk to the control law.
Applying Shur’s complement on equations (31) and
(32) gives:

X-(TAl -NIB])B*(AT-B,N,)>0, (39

X-T'A (B-0B,B!) AT >0 (39

If the theorem 3 conditions (25) and (26) are
verified, it ensures that (35) holds. We need now to
prove that (34) also holds. The prodf is based on the
inversion matrix lemma (24). Applied to (35 we
obtain:

X-TTAWAT >0

W=p*t-pB, (-0 +B/B,) BIp*
Then (34) holdsiif it exists N, satisfying:
NIBIB_lAZT +TTAIB_1BZNZ - N;r B;I—B_:LBZNZ Z
T'A BB, (-0 +B"BB,) BB AT

or equivalently if it exists F, satisfying:
F/B,f"A+ABB,F,~F/B,f7B,F, >

(39)

4 (37)
AB'B,(-071 +B'B7B,) BIB7A
Introducing the @ntrol law (27) gives:
A B7B,(B'67B,) BA2 -

A B7B,(-0 I +B'B7B,) BIB7A
Sinceit exists g <0, (38) holds.

Remark 4: The number of LMI has been reduced
from r(r +1)/2 to r+1. We have to stressthat no
relaxation principle, such as with lemma 5, is

required anymore. Indeed there is no dauble sum in
(33).

Remark 5: Due to the expression of the control law
(27) it beacomes impossible to use apole placement
approach to obtain feadbad gains and to seach after

a P >0 for the Lyapunov function. Thisis done for
example in (Teixeira d a, 200) where the
stabili zetion problem is replacel by a stability
problem.

4. REGULATOR PROBLEM

We want to minimizethe foll owing criterion:
u=arg minEZ(xTQx+uTRu)E (39

An upper bound of this criterion is given solving the
following problem.

Theorem 4: The fuzzy model (1) is globaly
asymptoticdly stable in closed loop with control law
(2) and an wpper bound of (39) is guaranted if there

exists matricess X >0, U , T, L, and L, such
that:

T_
min:y, subjed to El-+TT X XOB>O for
O % Yo

i0{1,....r},



o X *) 0
FAT-BL T+T-X-BL-LE 5
o 7T -L,B' Q™ 0>0
E 0 oB, -L,B" 0 R'-ol E
B 4 L-U"E L L U=+U-0lf
(40)
With P = X ™, the cntrol law is given by,:
=-(BIPB, +R) " Bl PAX (41)
Proof The inequality:
AV +xX'Qx+u'Ru<0 (42
gives
(Ax-B,u) P(Ax-Bu)-P+x' Qx+u'Ru<0
(43

Minimizing with the variable u leadsto:
-B] PAX~B]PAx+2(B]PB, +R)u=0
so once the matrix P is known, the cntrol law is
given by:

~(BIPB, +R) " BIPAX (44)
Now by summing equation (42) between 0 and k, it
isobviousthat V (0) isan upper bound of (39).

The same usual operations applied to (43) gives, with
the new variables G'TPG* =X >0, G™* =T ad

FG'=

D(—TTQT—NIRNZ -T"A +N] BD .0
E -AT+B,N, T+T' =X, D
Then the Shur’s complement is applied to get:
0 X *) O

AT T+T7-X, .

aT 0 Q' 00O

Ho 0 o rR'H

oo od DD mod

% %)D U
DNT z[] >0
DO D ‘o0 OO “0o0
5 39 B A
The dlmmatlon lemma gives two conditions. The
firstis T+T" - X >0. Thesecond is:

0 X *) O
DAT T+T -X-0B8! E
] 227 . |:|>O
0T 0 Q 0
E 0 oB] 0 R‘l—a|E

Lemma 4 gives conditi ons (40).

Now the optimization criteria can be studied. Recdl
that V(0) = x]Px, has to be minimized. So we
seach the smallest y such that:

X Px, <y. With the dedsion matrices this gives

X T TXT ' <y.

Lemma 2 isapplied with L =0 to get:
[G+G'-X -GT'x0

0 rrrat >0

O%T G Yy 0

With T™ =G we obtain the aiteriato minimize

5. RESULTS

We will take the example 2 o (Guerra ad
Vermeiren, 2004 for which there is no solution with
theorem 2 (with a quadratic Lyapunov function). The
system is described by two rules defined by the
matrices:

305 2C (309 05[
A=Ho1 osF »7Ho1 -17F
@iC 030

2 el ™ al

Previous theorems do not rely on functions h , which

play no role in the comparison. For the sake of
plotting results for a dynamicd model, we have
chosen:

j— l -
}1—5_[(71/2 Arctan(x,)),

= i(n/ 2+ Arctan(x))
21
A solution with the new conditions is found with the
matrix P defined by: p= 92 2 65E The next
65 27.2F

figures show the evolutions of the states X, X, and
the control signal U when x, = [10 2]T .

Fig. 1. evolution of X, (t)

Fig. 2. evolution of X,(t)



Fig. 3. evolution of u(t)

6. CONCLUSION

The study presented in this paper tries to reduce the
conservatism of the anditions by lowering the
number of conditions while still keeguing al the
degrees of freedom. The number of dedsion
variables has been reduced, and thus the complexity
of the LMI problem is small er. Results show that we
were @le to oltain such results without raising the
conservatism of our conditions. The dimination
lemma and several matrix transformations were used
for this purpose.
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