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Abstract:
This paper deals with a numerical method for the design of mixed H2/H∞ static output
feedback controllers. We first formulate the problem as a new type of rank-constrained
linear matrix inequalities (LMIs). Then, the LMI optimization problem subject to a
rank condition is tackled by the recently developed penalty function method, where
a linear penalty function is introduced for the nonconvex rank constraint. The overall
procedure results in solving a series of convex optimization problems. With an increasing
sequence of the penalty parameter, the solution of the penalized optimization problem
moves towards the feasible region of the original nonconvex problem. Comparisons with
previous research are performed to illustrate the proposed method. Copyright c©2005 IFAC
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1. INTRODUCTION

Recently, a semidefinite program formulation applica-
ble to static output feedback (SOF) stabilization has
been proposed (Mesbahi, 1999); however, most SOF
control problems including mixed H2/H∞ control
still remain open.

The purpose of mixed H2/H∞ control guarantees
optimal closed-loop performance while maintaining
a prescribed level of robustness (Bernstein and Had-
dad, 1989; Khargonekar and Rotea, 1991). Consider-
ing performance and robustness simultaneously often
arises in many control fields, but no analytic solution
exists to date.

The conventional representation of H2/H∞ SOF
problems based on the celebrated elimination lemma

(Boyd et al., 1994; Gahinet and Apkarian, 1994; Skel-
ton et al., 1997) leads to a linear matrix inequality
(LMI) optimization problem subject to a nonconvex
algebraic or rank constraint on the Lyapunov vari-
ables (Leibfritz, 2001). The use of a single Lyapunov
matrix in multiobjective control is known to produce
conservative results. To reduce the degree of conser-
vatism, several methods have been proposed in the
LMI framework (Arzelier and Peaucelle, 2002; Halder
and Kailath, 1999; Shimomura and Fujii, 1999).

Meanwhile, to solve nonconvex rank-constrained LMI
problems, several global and local methods have been
presented during the last decade (Goh et al., 1994;
Grigoriadis and Skelton, 1996; Ghaoui et al., 1997;
Fazel et al., 2003).



More recently, a partially augmented Lagrangian
(PAL) method (Apkarian et al., 2003) has been de-
veloped. This second-order method has a superior
convergence property over the local methods, but the
implementation of the algorithm is not easy since the
gradient and Hessian of the objective function must be
derived for the Newton-type method.

In this paper, mixed H2/H∞ SOF problems are con-
verted to a new type of rank-constrained LMI prob-
lems. The rank condition here is not imposed on the
Lyapunov matrix but imposed on the slack matrix;
thus the proposed method can be applied to simulta-
neous stabilization, polytopic uncertain plant models
and multi-objective control problems. For the SOF
stabilization problem, a similar method was addressed
by (Peaucelle et al., 2002). After formulating the prob-
lem, we discuss the newly developed computation
method for solving rank-constrained LMI optimiza-
tion problems (Kim et al., 2004).

The remainder of the paper is organized as follows.
In Section 2 and 3, we state SOF problems in terms of
rank-constrained LMIs. Section 4 briefly describes the
penalty function method for general rank-constrained
problems. In Section 5, the practical implementation
of the algorithm is given. Section 6 shows some nu-
merical experiments.

The notation is quite standard. I denotes the identity
matrix. AT means the transpose of the matrix A. The
trace and the rank of a matrix A are denoted by tr(A)
and rank(A), respectively. A Â 0 (respectively, A º
0) means that the matrix A is symmetric and positive
definite (respectively, semidefinite). For long matrix
expressions, (?)T AX means XT AX . The notation
Tzw denotes the transfer function from w to z.

2. STATIC OUTPUT FEEDBACK
STABILIZATION

Let us consider the SOF stabilization with a perfor-
mance channel shown in Fig. 1. The state-space repre-
sentation of the system is described by




ẋ
z
y


 =




A B1 B2

C1 D11 D12

C2 D21 0







x
w
u


 , (1)

where x ∈ Rn is the state, w ∈ Rnw is the exogenous
input, u ∈ Rnu is the control input, z ∈ Rnz is the
output to be regulated, and y ∈ Rny is the output.

We seek a static control law u = Ky such that the
closed-loop system becomes stable and satisfies the
performance specification for all T > 0,

∫ T

0

(
z
w

)T (
Q R

RT S

)(
z
w

)
dt < 0 . (2)

The following lemma states a new rank-constrained
LMI formulation for the design of a static controller
with a quadratic performance specification.

GKw
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z

Fig. 1. Static output feedback control with a perfor-
mance channel.

Lemma 1. For the system in Fig. 1 represented by (1),
there exists a stabilizing static controller u = Ky such
that the performance condition (2) holds if and only if
there exist matrices P Â 0,W º 0 satisfying the LMI
subject to the rank condition,




?
?
?
?


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T 


0 P 0 0
P 0 0 0
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0 0 RT S


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


I 0 0
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C1 D11 D12

0 I 0


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≺
(

?
?

)T

W

(
C2 D21 0
0 0 I

)
(3)

rank(W ) = nu. (4)

If W satisfying (3) and (4) is found, K can be com-
puted by solving the LMI in the variable K,(

W1 + W2K + KT WT
2 KT W3

W3K −W3

)
¹ 0, (5)

where

W =
(

W1 W2

WT
2 W3

)
.

Proof. Define Ω as

Ω =
(

?
?

)T (
0 P
P 0

)(
I 0 0
A B1 B2

)
+

(
?
?

)T (
Q R

RT S

)(
C1 D11 D12

0 I 0

)
.

Then, by virtue of Lyapunov stability theory and
Finsler’s lemma, the existence condition of an SOF
controller can be expressed as the following LMI in
P Â 0 and K (Arzelier and Peaucelle, 2002)




?
?
?




T
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


I 0
0 I

KC2 KD21


 ≺ 0, (6)

which is equivalent to

Ω ≺ µ



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
(
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(
?
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)T (
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−K I

)(
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)
,

(7)

where µ > 0. From (7), we can easily obtain (3), (4)
and (5).

In the case of H∞ controllers, the performance matri-
ces are given by Q = I, S = −γ2I,R = 0. Also,



H2 optimal controllers can be described in a similar
manner.

Lemma 2. For system (1) with D11 = D21 = 0,
we can find a static control law such that the H2

performance of the closed-loop system is ||Tzw||2 <
γ2 if and only if there exist matrices P2 Â 0,W º 0
satisfying,

tr(BT
1 P2B1) ≤ γ2

2 , (8)

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?
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
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0
0

0 0 I


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I 0
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
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≺
(

?
?

)T

W

(
C2 0
0 I

)
, (9)

rank(W ) = nu. (10)

Remark 3. The advantage of Lemmas 1 and 2 lies in
that no constraints are imposed on the Lypunov matrix
P . Thus, we can use separate Lyapunov matrices for
polytopic plants or multiobjective control syntheses to
reduce conservatism.

3. MIXED H2/H∞ STATIC OUTPUT CONTROL

In this section, we present a rank-constrained LMI
approach to the mixed H2/H∞ static control problem
shown in Fig. 2, whose state-space representation is



ẋ
z∞
z2

y


 =



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
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


x
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w2

u


 (11)

u = Ky, (12)

where all notations have the same meaning as in (1).
The channel (w∞, z∞) is for the robustness condition
of the system, and the channel (w2, z2) for the optimal
H2 performance of the closed-loop system. The mixed
H2/H∞ SOF problem for system (11) can be written
as follows.

Problem 4. For a given γ∞ > 0, find a static control
law u = Ky that minimizes ||Tz2w2 ||2 subject to
||Tz∞w∞ || < γ∞.

Based on the formulation of the previous section, we
use two Lyapunov matrices for H2 and H∞ channels.
To find a single control gain, a common W matrix
is chosen at the expense of some conservatism. The
resulting problem to be solved reduces to

min
P2Â0,P∞Â0,Wº0

tr(BT
1 P2B1)

subject to LMI (9),

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Fig. 2. Static H2/H∞ output controller.

≺
(

?
?

)T

W

(
C2 D20 0
0 0 I

)
, (13)

rank(W ) = nu. (14)

4. PENALTY FUNCTION FORMULATION OF A
RANK CONDITION

With abuse of notation, the problems in the previous
sections have the form:

min cT x
subject to x ∈ C,

rank(X(x)) = r,
(15)

where C is the convex set,

C = {x : X(x) º 0, L(x) Â 0}, (16)

x is the decision vector, and X(x), L(x) are matrices
that are affine functions of x.

We briefly review the recently developed penalty func-
tion method for LMI optimization problems subject
to a rank-condition (Kim et al., 2004). In the penalty
function method, we iteratively solve the following
penalized optimization problem for obtaining a solu-
tion of (15),

min ρ cT x + tr(X) + µ p(x; V )
subject to x ∈ C, (17)

where ρ is the optimization weight, µ is the penalty
parameter. The penalty function p(x; V ) is defined by

p(x; V ) = tr(V T XV ), (18)

where V ∈ Rn×(n−r) consists of orthonormal
columns. During the computation process, the para-
meters µ, ρ and the coefficient matrix V are succes-
sively updated.

If we assume that the eigenvalues of X are ordered
λ1 ≤ · · · ≤ λn−r ≤ · · · ≤ λn, then the following
inequality holds for a given V such that V T V = I ,

λ1 + · · ·+ λn−r ≤ tr (V T XV ). (19)

(19) means that the penalty function denotes the upper
bound of the sum of the n − r smallest eigenvalues
of X . Therefore, if the penalty function becomes zero,
then rank(X) ≤ r.

The weighting matrix V consisting of orthonormal
columns can be determined from any feasible point



X(x0), x0 ∈ C by eigenvalue decomposition. Conse-
quently, problem (15) reduces to a convex LMI opti-
mization for given µ, ρ and V . With the notation

ϕ(x; ρ, µ, V ) = ρ cT x + tr(X) + µ p(x; V ), (20)

consider the sequence of the solution for fixed µ, ρ and
given V0 in (17),

xk = min
x
{ϕ(x; ρ, µ, Vk−1) : x ∈ C}, k = 1, 2, . . . ,

(21)
where Vk is computed from xk ∈ C. The following
lemma states the convergence property of (21).

Lemma 5. Let µ > 0, ρ > 0 in (21) be fixed. Then
for a given V0, the following inequality on the solution
sequence holds:

ϕ(xk+1; ρ, µ, Vk) ≤ ϕ(xk; ρ, µ, Vk−1). (22)

Lemma 5 implies that for fixed µ and ρ, the se-
quence {ϕ(xk; ρ, µ, Vk−1)} is always non-increasing
and convergent. When the limit value of the penalty
function p(xk; Vk−1) is not sufficiently small, we can
get a new point that is closer to the feasible region by
increasing µ. If we rewrite the objective function as

ϕ(x; ρ, µ, V ) = ρ cT x +
n∑

i=1

λi + µ

n−r∑

i=1

λi, (23)

then we can understand that increasing µ makes the
sum of the smallest (n− r) eigenvalues decrease.

Remark 6. The convergence of the solution to (17) is
guaranteed with an increasing sequence of µ. Also,
note that the solution sequence to (17) always moves
towards the region satisfying the rank constraint.
However, like other local algorithms (Ghaoui et al.,
1997; Grigoriadis and Skelton, 1996), the global con-
vergence of the penalty function method is not guar-
anteed; the convergence properties of the method are
yet to be studied. Nevertheless, the proposed method
did find solutions for many control problems reliably
(Kim et al., 2004).

Remark 7. From (18), we can see that the penalty
function is linear, and that the value of the penalty
function is always positive over x ∈ C. These imply
that the penalty function above can be regarded as an
exact penalty function over the convex set C. Hence,
there exists a finite penalty parameter µ such that
p(xk+1; Vk) = 0.

5. IMPLEMENTATION OF THE PENALTY
FUNCTION METHOD

This section summarizes the penalty function method
(PFM) for rank-constrained LMI optimization prob-
lems.

Algorithm 1. The PFM for rank-constrained LMI prob-
lems

(1) Initialization. Set the penalty parameter µ =
0, ρ0 À 1 and find an initial feasible point x0

by solving the LMI optimization problem:

x0 = minx{ρ cT x + tr(X) : x ∈ C}.
Set xk = x0. Choose µk = µ0 > 1, ρk =
ρ0, α ∈ (0, 1), β ¿ 1, τ > 1, ξ > 1, ε1 ¿
1, ε2 ¿ 1.

(2) Computation of V . Compute Vk from X(xk) by
eigenvalue decomposition.

(3) Convex optimization. Compute xk+1 by solving
the convex LMI optimization problem,

xk+1 = minx{ϕ(x; ρk, µk, Vk) : x ∈ C}.
(4) Feasibility test. If p(xk+1; Vk) ≤ ε1, then xk+1

is feasible and stop when computing a feasible
solution.

(5) Optimality test. If xk+1 is feasible and |cT xk+1−
cT xk| ≤ ε2 then a locally optimal solution xk+1

is obtained. Stop.
(6) Penalty parameter update. If xk+1 is not feasible

and p(xk+1;Vk) > αp(xk; Vk−1), then increase
the penalty parameter by µk+1 = τµk.

(7) Optimization weight update. If xk+1 is feasible
and |cT xk+1 − cT xk| < β, then increase the
optimization weight by ρk+1 = ξρk.

(8) Next step. Set k = k + 1 and go to step (2).

The implementation code of the PFM is almost the
same as that of the cone complementarity linearization
algorithm (Ghaoui et al., 1997) except for eigenvalue
decomposition. Though the PFM is similar to the first-
order method, it can be applied to optimization prob-
lems, and it shows good convergence characteristics
attributed to the tuning factors µ and ρ.

6. NUMERICAL EXAMPLES

We selected some H2/H∞ static output feedback
control examples to evaluate the performance of the
proposed algorithm. Throughout the simulation, we
have used the SeDuMi package as an LMI solver
and the YALMIP for a SeDuMi interface (Sturm,
2001; Löfberg, 2004). The computation parameters
used were

µ0 = 5000, ρ0 = 1000, α = 0.99, τ = 1.05,

which were selected by a trial-and-error approach.
Thus further work on initial values, computation pa-
rameters, and convergence properties is needed.

Example 1. This is a classical example taken from
(Levine and Athans, 1970). The state-space matrices
of the system are given by

A =
(

0 1
−1 0

)
, B0 =

(
1
0

)
, B1 =

(
1 0
0 1

)

B2 =
(

0
1

)
, C0 =

(
0 1

)
, D00 = 0,



D02 = 0, C1 =
(

1 0
0 0

)
, D12 =

(
0
1

)
,

C2 =
(
0 1

)
, D20 = 0.

The analytical solution to the mixed H2/H∞ static
control for this system is completely known (Arzelier
and Peaucelle, 2002). Table 1 shows the computation
results for the robustness condition γ∞ ≤ 1.2, and
Fig. 3 shows the computational behavior of the PFM.
In the table, γ2-bound means the solution to Problem
4, and γ2-actual is computed from the closed-loop
system with the obtained static gain K. The optimal
gain is −0.9458, and the computed gain by the PFM
is−0.9735. As is shown in Fig. 3, the penalty function
of the PFM is always decreasing and tends to zero in
20 iterations. We can see that the obtained solution is
not overly conservative.

Table 1. Results for example 1

γ2-bound γ2-actual γ∞
Optimal - 1.5735 1.2000

Arzelier(2002) 1.6825 1.5778 1.1706
PFM 1.5838 1.5772 1.1746

10
−15

10
−10

10
−5

10
0

Penalty function

p(
x;

V
)

0 5 10 15 20 25
1.35

1.4

1.45

1.5

1.55

1.6

H
2
 norm upper bound

Iteration

γ 2

Fig. 3. Behavior of penalty function and H2-norm
upper bound for example 1.

Example 2. As a second example, we choose a mass-
spring system described in (Shimomura and Fujii,
1999) with data matrices

A =




0 0 1 0
0 0 0 1

−1.25 1.25 0 0
1.25 −1.25 0 0


 , B0 =




0 0
0 0

−0.25 0.5
0.25 0


 ,

B1 =




0
0
0
5


 , B2 =




0
0
1
0


 , C0 =

(
1 −1 0 0
0 0 0 0

)
,

C1 =
(

0 0.2 0 0
0 0 0 0

)
, D12 =

(
0

0.2

)
,

D02 =
(

0
0.2

)
, C2 = I4×4.

We design a static controller with the H∞ specifica-
tion, γ∞ ≤ 1. Computation results are displayed in
Table 2, and Fig. 4. Calculated control gain is

K =
(−1.2127 −0.2828 −1.4208 −0.6675

)
.

In this numerical experiment, our result is less conser-
vative.

Table 2. Results for example 2

γ2-bound γ2-actual γ∞
Shimomura(1999) 1.7827 1.7223 0.3979

PFM 1.5114 1.5111 0.9416
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Fig. 4. Behavior of penalty function and H2-norm
upper bound for example 2.

Example 3. This is the longitudinal motion of a
VTOL helicopter (Leibfritz, 2001). The system data
matrices are given by

A =




−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200

0 0 1 0




B1 =




0.0468 0
0.0457 0.0099
0.0437 0.0011

−0.0218 0


 , C1 =

1√
2




2 0
0 1
0 0
0 0




T

B2 =




0.4422 0.1761
3.5446 −7.5922
−5.52 4.49

0 0


 , C2 =




0
1
0
0




T

D20 =
(
0.00039 0.00174

)

D00 = 02×2, D02 = D12 = I2×2/
√

2
B0 = B1, C0 = C1.

Table 3 and Fig. 5 show the results with the constraint
γ∞ ≤ 0.423722. The computed gain is

K =
(
1.0792 11.8505

)T



Table 3. Results for example 3

γ2-bound γ2-actual γ∞
Leibfritz(2001) 0.4687 0.1033 0.2943

PFM 0.1050 0.1002 0.1778
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Fig. 5. Behavior of penalty function and H2-norm
upper bound for example 3.

From the results above, we can see that the PFM can
efficiently solve mixed H2/H∞ static output control
problems with a new rank-constrained LMI represen-
tation, and that our results are less conservative than
those of the previous research.

7. CONCLUDING REMARKS

We have addressed a simple iterative algorithm for
mixed H2/H∞ static output control problems. The
mixed H2/H∞ problem was transformed to a new
type of rank-constrained LMI optimization problem,
which were solved iteratively by the recently devel-
oped penalty function method. Numerical experiments
showed promising results.
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