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Abstract: We are concerned with the identification of static nonlinear maps in
a structured interconnected system. Structural information is often neglected
in nonlinear system identification methods. In this paper, we exploit a priori
structural information and use parametric identification methods. We focus on
the case where the linear part of the interconnection is known and only the
static nonlinear components require identification. We propose an identification
algorithm and investigate its convergence properties. Copyright c©2005 IFAC
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1. INTRODUCTION

This paper is concerned with identification prob-
lems in interconnected nonlinear systems. These
problems are of considerable importance in the con-
text of control, simulation, and design of complex
systems.

There is available limited past work on the iden-
tification of such systems on a case-by-case basis.
These include studies of Hammerstein and Wiener
systems (Billings and Fakhouri, 1978),(Narendra
and Gallman, 1966),(Pawlak, 1991). However, many
of the simplest problems here remain open. For
instance, the systematic inclusion of a priori struc-
tural information has been limited by the lack of a
paradigm that is sufficiently general to incorporate
such information.

1 Supported in part by NSF under Grant ECS 03-02554

and by Ministero dell’Università e della Ricerca Scientifica e
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We believe that the development of generalizations
such as linear fractional transformations (LFT’s) in
the control systems literature (Packard and Doyle,
1993),(Safonov, 1982), together with the advent
of powerful, inexpensive computational resources
offer the promise of significant advances in system
identification for complex nonlinear systems.

In general, both first principle laws and black-box
model selection procedures result in only an approx-
imate modeling of the involved phenomena. For ex-
ample, the identification procedure may be subject
to incorrect a priori information which can coun-
teract the positive effects of correct known infor-
mation. Evaluating the overall balance of these two
effects on the identification error is a largely open
problem for nonlinear systems. These considera-
tions motivate the need for identification methods
to incorporate known structural information that is
to a large extent considered to be correct. We offer
a systematic framework based on linear fractional
transformations to incorporate known structural in-
formation about the interconnected system. While
there is occasional work that incorporates a pri-
ori structural information (Narendra and Gallman,
1966),(Stoica, 1981),(Vandersteen and Schoukens,



1997),(Milanese and Novara, 2003), this is not com-
monly the case.

In this paper, we present an algorithm for the
identification of static nonlinear components in in-
terconnected systems. In particular, we are con-
cerned with problems in which the static nonlin-
ear elements to be identified are parametric. We
prove that the estimated nonlinearity converges
asymptotically with probability 1. The proof of
convergence follows the presentation in Chapter 8
of (Ljung, 1999). We assume that the linear compo-
nents of the interconnection are known. Note that
the Hammerstein and Wiener systems are special
cases of our formulation and under this assump-
tion, the identification of these systems becomes
trivial. However, the class of problems we consider
involves more complex interconnections that can-
not be captured by the Hammerstein and Wiener
formulations.

The remainder of this paper is organized as fol-
lows. In Section 2, we define the class of model
structures under consideration. In Section 3, we
motivate and present our identification algorithm.
Section 4 contains our main convergence result.
Section 5 provides conditions under which our
estimate converges to the true nonlinearity. In
Section 6, we offer illustrative examples. The
proofs of our main results may be found online
at http://jagger.me.berkeley.edu/~ken or by
contacting the authors.

NOTATION

R
n standard Euclidean space

u, y, w, ... vector-valued discrete-time signals
(finite or infinite)

L length of data record
yt value of signal y at time t

{ut, yt}
L−1
t=0 finite horizon input-output data

e noise signal
LTI linear time-invariant
L linear time-invariant operator
N static nonlinear operator
{φ[k](·)}N

k=1 set of nonlinear basis functions
N number of basis functions
Θ compact subset of R

N

θ ∈ Θ vector of parameters to be identified
θtrue ∈ Θ “true” vector of parameters

θ̂L estimate of θ based on first L samples

2. PROBLEM FORMULATION

We are concerned with the identification of static
nonlinear maps in general structured intercon-
nected systems. An example of the class of struc-
tured systems we consider is shown in Figure 1.
Here, the static nonlinearities N1 and N2 are to
be identified. The possibly unstable LTI systems

L1 and L2 are known. We have access to the noisy
input-output data {ut, yt}

L−1
t=0 and e is a noise sig-

nal.
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Fig. 1. Example of structured interconnected sys-
tem

Any general interconnected nonlinear system may
be represented through a linear fractional transfor-
mation (LFT) framework as shown in Figure 2. The
LFT framework allows us to separate the LTI dy-
namics from the static nonlinearities in an intercon-
nected system. The signals u, y are measured, and
the signals z, w will denote the inputs and outputs
of the static nonlinear block N , respectively. The
signal e is a zero-mean gaussian white noise process.
The input signal u is assumed to be uncorrelated
with the noise signal e.

-

�

� �
�

y u

e

z w
L

N

Fig. 2. LFT Model Structure

We gather all the nonlinearities of the intercon-
nection into the multi-input multi-output block N ,
which is to be identified. In general, the static
nonlinear block N has block diagonal structure
(Claassen, 2001).

N =







N [1]

. . .

N [m]







We partition the inputs z and outputs w of N con-
formably with its structure. The nonlinear block N
may also have repeated components. This situation
arises when a particular nonlinearity appears more
than once in the dynamical equations describing the
interconnected system.

The frequently studied Hammerstein and Wiener
systems are special cases of our formulation. How-
ever, under our assumption that the linear compo-
nents of the interconnection are known, the identi-
fication of these classes of systems becomes trivial.
Indeed, it is important to note that the class of
problems we wish to identify involve complex in-
terconnections. For example, consider the system
depicted in Figure 3.
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Fig. 3. Complexity in an interconnected system.

Here, the feedback interconnection along with the
presence of several multivariable linear and nonlin-
ear blocks suggests the complexity of the system. In
addition, the measured signal y contains the sum
of the outputs of several nonlinearities and other
signals. In order to develop a systematic approach
for the identification of these systems, we use the
LFT to collect all such systems under a common
framework for analysis.

We will refer to the interconnected system of Figure
2 as the LFT Model Structure. We assume that
the LTI block L and the dimensions of all signals
are known. The components of the nonlinear block
N are to be identified. For this, we have available
measured (bounded) input-output data {ut, yt}

L−1
t=0 .

We assume that the nonlinear block N can be
parameterized by a finite set of nonlinear basis
functions. By this, we mean that the input-output
behavior of N can be described as

w = N (z) =

N
∑

k=1

θkφ[k](z), θk ∈ R, (1)

where {φ[k](·)}N
k=1 are vector-valued nonlinear func-

tions.

In this paper we will address the problem of identi-
fying the unknown parameters θk. Let us partition
L comformably and realize it as

L =

[

Lyu Lye Lyw

Lzu Lze Lzw

]

∼







A Bu Be Bw

Cy Dyu Dye Dyw

Cz Dzu Dze Dzw







We summarize our principal assumptions below.

A.1 L has a stabilizable and detectable realization.
A.2 Measurability of z, i.e., there exists an LTI

system ΨM such that
[

Lze Lzw

]

= ΨM

[

Lye Lyw

]

. (2)

A.3 Co-measurability of z, i.e., there exists an LTI
system ΨC such that

[

Lze Lzw

]

= LzuΨC . (3)

A.4 N is parametric, i.e., N can be expressed as
a finite linear combination of nonlinear basis
functions

w = N (z) =

N
∑

k=1

θkφ[k](z), θk ∈ R.

A.5 There is no undermodelling. That is, there
exists θtrue ∈ R

n such that for all signals z,

wtrue = N true(z) =

N
∑

k=1

θtrue
k φ[k](z).

A.6 LywXLze is strictly proper, where X is a
matrix with the same block diagonal structure
as N , and X [i] has the same input-output
dimensions as N [i].

A.7 DyeD
∗
ye is invertible.

A.8 The signals φ[i](z), i = 1, 2, ..., N are bounded.

We now make several comments regarding these
assumptions.

R.1 Note that we do not require L to be stable.
R.2 Assumption A.2 is critical to our needs. Ob-

serve that

z =Lzuu + Lzee + Lzww

=Lzuu + ΨMLyee + ΨMLyww

=Lzuu + ΨM (y −Lyuu).

This is equivalent to requiring that z be mea-
sured, i.e., z can be inferred from u, y and L.

R.3 Assumption A.3 is the dual of Assumption
A.2. We do not require this assumption for our
identification procedure. We require this only
for our analysis on persistence of excitation
(see Section 5.2).

R.4 Assumption A.4 is made to restrict N to
the class of static nonlinearities that can be
represented as a basis function expansion.

R.5 Assumption A.5 ensures that the behavior of
the static nonlinear map N can be fully cap-
tured by our particular choice of basis func-
tions.

R.6 A.6 is necessary so that the noise signal e is un-
correlated with the signal Lyww. If LywXLze

is not strictly proper, minimization of our cost
function will result in bias in the estimates.

R.7 We require A.7 to ease computation of the
Kalman Filter.

R.8 Assumption A.8 is made in order to deal with
bounded quantities.

3. THE IDENTIFICATION ALGORITHM

In this section, we describe our proposed identi-
fication algorithm for general structured intercon-
nected nonlinear systems. In subsequent sections,
we will analyze convergence properties of the pro-
posed algorithm, address computational issues, and
offer illustrative examples.

For ease of notation, let B = [Bu Be Bw], D =
[Dyu Dye Dyw] and Φ(z) = [φ[1](z) · · · φ[N ](z)].

We now propose the following identification algo-
rithm.



1 Perform stable left coprime factorization
[

Lyu Lye Lyw

]

= G−1
[

Hyu Hye Hyw

]

where

G ∼

[

Â F

Cy I

]

, H ∼

[

Â B̂

Cy D

]

Â = A + FCy, B̂ = B + FD

and F is such that G and H are stable

2 Realize the Kalman Filter K as

K ∼

[

Ft Kt

Mt Rt

]

where

B̂e = Be + FDe

Kt = (ÂPtC
∗
y + B̂eD

∗
e)Λ−1

t

Ft = Â − KtCy

Mt = Λ
− 1

2

t Cy

Rt = −Λ
− 1

2

t

and Pt, Λt, Zt are obtained by solving

the Riccati difference equation for

t = 0, · · · , L− 1 with zero initial conditions
P0 = 0

Pt+1 = ÂPtÂ
∗ + B̂eB̂

∗
e − ZtΛtZ

∗
t

Λt = CyPtC
∗
y + DeD

∗
e

Zt = (ÂPtC
∗
y + B̂eD

∗
e)

3 Simulate Kalman Filter for t = 0, . . . , L − 1

with zero initial conditions to obtain
Y = K(Gy − Hyuu)

Q = KHywΦ(z)

4 The parameter esitimate θ̂L is obtained

by solving the convex least squares

minimization problem

θ̂L = arg min
θ∈Θ

JL(θ)

where JL(θ) = 1
L
‖Y −Qθ‖2

Fig. 4. Identification algorithm.

The rationale behind the algorithm can be ex-
plained as follows. Since e is a white gaussian pro-
cess, we wish to choose the value of θ that results in
the minimum energy signal e. This can be accom-
plished with the following minimization problem.

min
θ∈Θ

1

L
‖e‖2 subject to

Lyee = y −Lyuu −Lyw

N
∑

k=1

θkφ[k](z).
(4)

The constraint restricts the signal e to be consistent
with our input-output data, and Θ is a compact
subset of R

N . Note that if Ly = [Lyu Lye Lyw] is
stable, we can choose

G = I and
[

Hyu Hye Hyw

]

= Ly

in step 1 of the algorithm. In the case that Ly is un-
stable, performing the stable coprime factorization
allows us to rewrite (4) as

min
θ∈Θ

1

L
‖e‖2 subject to

Hyee = Gy − Hyuu − Hyw

N
∑

k=1

θkφ[k](z)
(5)

in order to work with stable computations.

We recognize the minimization problem (5) as a
Kalman smoothing problem (Kailath et al., 2000).
Thus, (5) is equivalent to the minimization problem
in step 4 of the identification algorithm.

Note that by posing (5) as a Kalman Smoothing
problem, we do not require the invertibility of Lye.

4. CONVERGENCE

We now analyze the convergence properties of our
candidate identification algorithm. We are inter-
ested in the asymptotic behavior of our estimate

θ̂L as L → ∞. Note that θ̂L is a random sequence
because it depends on noisy measurements y and z.

Let us define the set of minimizers

M∞ =

{

θ̂ : θ̂ = argmin
θ∈Θ

J̄(θ)

}

where

J̄(θ) = lim
L→∞

1

L
‖Q(θtrue − θ)‖2.

Clearly, θtrue is a minimizer of J̄(θ), i.e., θtrue ∈

M∞. Theorem 4.1 will show that the estimate θ̂L

will converge to some θ ∈ M∞.

Theorem 4.1. Let Assumptions A.1,A.2,A.4-A.8 hold.
Then,

θ̂L −→ M∞ w.p. 1 as L −→ ∞,

i.e., lim
L→∞

inf
θ∈M∞

‖θ̂L − θ‖ = 0 with probability 1. 2

In the following section, we will provide conditions
under which M∞ = {θtrue}, i.e., M∞ consists of
the singleton θtrue.

5. IDENTIFIABILITY, PERSISTENCE OF
EXCITATION, AND UNIQUENESS

5.1 Identifiability

In this section we discuss the notion of identifia-
bility. Identifiability concepts are of fundamental
importance in system identification (Ljung, 1999).
Loosely speaking, the nonlinear block N of the LFT
model structure is identifiable if it can be deter-
mined uniquely from input-output experiments.

Let N be the class of static nonlinearities that we
consider. We will represent the input-output behav-
ior of the LFT model structure as y = Ω(L,N )u.
We begin with the following definition.



Definition 5.1. Suppose N o ∈ N. The LFT model
structure Ω(L,N ) is identifiable at N o if for any
N 1 ∈ N with N 1 6= N o,

Ω(L,N o) 6= Ω(L,N 1).

The LFT model structure is identifiable everywhere
if it is identifiable at all N ∈ N. 2

Note that the above definitions are global notions
of identifiability. For our case of parametric static
nonlinearities, we have the following result on iden-
tifiability.

Lemma 5.2. The LFT model structure is identifi-
able everywhere if and only if

HywΦ(z)θ = 0 ∀z =⇒ θ = 0.

2

5.2 Persistence of Excitation

We now focus on the notion of persistence of exci-
tation. The identifiability and persistence of excita-
tion conditions are both necessary for the unique-
ness of the solution to the parameter estimation
problem. However, the two conditions apply to dif-
ferent aspects of the identification procedure. Iden-
tifiability concerns the structure of the model while
persistence of excitation is a condition on whether
the input to the system generates an input-output
data set informatively rich enough for convergence
of our estimate. The latter notion can be captured
by the following definition.

Definition 5.3. The input z to the nonlinear block
N is persistently exciting if there exists L0 > 0 such
that for any L > L0,

1

L
Q∗Q � 0.

2

Note that the persistence of excitation condition
depends on the LFT model structure. A signal
that is persistently exciting for a given LFT model
structure may be not persistently exciting for an-
other. This is unusual since persistence of excita-
tion conditions are commonly independent of the
model to identify. However, in the case of general
interconnected systems, a notion of persistence of
excitation that considers the model structure is
more appropriate.

The identifiability of a system is also necessary for
the signal z to be persistently exciting. To illustrate
this, suppose that the LFT model structure is
not identifiable. It then follows from Lemma 5.2
that the matrix HywΦ(z) has linearly dependent
columns for all z. Since K is a linear operator, Q =
KHywΦ(z) also has linearly dependent columns for
all z. As a result, limL→∞

1
L
Q∗Q 6� 0 for all z, and

no persistently exciting signal exists.

One should note that signals usually considered
non-informative may be persistently exciting for a
particular LFT model structure under the above
notion. For example, consider the simple system in
Figure 5.

- - -?u y

e

N

Fig. 5. Single static nonlinear block system.

Here Lyu = Lze = Lzw = 0, Lye = Lzu = Lyw = 1,
N (z) = θtrueφ(z), Q(z) = Q(u) = exp(−u2) and
θtrue 6= 0. Let u = 0 be the input to the system. We
then have that Q(z) = [1 1 . . . ]∗, Q∗(z)Q(z) = L,
and 1

L
Q∗(z)Q(z) = 1 > 0, ∀L > 0. As a result,

the signal u = 0 is persistently exciting for the
given LFT model structure. We will later show that
together with the identifiability of the system, this
choice of input u will lead to convergence of the

estimate θ̂L to the true value θtrue.

Note that the co-measurability assumption (A.3)
guarantees that for any persistently exciting signal
z, there exists an input u that could have generated
z. This can be shown by the following argument.
From Assumption A.3, we have that

z = Lzuu +
[

Lze Lzw

]

[

e

w

]

= Lzuu + LzuΨC

[

e

w

]

z ∈ Range(Lzu).

That is, for any signals e, z, there always exists an
input u that can generate z through L and N .

5.3 Uniqueness

Theorem 5.4. Let Assumptions A.1,A.2,A.4-A.8 hold.
Suppose that the LFT model structure is identifi-
able everywhere. If z is persistently exciting, then

(1) There exists L0 > 0 such that for any L > L0,
the minimization problem

θ̂L = argmin
θ∈Θ

1

L
‖Y −Qθ‖2

yields the unique solution

θ̂L = (Q∗Q)−1Q∗Y.

(2) The set of minimizers M∞ consists of the
singleton θtrue, i.e.,

M∞ = {θtrue}.

2

Note that without Assumption A.6, the cost func-
tion JL(θ) will contain a correlation component,
leading to bias in the estimate.



6. EXAMPLES

We now present two simulation examples demon-
strating our identification algorithm. The input u
was chosen to be a random sequence. Zero-mean
white gaussian noises have been used.

6.1 Example 1

Consider the interconnected system in Figure 6.
Here, the nonlinearities N1 and N2 are to be iden-
tified. The LTI systems L1 and L2 are known, and
the signals u, y are measured. The noise signal e is
a white noise process acting on the output.
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Fig. 6. Interconnected System for Example 1

The nonlinear block N of the LFT model structure
is block diagonal, with N1(u) = 2 arctan(u) and
N2(y) = −0.3y + 0.1 sin(y) + 1. It is easy to verify
that the input to the nonlinear block z = [u y]T

meets our measurability assumptions. Figure 7 il-
lustrates the convergence behavior of our estimate.
Here, the estimated parameters converge quickly
to their true values as the size of the data sample
increases.
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Fig. 7. Convergence of estimates for Example 1

6.2 Example 2

We now present an example where L is unstable.
Consider the system depicted in Figure 8.

Here, L is an unstable LTI system and we wish
to identify N . In this example, N (u) = 0.25u −
5 arctan(u). Our identification algorithm allows us
to consider systems where the linear block is unsta-
ble. Figure 9 illustrates the convergence behavior of
our estimate for this example.
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Fig. 8. Interconnected System for Example 2
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Fig. 9. Convergence of Estimates for Example 2
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