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Abstract: In this paper, the extended Kalman filtering  (EKF) technique is considered for 
3-dimensional tracking of vehicle movement using a fixed camera that provides vehicle 
images showing several marks, easily detectable, fixed to the vehicle body. The algorithm 
will be implemented in a minihelicopter hover-stabilization application. For this problem, 
we present results on the convergence and the domain of attraction of the non-linear 
observation scheme as a function of the tuning filter parameters: the initial value of the 
covariance and the robustifying parameter α.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
This work belongs to a project devoted to the control 
and stabilization of a minihelicopter in hover (fixed 
position) in an experimental platform. The position 
and orientation of the vehicle are measured by 
vision, recording frames in which there are several  
marks, made easily detectable in some way, e.g., 
bright-light marks in a dim-light ambient. In this 
way, the vision system operates as a position sensor 
for 3D tracking (for more details see Appendix A). 
This concept is also known in the literature as 
dynamic vision or vision-in-the-loop (Azarbayejani 
and Pentland, 1995; Soatto, et.al., 1996), with 
applications in numerous fields: robotics, control, … 
 
Our approach is based on optimal state estimation 
and Extended Kalman Filter (EKF) (Dorato et.al., 
1995), which can be interpreted as a nonlinear state 
observer (Delgado and Barreiro, 2003). 
 
In many navigation applications, the state dynamics 
(right-hand-side of dx/dt=f(x, ...) ) are known, using 
inertial sensors, and in this way, the EKF provides 
sensor fusion between absolute and relative 

measurements. However, in dynamic vision, no 
inertial information is avaliable.  
 
The only approach, widely used (Azerbayejani and 
Petland, 1995; Soatto et.al., 1996) is to postulate a 
randomly excited movement in the form dx/dt=δ(t), 
with δ(t) being some kind of random or unknown 
excitation. In practice, even if δ(t) is deterministic, 
the fast convergence of EKF guarantees correct 
tracking. 
 
In this context, the objective of this paper is to 
determine the influence and the optimal values of the 
main parameters on the robustness of the nonlinear 
observation scheme. So, the size of the domain of 
attraction (DOA) of the EKF is calculated for a wide 
range values of the tuning parameters: the initial 
value of the covariance and the robustifying 
parameter α. This will allow us to select their 
optimal values in order to guarantee the convergence 
of the  
EKF and so to estimate the pose or 6-dimensional 
state x (position and euler angles of vehicle). 



 
 
Fig. 1. Vision as a sensor providing the pixel 

coordinates of the fixed, visible marks.  
 
This paper is an extension of our previous work 
(Baltar, et al., 2004). In this case, the analysis is 
made over real images of the helicopter with four 
bright-light marks (see Fig.1), incorporating the lens 
distortion in the filter measurement equations. 
Besides of, we estimate the domain of attraction as a 
function of the tuning parameters. 
 
The content of the paper is as follow. In section 2, an 
overall description of the system is introduced. The 
nonlinear observer EKF applied to mark-based 
vision for vehicle tracking is developed in section 3. 
After that, is obtained through simulations the 
domain of attraction in the observer in section 4, and 
finally conclusions are discussed in section 5. 
 
 

2. MARK-BASED VISION FOR 3D VEHICLE 
TRACKING 

 
The principal objective of this task is to obtain the 
state of movement of a rigid solid using an image 
sequence captured from a fixed camera. In order to 
reducing pre-process, the rigid solid has marks that 
can be easily localizable in the image. 
 
Once we capture an image of the scene and after the 
extraction algorithm, the pixel coordinates on the 
image plane of each of m marks attached to the 
helicopter, are obtained. Based on these measures 
and postulating the state dynamic as a randomly 
excited movement, we can estimate the current state 
(pose of the vehicle) by running the Kalman filter. 
So, the state equation is in the form: 
 

)()( ttx δ=&                            (1) 
 
The signal δ can be considered δ ≈ Ν(0,Q), that is, 
zero-mean gaussian noise with covariance Q > 0, 
and the state (pose) x is a six-dimensional vector 
formed by the three translation T(t)=(tx(t),ty(t),tz(t)) 
and the three Euler angles E(t)=(φ(t),θ(t),ψ(t)):  
 

( )Tzyx ttttttttttx )()()()()()()( ψθφ=     (2) 
 

The relation between the Euler angles φ(t), θ(t), ψ(t) 
(roll, pitch, yaw) and the rotation matrix R(t) in 
SO(3) is (Sastry, 1999): 
 

))(exp())(exp())(exp()( tRtRtRtR xyz φθψ ⋅⋅=    (3) 
 
Where Rx, Ry, Rz are the partial derivatives of the 
rotation matrix ,ˆ,ˆ,ˆ 321 eReReR zyx ===  with the 

canonical base e1, e2, e3, and: 
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Now, the measurement equations are Eq.(5) below, 
where hj(x(t)), with 1 ≤ j ≤ m is the normalized 
(pinhole) image projection of each of the m marks in 
pixel coordinates, after including lens distortion. The 
signal ε(t) = (ε1(t) , …, εm(t) )T is the measurement 
noise, usually assumed to be ε  ≈ Ν(0,Θ), with Θ > 0.  
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Assume the case of m marks that are always visible 
and their distribution in the object is known 
(consider the Fig.1), this is, their coordinates in local 
(helicopter) reference are:  
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Then, the marks coordinates in global (world) 
reference are: 
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where T(t) and R(t) are the time dependent traslation 
and rotation between the mobile object and the fixed 
camera. 
 
Let us project now the marks on the image plane 
according to the intrinsic parameters of our camera 
(with a second order symmetric radial distortion 
model obtained with the Camera Calibration 
Toolbox  for  Matlab, free software avaliable in: 
http:/www.vision.caltech.edu/bouguetj/).  
 
First, the normalized (pinhole) image projection are: 
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After including lens distortion, and letting 
222
nn yxr += , the new distortioned marks 

coordinates: 
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With Kc1 = -0.19457 the coefficient of second order 
radial distortion term. Once distortion is applied, the  
final pixel coordinates of the projections of the m 
marks are: 
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Where l = (lx  ly)T=(1865.33  1868.57)T is the focal 
length and ox = 510.68 and oy = 619.68 the principal 
point in pixel coordinates obtained by the calibration 
procedure. 
 
Now, the problem to solve in dynamic vision can be 
formulated more accurately: “From the vision 
registers ( )jy t , determine estimations ˆ( )x t  of the 

object movement ( )x t  along time”. 
 
 

3. OBSERVER EKF IN DYNAMIC VISION 
 
The 3D pose estimation problem using nonlinear 
observer EKF, can be formalized as follows. Assume 
that the plant dynamics, with f(x(t),t) = 0, can be 
written as: 
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where δ(t) and ε(t) represent the typical state and 
measurement noise. The solution of Eq. (11) from a 
nominal initial state 

0)0( xx =  defines the nominal 
state trajectory. The EKF observer gives estimations 

)(ˆ tx of the state x(t) by running the dynamics: 
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started at 

0ˆ)0(ˆ xx = . The estimation error is 

)()(ˆ)( txtxt −=ζ , started at 
000 ˆ xx −=ζ . In the 

extended Kalman filter, the Jacobians of f, h, are 
evaluated at the estimated trajectory )()()(ˆ ttxtx ζ+= . 
So, let us introduce: 
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Remark 1. Notice that we do not impose directly on 
f(⋅), h(⋅) detectability conditions. If the system is not 
detectable, this problem appears indirectly because 
the covariance matrix P becomes unbounded. 
 
The varying Kalman gain used in Eq. (12) is: 
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where the symmetric, positive definite covariance 
matrix P(t) is the solution of the differential Riccati  
equation: 
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started at some Po > 0. The term 2αP(t) comes from: 
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With: 
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where α > 0, is an exponential weighting factor 
introduced following (Safonov, 1980) to make more 
robust the EKF. In our framework, Q, Θ > 0 can be 
regarded as matrices representing the covariance of 
the state and measurement noise.  
 
Remark 2. The matrix C, the Jacobian of the 
measurement function h, is obtained by applying the 
chain rule (we do not write the j and t dependence) 
to y=h(x)=hp(hd(hn(hc(T,R(φ,θ,ψ))))): 
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Where, from Eq. (3): 
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So, Cj results in a 2 by 6 matrix. Joining the row 
pairs that agree with the displayed coordinates for 
the m marks, the complete matrix of 2m by 6 size is 
obtained: )ˆ(x

x
hC
∂
∂

= . 

 
 

4. EKF: DOMAIN OF ATTRACTION 
 
A useful way of measuring the robustness of the 
EKF for some choice of the filter parameters is to 



determine an estimation of the Domain of Attraction 
(DOA).  
 
The notion of Domain of Attraction is conceptually 
simple. First, assume that the plant in Eq. (11) is 
operating at a constant nominal point xx = , 

)(xhyy == , without noise (δ =ε = 0). Second, it can 
be seen that the EKF in Eq. (12) has as equilibrium 
point also xx =ˆ , yy =ˆ , the question is how robust is 
this equilibrium. 
 
To check robustness, consider that we do not know 
that xx = , so we guess some xx ≠0ˆ , then we run the 
EKF dynamics Eqs. (12-15). If xx ≈0ˆ , then very 
likely xtx →)(ˆ . But if xx −0ˆ  is large, it may happen 
that )(ˆ tx  diverge to another value or to infinity. The 
DOA is the set of all those 

0x̂  such that xtx →)(ˆ . 
Obviously, it is important to have large DOAs 
because it is better if we have large initial errors 

xx −0ˆ  or large transients of the δ ,ε  in (11) 
producing large deviations of the actual x around x . 
 
But the DOA is, in general, very difficult to compute 
exactly. We prefer to address estimations of the 
DOA. Simple estimations of the DOA are obtained 
from hypercubes in the state-space. In our 6-
dimensional case, let us consider all the 64 vertex 
obtained from sign-combinations in: 
 

( )1,1,1,1,1,1ˆ00 ±±±±±±⋅=−= ζζ mxx          (20) 
 
For each mζ we define a boolean function ϕ (mζ ) for 
convergence, where: 
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Then, Mζ (P0,α) in the following equation is a 
measure of the size of the DOA for the values P0, α, 
considered in the observer Eqs. (12-15): 
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So, in order to estimate the DOA of the EKF applied 
to the mark-based vision for 3D vehicle tracking, we 
select any captured image of the scene.  
 
After the extraction algorithm, the initial data are the 
pixel coordinates on the image plane of each of m = 
4 marks attached to the helicopter. (Note that with 
three marks not collinear it is possible to obtain the 
6-DOF of the state). So this number and distribution 
of the marks form a basic observable configuration 
in our problem. Studies relatives to this issue can be 
seen in (Weng et.al., 1993). 
 
We consider then a constant state x  and no 
measurement noise: δ=0 and ε=0 in Eq. (11). 

 
Fig. 2. Current estimated state by running the EKF. 

Translational components (solid) and Euler 
angles (dashed). 

 
Fig. 3. Testing the obtained pose (current state). 
 
The Q matrix that represents the covariance of the 
state, is selected as a diagonal matrix considering a 
translation velocity deviation 22 1.0=Tσ  (m/sec)2 and 
a rotational velocity  deviation 22 1396.0=Eσ  
(rad/sec)2: 

( )222222 ,,,,, EEETTTdiagQ σσσσσσ=           (23) 
 
In the same way the matrix 

mmp IR 22
2 * ×=σ , 

asssociated to the covariance of the measurement, is 
seleted with 22 2=pσ , in pixel units. 
 
So, after defining some adequate values of the design 
parameters (initial covariance P0 and the weighting 
factor α) by running the Kalman filter (sample 
period  
dt = 0.005 sec) with a non zero initial estimation 
error, we can estimate the current state (pose of the 
helicopter).This can be seen in the figures Fig.2 and 
Fig.3. 
 
An important question is to find the optimal values 
of the main parameters on the robustness of the 
nonlinear observation scheme: P0 and α.  
 
So, the size of the domain of attraction (DOA) of the 
EKF is calculated for a wide range values of these 
parameters: 
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Fig. 4. DOA in EKF as a function of the design 

parameters P0 and α   
 
For this purpose, for all the values P0 and α defined 
in Eq. (24) and Eq. (25), we increase the initial 
estimation error, testing that all the trajectories that 
result after considering the hypercube in Eq. (20) 
converge (tend to nominal state). The process 
continues while the convergence is guaranteed. 
Finally we obtain, for each pair of values P0 and α, 
the maximum estimation error with guaranteed 
convergence Mζ(P0,α). 
 
The results of these extensive simulations are 
summarized in the figure Fig. 4. Here we can see 
that for values of vg > 0.035, the size of the DOA is 
constant with a very small value although the α 
value  
increases. The best results are obtained for 0.01 ≤ vg 
≤ 0.02. In this range of vg values if we increase the α 
parameter, the DOA increases also, and allows for 
initial estimation errors until Mζ(P0,α)=0.6 rad, m 
(with any combined signed in all the state variables). 
 
In fact the possibility of increasing α, of course 
maintaining an acceptable size of  DOA with 
guaranteed convergence, is important to reduce the 
time of convergence in the observer. This is shown 
in the figure Fig. 5. This graphic is calculated 
finding in each case the time in which the estimation 
error remains smaller than 0.0087 rad, m. In all 
cases, the result saved is the worst value obtained in 
the studied hypercube. For values  between 50 ≤ α ≤ 
100 the time reduction is important and in practice 
the variation due to change vg value (inside intervall 
0.01 ≤ vg ≤ 0.02) is negligible. 

 
Fig. 5. Settling time in EKF as a function of the 

design parameters P0 and α   

 
Fig. 6. Real state (thin) and estimated state (thick) by 

EKF along the time, with nonzero initial 
estimation error. 

 

 
Fig. 7. Real state (thin) and estimated state (thick) by 

EKF along the time, with nonzero initial 
estimation error and noisy measurements. 

 

 
Fig. 8. Real state with noise (thin) and estimated 

state (thick) by EKF along the time, with nonzero 
initial estimation error and noisy measurements. 

 
Finally as an example of performance, with the 
optimal values previously obtained, the figures Fig. 
6, Fig. 7 and Fig. 8 show simulations on how the 
EKF estimates the object movement along the time. 
In the Fig.6, we consider nonzero initial estimation 
error. Then, in the Fig.7, we test the filter 
incorporating also noisy mesurements. The last 
simulation (Fig. 8) adds noise to state dynamic. 
 
 

5. CONCLUSIONS 
 
This paper has reported a convergence analysis of 
the extended Kalman observer applied to mark-based 
vision for 3D vehicle tracking.  
 
The main contribution of the paper is to establish, 
through extensive simulations in Matlab, the domain 
of attraction of the EKF as a function of the tuning 



parameters in a basic observable configuration (we 
assume the case of m=4 marks that are always visible 
and their distribution in the object is known). This 
allows us to introduce in the design phase of the 
filter conditions such as maximum initial estimation 
error in which the convergence is guaranteed and the 
time in which this occurs. These aspects are essential 
in order to finally implement the observer scheme in 
the general project devoted to the control and 
stabilization of a minihelicopter. 
 
In this way, the current configuration of our 
experimental platform has seven marks attached to 
the helicopter and the vision system is composed by 
two digital cameras that provide redundancy in the 
measurements fused into Kalman filter to obtain 
more reliable estimates of the state. Like this, we 
assure the minimum number of marks and also it is 
possible to treat the oclussions because knowing the 
estimated state in each iteration, we can project the 
expected pixel coordinates in the next frame. All of 
this, with the same optimal values previously 
obtained by simulations. 
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APPENDIX A 
 
The experimental platform used restricts the number 
of degrees of freedom. The movements that the 
helicopter can do are vertical displacement and 
rotation around vertical axe. This physical 
implementation for a restricted 2DOF system is 
similar to that in (Avila et.al., 2003). 
 
The helicopter we use is a Mikado Logo 20 with a 
brushless electrical motor and four Futaba digital 
servos connected to the receiver. The vision system 
is composed by two industrial digital cameras from 
Basler, model A 101f, which have a 1300x1030 
resolution and a 12 fps rate at the maximum 
resolution. The images are transmitted through an 
IEEE-1394 bus to PC with a Windows 2000 
operative system (the camera driver imposes us this 
operative system). In this PC, a C/C++ application 
shows the images and the localized marks and 
calculates their pixel coordinates on the image plane.  
 
The pixel coordinates captured by the vision system 
with a rate of 1/30 sec. is transmitted through a 
custom bus towards an IDT72241 4096x9 bit FIFO 
memory that makes the synchronization easier. 
 
An IBM compatible computer that reads the pixel 
coordinates stored in the FIFO memory forms the 
control PC system. In this PC are implemented the 
state estimation (with fixed sample period dt = 0.005 
sec.) and control algorithms with a real time arrange 
in a Windows platform, using the Real Time 
Windows Target from Matlab/Simulink. The output 
of this control system is the actuation for the sticks 
in the radio system. The application is programmed 
in Simulink and some C subroutines as Simulink S-
functions. 
 
The same FIFO simple system is used for 
transmitting the servos setpoints to the RF system.  
 
A microchip PIC18F452 microcontroller reads 
servos needed movements and transmits them in a 
Pulse Position Modulation to the Futaba FF9 (nine 
channels) radio frequency transmitter through a bus 
that connects in the radio by a proprietary connector.  
 

 
 
Fig. 9. General layout scheme. 


