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Abstract: The friction and load variation are the main uncertainties in the linear 
piezoelectric motor system. Only the viscous friction is considered in previous work, but 
it is quite different with the practical condition. Highly nonlinear friction in the system is 
measured and compensated by a radial basis function (RBF) network. A discrete-time 
sliding mode controller, which is insensitive to the perturbed state matrix and input matrix 
and disturbances, is proposed for LPM drive system. Furthermore, three free design 
parameters are optimized to achieve better transient performance by genetic algorithm 
and one online mass estimator is adopted to extend the robustness. The simulation and 
experiment results show that the proposed controller has a stronger robustness than PID 
controller.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Electromagnetic motors have actually dominated the 
industry for more than a hundred years.  In recent 
years, a variety of novel types of piezoelectric 
motors have attracted special interest as new 
operating principle-based servo actuators in the field 
of precision motion control applications. The 
piezoelectric motor can be called a milestone of new 
generation motor, which has totally different 
operating principle from the electromagnetic motor 
counterpart. The first applied linear piezoelectric 
motor (LPM) appeared in the 1970s (Bansevichyus, 
et al., 1978). Different construction and driving 
principles of LPM have been reported (Sachida, et al., 
1993; Hu, et al., 2001). The precise motion control 
of the LPM drive system requires detailed system 
model. However, the system mathematic model is so 
complex and the motor parameters are influenced by 
the uncertainties and disturbances. Friction and mass 
variations are the main concern in LPM drive 
system. Several friction models and parameter 
measurement methods have been addressed for 
adequate friction compensation (Canudas, et al., 

1997). However, the parameter measurement always 
requires special hardware design or extra hardware 
requirement. Load variations problem in the system 
can be solved by two ways. One is to resort to the 
robust controller, the other is to resort to the load 
estimator. 

During the last two decades, variable structure 
control (VSC) has gained significant interests and 
gradually applied in the industrial applications. A 
reaching law based approach for designing the DSM 
control law is proposed. However, many works on 
DSM control only deal with exogenous disturbance 
and matching condition, where friction is lumped 
into system uncertainties and the nonlinear dynamic 
characteristic of friction cannot be compensated 
effectively.  

The paper is organized as follow, in section 2 the 
structure and model of the LPM are introduced 
briefly, followed by the system identification of the 
system with nonlinear friction compensation. In 
section 4, one novel sliding mode controller is 
proposed with Genetic algorithm based parameter 
optimization. Simulation and experiment results are 



     

also demonstrated to validate the effectiveness of the 
proposed control scheme in section 5.  
 

2. MODEL OF THE LINEAR PIEZOELECTRIC 
MOTOR  

 
 
2.1 Principle and Structure of LPM 
 
The inverse piezoelectric effect in piezoceramics 
converts electrical field to mechanical strain. Under 
special electrical excitation drive and ceramic 
geometry of piezoelectric motors, longitudinal 
extension and transverse bending oscillation modes 
are excited at close frequency proximity. The 
simultaneous excitation of the longitudinal extension 
mode and the transverse bending mode creates a 
small elliptical trajectory of the ceramic edge, thus 
achieving the dual mode standing wave motor. By 
coupling the ceramic edge to a precision stage, a 
resultant driving force is exerted on the stage, 
causing stage movement. Fig. 1 shows the basic 
structure of the linear piezoelectric motor. 
 
2.2 Control model of LPM 
 
The linear piezoelectric motor used in the project is 
from the Nanomotion. This kind of motor is driven 
by a high-frequency (39.6kHz) sine wave voltage, 
which is generated by an inverter operating over the 
resonance frequency. The motor and drive can be 
modeled as a DC motor with friction driven by a 
voltage amplifier. The motion system is modeled as 
follow: 
        )( yfyKuKym fvf −−=  (1) 

Kfv is the viscosity constant. Kf is electrical-
mechanical energy conversion constant. u is the Vin , 
command voltage to the driver which is from the 
output of controller. The )( yf is the highly nonlinear 
friction in the system and will be compensated by a 
radial basis function (RBF) in the paper. 
 

3. SYSTEM IDENTIFICATION OF LPM DRIVE 
SYSTEM  

 
3.1 System Configuration 
 
The experimental components consist of DC power 
source, LPM (it is such a small one but it can drive a 
big stage as shown in Fig. 2), motor driver, position 
encoder, dSPACE DS1103 card and dynamic signal 
analyzer. The experiment platform is shown in Fig. 
2. 
 
3.2 Basis Function Compensation for Friction 
 
An RBF network can be described by the following 
equations. 

            ( ) 0
1

( )
m

i i i
i

F x w w x cϕ
=

= + −∑   (2) 

 

Fig. 1  Structure of the linear piezoelectric motor  
        from Nanomotion 

Fig. 2  The overall experimental system 
where x is the input vector, { (.) 1, 2, ..., }i i mϕ = is the 
set of basis functions. wi are the weights, ci, are 
known as the RBF center, and m is the number of 
centers. In the RBF network, the functional form ϕ(.) 
and ci are assumed to have been fixed.  

The RBF adopted in the paper is given by: 

              
2

22
( ) exp( )ix c
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σ

ϕ −− = −  (3) 

where σ is a parameter which indicates how the RBF 
response increases when input state approaches the 
center ci. 

An orthogonal least squares (OLS) procedure 
proposed by (Chen, et al. 1991) chooses the centers 
of the RBFs as subsets of the weighting matrix from 
a linear regression model of the error equation. 
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d x c w e i nϕ
=
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In the regression model, di is the desired response, ϕ 
are the regressors, wj are the parameters, and ei are 
the residual errors. The vector expression of the 
equation can be shown as: 
                                 D W E= Φ +  (5) 

OLS transforms the columns of φ into a set of 
orthogonal vectors φ=QR. Then, the equation is 
represented as: 
                     D QRW E Qg E= + = +  (6) 

Q are the sets of orthogonal vectors, the squares D 
can be obtained by:  

                   2

1

m
T T T

j j j
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D D g Q Q E E
=

= +∑  (7) 

Thus, an error reduction ratio due to Q is defined as:  
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The ratio can be applied to rank the RBFs according 
to their contribution to the reduction of the 
approximation error. The regressor selection 
procedure is terminated at the sth step when 
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where 0<ρ<1 is the chosen tolerance. Here, ρ is 
chosen as 0.001. 

Since the accurate parameter values in (1) are 
difficult to obtain, Dynamic signal analyzer (DSA) is 
first used to identify the system. 

The system model can be measured by DSA directly 
under the nonlinear friction compensation. The bode 
diagram of the plant with 0kg payload is shown in 
Fig. 3. The curve fitting can be fulfilled by Dynamic 
Signal Analyzer (DSA). 

The curve fitting plant model for 0kg payload is:  

                         
( ) 10.25

( ) ( 30.025)

Y s

U s s s
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   (10) 

In the same manner, the models for 3.5kg and 7kg 
payloads are as follow: 

( ) 5.27

( ) ( 15.43)

Y s

U s s s
=

+
 and 

( ) 3.54

( ) ( 10.382)

Y s

U s s s
=

+
 (11) 

 

4. ROBUST CONTROLLER DESIGN 
 
To solve the large parameter variations and nonlinear 
compensation problem in LPM drive system, the 
whole control structure is proposed and shown in Fig. 
4. The mass estimator is achieved based on 
estimation algorithm named recursive least square 
with forgetting factor (Ljung, 1999). The GA based 
sliding mode controller is to be described in details. 
 
4.1 Discrete Time Sliding Mode Control 
 
The motion system is modeled as (1) 
                  ( )my K u K y f y

f fv
= − −  (12) 

that is,   1 ( ( ))y K u K y f y
f fvm

= − −    (13) 

It can be shown in standard state-space form: 
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The system will be digitalized in the practical 
application by computer-aim method. Thus, denote  
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where Ts is the sampling time. The system is 
transformed to discretization system by the forward 
Euler method. 
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 (17) 

The friction function and the mass are time varying 
and uncertain parameters of the system. However, 
the extent of the parameter is bounded by known. 
The control problem is to make the state xk track a 
specific time varying state xd under the time varying 
friction and mass. 

Let us define a sliding surface by the scalar equation 
Sk = 0,   

where,    
( ) 0,

{ }
0,1,..., ( )

d
k k k

k

s k

s x x
S s

k s kT s

= Λ − =
=

= =
 (18)  

where, [ 1]λΛ = , λ is a positive real number and 

[ ]d d d T
k k kx y v=  is the reference input. 

Given the initial condition x(0)=xd(0), the problem of  
tracking x≡xd is equivalent to that of remaining on 
the surface Sk for all k>0. Thus, the problem of 
tracking the xd can be reduced to that of keeping the 
scalar quantity s at zero. 

Adopting the reaching law (Gao, et al., 1993): 
  1 sgn( ), 1k k s k s k ss s QT s T s QTη+ − = − − <   (19) 

       
1 1

1
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+
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 (20) 

solving u from the (19) and (20) 
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Fig. 3  Bode plot of the system model data for 0kg 
 

Fig. 4  The structure block diagram of the system 
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Moreover,  sgn(1 ) sgn( )s k kQT s s− =  (22) 

Then, the sign of sk+1 must be opposite to that of sk 
according to the definition of quasi-sliding mode 
(QSM). In the region, every state x satisfies: 

                          { }1( ) s

s

T
QTx s x η

−<              (23) 

And the width of the DSM bound is: 
                               1

s

s

T
QT

η
−∆ =  (24) 

Consider the system (16) under the unknown mass 
and friction condition. 

            1k k k k k

k k

x x x u u f

y Cx
+ = Φ + ∆Φ + Γ + ∆Γ +

=
 (25) 

 For the current system, the following matching 
conditions are satisfied: 
                                     ∆Φ = ΓΦ  
                                     ∆Γ = ΓΓ        (26) 
                                        f f= Γ  
Consider the system (25), the (21) becomes 
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The , , fΦ Γ in (27) are unknown elements, thus, 
(27) cannot be used to design the controller.  Assume 

, , fΦ Γ can be replaced by the elements 

, ,c c cfΦ Γ , which will be specified by the 
following procedure.  

After the substitution, (27) becomes: 

   

1
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1
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k k k s k
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  (28) 

From the (20) (25) and (28), the incremental change 
in sk is expressed: 

1 1sgn( ) ( )

( )[

]

d d
k k s k s k k k

k c k k c k

c

s s QT s T s x x

u u x x

f f

η+ +− = − − − Λ −

+ ΛΓ Γ − Γ + Φ − Φ

+ −

 (29) 

For simplification, let 
                    ( )kT u= ΛΓ Γ , ( )c c kT u= ΛΓ Γ  

                   ( )kS x= ΛΓ Φ , ( )c c kS x= ΛΓ Φ   (30) 

                          F f= ΛΓ , c cF f= ΛΓ  
Then (29) can be expressed as: 

1 sgn( )

( ) ( ) ( )
k k s k s k

c c c

s s QT s T s

T T S S F F

η+ − = − −

+ − + − + −
  (31) 

For the LPM drive system, T , S  and F have some 
corresponding relationship with mass and friction of 
the system itself. They have the upper bound and 
lower bounds as the mass and friction in the system 
are not unlimited.  

min max min max min max, ,T T T S S S F F F≤ ≤ ≤ ≤ ≤ ≤  (32) 

The value of Tc, Sc and Fc are need to be specified to 
guarantee the sign of sk+1-sk is opposite to the sign of 
sk, the simple solution is: 

max max max

min min min

, , sgn( ) 1

, , sgn( ) 1
c c c k

c c c k

T T S S F F s

T T S S F F s

= = = =

= = = = −

⎧
⎨
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 (33) 

To formulate (29) as follow: 
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The final control law is referred from (26) (28) and 
(34): 
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  (35) 

 
4.2 Genetic Algorithm Based Parameter 

Optimization 
 
Three free parameters λ, Q and η exist in the sliding 
mode control design process. They have been chosen 
only by experience before. Thus, it is not the optimal 
one. GA can realize the optimal design with a 
suitable fitness function. 

A fitting function should be set up in order to 
evaluate the performance of every new generation of 
the parameters. The fitness function should be 
suitably designed to incorporate the restrictions. In 
the paper, the integral of squared error (ISE) of 
position response is adopted as one part of fitness 
function. Moreover, the overshoot of the time 
response is also crucial for the system transient 
performance. The integral of the overshoot acts as 
the other part of the fitness function. 
                                       ise overshootg g g= +       (36) 

                      2

0
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T

iseg y t r dt= −∫  (37) 
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0
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0 0
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⎧
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∫  (38) 

The minimization of the evaluation function g is 
transformed into a maximization search fitness 
function F by 

F
g

α
= (α is a constant) (39) 

Moreover, non-uniform mutation is applied for 
improving single-element tuning and reducing the 
disadvantage of random mutation in the float point 
implementation. Let ai and bi be the lower and upper 
bound, respectively, for each variable i, xi is an 
element in the chromosome and xi’ is the next 
generation of xi. 

          1
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where 
                        

max2( ) ( (1 ))bG
Gf G r= −  (41) 

 
   r1,r2 : a uniform random number between (0,1) 
      G : the current generation 
   Gmax: the macimum number of generations 
        b: a shape parameter 

The GA moves from generation to generation 
selecting and reproducing parents until a termination 
criterion is met. 
 

5. NUMERICAL AND EXPERIMENT RESULTS 
 
5.1 Simulation results 
 
The model used is corresponding to (1): 
                  3.7 37.925 111.1 ( )y u y f y= − −  (42) 
Φ and Γ in (15) are derived as: 

                 
1 1.0 3 0

,
1 0.97 0.01

e −
Φ = Γ =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (43) 

The unknown parameters in (27) can be further 
determined: 

                          

0.17 0.25

[0 0.75] [0 0.5]

0.3 0.3f

≤ Γ ≤

≤ Φ ≤

− ≤ ≤

 (44) 

The reference signals in this case are a stepwise 
change position signal and a swing signal 
g(t)=sin(t)*sin(10t), which are shown in Fig. 5. 

The three parameters λ, Q and η. in (35) are chosen 
to achieve the optimality with respect to the fitness 
function (43) based on GA. Specifications of the GA 
process are the population size of 100, the 
normalized geometric ranking selection, the one-
point crossover with its probability of 0.6, and the 
non-uniform mutation with its probability of 0.05, 
respectively. The genetic process is iterated until 200 
generations are achieved. After the GA based 
optimization procedure, the resulting values of them 
are 78.447, 139.83, 93.763, respectively. The GA 
based sliding mode controller from (35): 

1

100{[79.447 1.173] 0.861

[78.447 1] 0.1498sgn( )

[0 0.025] sgn( )}

k k k

d
k k

k k

u x s

x s

x s
+

= − +

− +

+

  (45) 

Fig. 6 ~ Fig. 9 shows the results of position control 
based on the two methods under different operation 
conditions. To evaluate the robustness of the 
proposed control method, the control results are 
obtained under different frictions and masses. The 
friction ranges from f0 to 2f0 and the payload ranges 
from 0kg to 7kg. Under every different condition, the 
mean tracking error during the whole simulation time 
is calculated. Fig. 10 shows all the average absolute 
tracking  errors  to  step  reference   signal   at   every  

 

 

Fig. 5  The reference position signals 
 

Fig. 6  Tracking performance of proposed method 
       (left)  and  PID  controller  (right)  under   the 
       condition of f=1.2 f0 and payload m=0kg 

Fig. 7  Tracking performance of proposed method 
       (left)  and  PID  controller  (right)  under   the 
       condition of f=1.2 f0 and payload m=7kg 

Fig. 8  Tracking performance of proposed method 
       (left)  and  PID  controller  (right)  under   the 
       condition of f=1.2 f0 and payload m=3.5kg 

Fig. 9  Tracking performance of proposed method 
       (left)  and  PID  controller  (right)  under  the  
       condition of f=1.2 f0 and payload m=7kg 

point clearly. The tracking error in left picture varies 
from 1.9E-5 to 1.5E-4. The one in right picture 
ranges from 2.2E-4 to 5.2E-4. 

Hence, the simulation results demonstrate that the 
proposed controller scheme highly improves the 
control performance compared with the conventional 
PID controller. 
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Fig. 10  Mean position tracking error of the proposed 
       method   (upper)   and   PID   (lower)   with   the 
       variations of friction and payload. 

Fig. 11  Experiment stepwise response under payload 
        of 0kg 

Fig. 12 Experiment stepwise response under payload 
        of 7kg 

Fig. 13  Experiment swing response under payload of 
       3.5kg 

Fig. 14  Experiment swing response under payload of 
       7kg 
 
5.2 Experiment results 
 
The same controllers are applied in the experimental 
LPM drive system. The real plant replaces the 
simulated system model in the experiment. Fig. 11 
and Fig. 12 demonstrate the measured carriage 
stepwise position response under 0kg and 7kg 

payload and 1.2f0 friction condition. Fig. 13 and Fig. 
14 demonstrate the swing position response under 
3.5kg and 7kg payload and 1.2f0 friction condition, 
respectively. Notably, the experimental results agree 
with simulated results very well and the controller 
designed by numerical method provides the same 
performance in the real-time experiment, which 
means two things, the controller is practical one and 
the identified system model from DSA fits the real 
plant. 

 

6. CONCLUSION  
 
In this paper, a dynamic signal analyzer is first used 
to identify the LPM drive system and the transfer 
function of motor together with the driver is 
obtained. Highly nonlinear friction in the system is 
measured and compensated by an RBF network. A 
discrete-time sliding mode controller is designed for 
the system with perturbed state matrix and input 
matrix and nonlinear external disturbance based on 
reaching law approach. In addition, the free 
parameters in the design process are chosen via 
genetic algorithm and the least integral of squared 
error and overshoot of position response is achieved. 
The large tolerable payload 7kg of the LPM drive 
system is realized by combined the sliding mode 
controller and an on-line mass estimator. The 
simulation results demonstrate that the proposed 
controller is insensitive to the mass and friction 
variations and noise and achieves less mean position 
tracking error and better transient response than PID 
controller. The experiments are also achieved to 
validate the effectiveness of the proposed scheme. 
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