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Abstract: In this paper, a novel technique of parametrization of supply rates is
developed for establishing Input-to-State Stability(ISS) and dissipative properties
of nonlinear interconnected systems. In the application of the ISS small-gain theo-
rem, selecting supply rates to establish stability properties is not a straightforward
task. This paper proposes useful tools for selecting supply rates by allowing some
new freedoms in supply rates. The idea of the parametrization provides us with a
set of various supply rates with which a fixed ISS small-gain condition can establish
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1. INTRODUCTION

The task of establishing stability properties of
interconnected systems is very important for a
broad range of nonlinear systems control and
design. There have been a lot of efforts put
into the development of useful conditions which
serve to establish stability properties of various
classes of nonlinear systems effectively. The dis-
sipative paradigm(Willems, 1972; Hill and Moy-
lan, 1977) and the ISS small-gain theorem(Jiang
et al., 1994; Teel, 1996) are some of key contribu-
tions in this respect. Usually, the ISS small-gain
theorem is explained in terms of trajectories, i.e.,
solutions, of systems. Since the input-to-state sta-
bility(ISS) is a special type of dissipation(Sontag
and Wang, 1995), the ISS small-gain theorem
can be also described without using solutions of
the systems(Jiang et al., 1996). The Lyapunov
formulation of the ISS small-gain theorem estab-
lishes global stability properties of interconnected
systems on the basis of nonlinear gain functions
derived from supply rates which determine dissi-
pation rates of individual subsystems. For non-
linear systems, it is reasonable that we do not
assume knowledge of explicit solutions, and the
idea dates back to the works of Lyapunov. The

supply rates play a central role in getting rid of
solutions computation in the application of the
ISS small-gain theorem.

Roughly speaking, the ISS small-gain theorem
applies to the interconnected system of the form

Σ1 : ẋ1 = f1(x1, u1, r1), u1 = x2 (1)

Σ2 : ẋ2 = f2(x2, u2, r2), u2 = x1 (2)

It assumes the existence of continuous functions
Vi, αi, ᾱi, αi and σi such that

αi(|xi|) ≤ Vi(xi) ≤ ᾱi(|xi|) (3)
∂Vi

∂xi
fi(xi,ui,ri)≤−αi(|xi|)+σi(|ui|)+σri(|ri|)(4)

αi, ᾱi, αi ∈ K∞, σi, σri ∈ K (5)

hold. The ISS small-gain theorem is written as

Γ2 ◦ Γ1(s) < 1, ∀s ∈ (0,∞) (6)
⇓

ISS with respect to
[

r1
r2

]
and

[
x1
x2

]
.

where Γi’s are nonlinear gain given by



Γi(s) = α−1
i ◦ ᾱi ◦ α−1

i ◦ ciσi(s) (7)

for ci > 1(Sontag and Wang, 1995; Isidori, 1999).
In order to invoke the ISS small-gain theorem, we
need to pick the supply rates −αi(|xi|)+σi(|ui|)+
σri(|ri|) beforehand. We should be aware that the
ISS small-gain condition (6) never leads us to the
stability if one fails to find supply rates such that

• the supply rates are accepted by Σi, i = 1, 2;
• the supply rates satisfy the ISS small-gain con-

dition

at the same time. Selecting supply rates fulfilling
these two requirements simultaneously is not an
easy task. The purpose of this paper is to develop
useful tools for accomplishing this task.

This paper employs the unique idea of parametriza-
tion of supply rates which originates from Ito
(2003), and proposes non-trivial extensions. The
function in the form of (4) may not be the only
supply rate that establishes the stability under the
ISS small-gain condition (6). If we could obtain
many candidates for a supply rate from a fixed
small-gain condition, there would be more chances
to come at a supply rate that fit the system. This
idea leads to the following problem.

Parametrization of supply rates: Suppose that
a supply rate of Σ2 is fixed a priori. Find a set
of multiple supply rates for Σ1 with which a
desired stability property of the interconnected
system can be proved under the single ISS
small-gain condition (6).

The previous study has addressed only the global
asymptotic stability as a stability property of the
interconnected system(Ito, 2003). It is not yet
known whether the technique of parametrization
of supply rates can yield the ISS which is stronger
than the global asymptotic stability. This paper
not only provides a positive answer to this ques-
tion, but also broaden the set of parametrized
supply rates. Furthermore, this paper develops a
new tool for the parametrization with which we
can prescribe dissipative properties we require for
the interconnected system a priori.

2. A MOTIVATING EXAMPLE

This section is devoted to providing a simple
example that illustrates the idea and usefulness
of the problem addressed by this paper.

Consider an interconnected system defined by

Σ1 :
{

ẋ1 = −10x5
1 − x3

1 + x4
1x2 + x1r

2
1

e = x2
1

(8)

Σ2 : ẋ2 = f2(x2, x1) (9)

where x1, x2 and r1 are scalar. It is supposed that
we do not have information about the nonlinear
system Σ2 except that there exists a continuously
differentiable function V2(x2) satisfying

V̇2(x2) = dV2/dt ≤ −x2
2 + γ2

2x2
1, γ2 = 8 (10)

along the trajectories of Σ2, namely, the L2-
gain between x1 and x2 is less than or equal to
γ2 (van der Schaft, 1999; Isidori, 1999). In this
section, regarding properties of the interconnected
system (8)-(9), we address questions of whether
[x1, x2]T = 0 is globally asymptotically stable
in the absence of the exogenous input r1, and
whether the L2-gain between the input r1 and the
output e1 is less than or equal to one.

We start with a quadratic function V1(x1) = x2
1

which plays the role of a storage function(Willems,
1972) and an ISS Lyapunov function(Sontag and
Wang, 1995) for Σ1. The time-derivative of V1(x1)
along the trajectories of (8) is obtained as

V̇1(x1) = 2x1(−10x5
1 − x3

1 + x4
1x2 + x1r

2
1)(11)

It is verified easily from (11)-(10) that for any
constant c > 0, there does not exist a positive
definite function ρe(x1, x2) such that

V̇1(x1) + cV̇2(x2) ≤ −ρe(x1, x2) + c{−e2 + r2
1},

∀x1, x2, r1 ∈ R (12)

is satisfied. Notice that if (12) was achieved, the
function Vcl(x1, x2) = V1(x1) + cV2(x2) could be
a storage function establishing the global asymp-
totic stability and the unit L2-gain between r1

and e1. Thus, the selection Vcl(x1, x2) = V1(x1)+
cV2(x2) is not successful in answering our ques-
tions of the stability and the L2-gain.

The time-derivative of V1(x1) along the trajecto-
ries of (8) can be rewritten from (11) as

V̇1(x1) ≤
{

2(−10x6
1 + ax6

1) for |x2| ≤ a|x1|
2(−10x6

1 + a−5x6
2) for |x2| ≥ a|x1|

−2x4
1 + 2x2

1r
2
1, a>0

≤ {−2(10−a)x6
1−2x4

1+2a−5x6
2

}
+ 2x2

1r
2
1 (13)

The nonlinear gain function Γ1(s) of Σ1 with
respect to the input x2 and the state x1 can be
calculated from (13) as the unique inverse map of

Γ−1
1 (s) = (1+ε)−1

{
a5(10− a)s6 + a5s4

}1/6

for any ε > 0 and 0 < a < 10(Isidori, 1999; Sontag
and Wang, 1995). Since the nonlinear gain of Σ2

given in (10) is Γ2(s) = (1+ε)8s, we have

Γ2(s)
Γ−1

1 (s)
= (1+ε)2

8s

{a5(10− a)s6 + a5s4}1/6

sup
s∈R+

Γ2(s)
Γ−1

1 (s)
= lim

s→∞
Γ2(s)
Γ−1

1 (s)
=

(1+ε)28

[a5(10− a)]1/6

The minimum is achieved with a=50/6 as follows:

min
a>0

[
sup

s∈R+

Γ2(s)
Γ−1

1 (s)

]
' (1+ε)2

8
6.3727

6≤ 1



which implies that the inequality (6) does not
hold for any a > 0. Thus, the ISS small-gain
theorem (Jiang et al., 1994) together with the ISS
Lyapunov function V1(x1) = x2

1 does not lead us
to the global asymptotic stability.

Next, we calculate the time-derivative of V1(x1)
along the trajectories of (8) in the following way.

V̇1(x1)≤ 9x4
1

{
−x2

1 −
2
11

+ γ2
1x2

2

}

+2x2
1

{
−x4

1 −
2
11

x2 + r2
1

}
(14)

≤ 9x2
1

2

(
2x2

1 +
4
11

) {−x2
1 + γ2

1x2
2

}

+
(

2x2
1 +

4
11

) {−x4
1 + r2

1

}
(15)

The inequality (14) holds for γ1 > 1/9. Motivated
by 8 · 1/9 < 1, we define

V̂1(x1) =
∫ V1(x1)

0

(
9s

2

(
2s +

4
11

))−1

ds (16)

so that we have

˙̂
V1(x1) =

(
9x2

1

2

(
2x2

1 +
4
11

))−1

V̇1(x1)

≤ {−x2
1 + γ2

1x2
2

}
+

2
9x2

1

{−e2
1 + r2

1

}
(17)

along the trajectories of (8). The function in (16)
is, however, not qualified as a Lyapunov function.
It is not integrable. It should be also stressed that
a function in the form of

V̂1(x1) =
∫ V1(x1)

0

µ(s)ds

with a positive-valued function µ(s) decreasing
faster than or as fast as 1/s2 toward ∞ is not
radially unbounded, so that it cannot be used for
proving global properties(Sontag and Teel, 1995).
Thus, the L2 small-gain theorem together with
(16) cannot lead us to the global asymptotic sta-
bility. The selection Vcl(x1, x2) = V̂1(x1)+cV2(x2)
does not prove the desired L2-gain between r1 and
e1 either due to the coefficient 2/9x2

1 in (17).

Finally, we look at the problem by constructing a
Lyapunov function of the overall system. Assume
that Σ2 achieves (10) with V2(x2) = x2

2. Define

Vcl(x1, x2) =
∫ V1(x1)

0

11
22s + 4

ds +
∫ V2(x2)

0

cs ds (18)

for c > 0. Then, for γ1 >1/9, from (15) we obtain

V̇cl(x1, x2)≤ 9x2
1

2
{−x2

1 + γ2
1x2

2

}
+

{−x4
1 + r2

1

}

+cx2
2

{−x2
2 + γ2

2x2
1

}

≤−ρe(x1, x2) +
{−e2

1 + r2
1

}
(19)

along the trajectories of (8)-(9). It can be verified
that there exists a constant c > 0 such that the
inequality (19) holds with some positive definite
ρe(x1, x2) if and only if

γ1 < 1/γ2 (20)

holds. Since Vcl(x1, x2) defined by (18) is positive
definite and radially unbounded, it proves the
global asymptotic stability of [x1, x2]T = 0. It also
yields that the L2-gain between r1 and e1 is less
than or equal to one since (19) implies

Vcl|t=T − Vcl|t=t0
≤ ∫ T

t0
−e2

1 + r2
1 dt

Through the above discussions, the example has
suggested the following two points.

A. the existence of a positive definite function
V1(x1) which is radially unbounded and sat-
isfies

dV1

dt
≤ 9x2

1

2

(
2x2

1 +
4
11

){−x2
1 + γ2

1x2
2

}

+
(

2x2
1 +

4
11

){−x4
1 + r2

1

}
(21)

γ2γ1 < 1 (22)

implies global asymptotic stability and L2-
gain≤ 1 of the interconnected system (8)-(9);

B. In the case of V2(x2) = x2
2, the function

Vcl(x1, x2) =
∫ V1(x1)

0

11
22s + 4

ds +
∫ V2(x2)

0

cs ds (23)

establishes the the global asymptotic stabil-
ity and the L2-gain≤ 1 simultaneously.

The claim A is trivial if (21) is replaced by

dV1

dt
≤ {−x2

1 + γ2
1x2

2

}
+

{−x4
1 + r2

1

}
(24)

Indeed, it becomes the standard L2 small-gain
theorem. The claim A suggests that the properties
of global asymptotic stability and prescribed L2-
gain may be often established even if the property
(24) commonly used with the small-gain theorem
is relaxed in the form of

dV1

dt
≤ λ̂(x1)

{−x2
1+γ2

1x2
2

}
+λ̂P (x1)

{−x4
1+r2

1

}
(25)

It is desirable if we can predict when and what
kind of functions λ̂(x1) and λ̂P (x1) are allowed to
be used before constructing a Lyapunov function
Vcl(x1, x2) for the entire interconnected system. In
the above example, the usage of particular λ̂(x1)
and λ̂P (x1) is justified in a heuristic manner only
when V2(x2) = x2

2. It is greatly useful if the ap-
propriateness of incorporating λ̂(x1) and λ̂P (x1) is
answered systematically without knowing V2 and
without invoking the construction of a Lyapunov
function Vcl for the closed-loop system. The claim



Σ1 : ẋ1 =f1(t, x1,u1, r1)

Σ2 : ẋ2 =f2(t, x2,u2, r2)

¾

-
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-
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Fig. 1. Feedback interconnected system Σ

Σ1 :
ẋ1 =f1(t, x1,u1,r1)
e1 =h1(t, x1,u1,r1)

Σ2 : ẋ2 =f2(t, x2,u2)

¾

¾

¾

-

e1

x2

x1

r1

u1

u2

Fig. 2. Feedback interconnected system ΣP

B presents a curious Lyapunov function of the
closed-loop system when V2 is given explicitly. In
the example, the Lyapunov function is discovered
in a heuristic way. In the rest of this paper,

• the claim A is justified independently of the
choice of V2;

• the idea of (25) is formulated precisely so that
the problem of stability can be answered with-
out constructing a Lyapunov function Vcl of the
interconnected system;

• the idea of (25) is made applicable to a general
class of supply rates and dissipative properties;

• a formula for constructing a Lyapunov function
Vcl of the interconnected system is shown.

3. PARAMETRIZATION OF SUPPLY RATES

This section presents main results. Consider the
nonlinear interconnected system Σ shown in Fig.1.
Suppose that Σ1 and Σ2 are described by

Σ1 : ẋ1 = f1(t, x1, u1, r1) (26)

Σ2 : ẋ2 = f2(t, x2, u2, r2) (27)

These two systems are connected each other
through u1 = x2 and u2 = x1. Assume that
f1(t, 0, 0, 0) = 0 and f2(t, 0, 0, 0) = 0 hold for
all t ∈ [t0,∞), t0 ≥ 0. The functions f1 and
f2 are supposed to be piecewise continuous in t,
and locally Lipschitz in the other arguments. The
exogenous inputs r1 ∈ Rm1 and r2 ∈ Rm2 are
packed into a single vector r = [rT

1 , rT
2 ]T ∈ Rm.

The state vector of the interconnected system Σ
is x = [xT

1 , xT
2 ]T ∈ Rn where xi ∈ Rni is the state

of Σi. We make the following assumption.

Assumption 1. There exist a C1 function V2 :
R+ × Rn2 → R+, continuous functions α2 ∈ K∞
and σ2, σr2 ∈ K such that

α2(|x2|) ≤ V2(t, x2) ≤ ᾱ2(|x2|) (28)
∂V2

∂t
+

∂V2

∂x2
f2(t, x2, u2, r2)

≤−α2(|x2|) + σ2(|u2|) + σr2(|r2|) (29)

hold for all x2 ∈ Rn2 , u2 ∈ Rn1 , r2 ∈ Rm2 and
t ∈ R+ with some α2, ᾱ2 ∈ K∞.

The following is the first main result.

Theorem 2. Suppose that the system Σ2 satisfies
Assumption 1. Suppose that real numbers c1 > 1,
c2 > 1 and class K∞ functions α1 and σ1 satisfy

c1σ1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ c2σ2(s)
≤ α1◦ᾱ−1

1 ◦α1(s), ∀s∈R+ (30)

If there exist a continuous function λ̂ : R+ → R
and a C1 functions V1 : R+ × Rn1 → R such that

λ̂(s) > 0, ∀s ∈ (0,∞) (31)

α1(|x1|) ≤ V1(t, x1) ≤ ᾱ1(|x1|) (32)
∂V1(t, x1)

∂t
+

∂V1(t, x1)
∂x1

f1(t, x1, u1, r1) ≤
λ̂(V1(t, x1)) [−α1(|x1|)+σ1(|u1|)+σr1(|r1|)](33)

hold for all x1 ∈ Rn1 , u1 ∈ Rn2 , r1 ∈ Rm1

and t ∈ R+ with some α1, ᾱ1 ∈ K∞ and some
σr1 ∈ K, then the interconnected system Σ is ISS
with respect to input r and state x.

Theorem 2 includes the standard version of the
ISS small-gain theorem as a special case. In fact,
when we pick λ̂(s) = 1, the theorem reduced
to the ISS small-gain theorem. The inequality
(30) is often referred to as the ISS small-gain
condition. Theorem 2 incorporates a free function
λ̂ into the stability test based on the ISS small-
gain condition. The function λ̂ in (33) provides
flexibility in selecting a supply rate of Σ1 to
establish the ISS property of the interconnected
system. The free function λ̂ allows us to scale an
initial supply rate −α1(|x1|) + σ1(|u1|) + σr1(|r1|)
which is chosen such that the ISS small-gain
condition (30) is fulfilled. The function λ̂ only
needs to be continuous and positive in the sense of
(31). Theorem 2, thereby, offers the technique of
parametrization of supply rates for the ISS small-
gain condition. Its usefulness is that the freedom
of λ̂ can be utilized to have (33) fulfilled by a given
system Σ1. The flexibility of λ̂ in the supply rate
offers more chances to come at a supply rate that
fit the system Σ1.

Theorem 2 enables us to check the ISS property
without constructing a Lyapunov function of the
closed-loop system. A formula for the Lyapunov
function proving the ISS property of the intercon-
nected system is presented in the next section.

Remark 3. In the case of σ1 ∈ K\K∞, there exists
σ̂1 ∈ K∞ such that

σ1(s) ≤ σ̂1(s),

c1σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ c2σ2(s) ≤ α1◦ᾱ−1
1 ◦α1(s)

are satisfied for all s ∈ R+. Therefore, Theorem 2
is applicable by replacing σ1 with σ̂1.



Remark 4. For the set of functions λ̂ allowed
by Theorem 2, the choice

∫ V1

0
1/λ̂(s)ds is not

guaranteed to be radially unbounded, so that it is
not qualified to be a Lyapunov function proving
the global properties such as the ISS. Indeed,
Theorem 2 is developed by using a Lyapunov
function different from

∫ V1

0
1/λ̂(s)ds. Therefore,

Theorem 2 is fundamentally beyond the technique
in Sontag and Teel (1995) and Isidori (1999).

Next, consider the nonlinear interconnected sys-
tem ΣP shown in Fig.2 consisting of

Σ1 :
{

ẋ1 = f1(t, x1, u1, r1)
e1 = h1(t, x1, u1, r1)

(34)

Σ2 : ẋ2 = f2(t, x2, u2) (35)

These two systems are connected each other
through u1 = x2 and u2 = x1. Assume that
f1(t, 0, 0, 0) = 0 and f2(t, 0, 0) = 0 hold for all
t ∈ [t0,∞), t0 ≥ 0. The functions f1 and f2

are supposed to be piecewise continuous in t, and
locally Lipschitz in the other arguments.

Assumption 5. There exist a C1 function V2 :
R+ × Rn2 → R+, continuous functions α2 ∈ K∞
and σ2 ∈ K such that

α2(|x2|) ≤ V2(t, x2) ≤ ᾱ2(|x2|) (36)
∂V2

∂t
+

∂V2

∂x2
f2(t, x2,u2)≤−α2(|x2|)+σ2(|u2|)(37)

hold for all x2 ∈ Rn2 , u2 ∈ Rn1 and t ∈ R+ with
some α2, ᾱ2 ∈ K∞.

The following is the second main result.

Theorem 6. Suppose that the system Σ2 satisfies
Assumption 5. Suppose that real numbers c1 > 1,
c2 > 1 and class K∞ functions α1 and σ1 satisfy

c1σ1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ c2σ2(s)
≤ α1◦ᾱ−1

1 ◦α1(s), ∀s∈R+ (38)

and a continuous function ρcl(e1, r1) : Rl1 ×
Rm1 → R satisfies

ρcl(e1, 0) ≤ 0, ∀e1 ∈ Rl1 (39)

and there exist continuous functions λ̂ : R+ → R,
λ̂P : R+ → R and a C1 functions V1 : R+ ×
Rn1 → R such that

λ̂(s) > 0, ∀s ∈ (0,∞) (40)

λ̂P (s) > 0, ∀s ∈ [0,∞) (41)∫ ∞

1

1

λ̂P (s)
ds = ∞ (42)

λ̂(s)

λ̂P (s)
: non-decreasing (43)

λ̂(s)
[

1
τ1

α1 ◦ ᾱ−1
1 (s)

]

λ̂P (s)
[
α2◦σ−1

1 ◦ 1
τ1

α1◦ᾱ−1
1 (s)

] : non-
decreasing(44)

α1(|x1|) ≤ V1(t, x1) ≤ ᾱ1(|x1|) (45)
∂V1(t, x1)

∂t
+

∂V1(t, x1)
∂x1

f1(t, x1, u1, r1)

≤ λ̂(V1(t, x1)) [−α1(|x1|) + σ1(|u1|)]
+λ̂P (V1(t, x1))ρcl(e1, r1) (46)

hold for all x1 ∈ Rn1 , u1 ∈ Rn2 , r1 ∈ Rm1 and
t ∈ R+ with some α1, ᾱ1 ∈ K∞, where τ1 is any
real numbers satisfying

0≤m, 1<τ1 <c1, (τ1/c1)m≤(τ1−1)(c2−1) (47)

Then, the equilibrium x = 0 of the interconnected
system ΣP is globally uniformly asymptotically
stable for r1 ≡ 0. Furthermore, there exist a C1

function Vcl : (t, x) ∈ R+ × Rn → R+ and class
K∞ functions αcl, ᾱcl such that

αcl(|x|) ≤ Vcl(t, x) ≤ ᾱcl(|x|), ∀x∈Rn, t∈R+(48)

is satisfied and the dissipation inequality

V̇cl ≤ ρcl(e1, r1), ∀x∈Rn, r1∈Rm1 , t∈R+ (49)

holds along the trajectories of ΣP .

Theorem 2 guarantees that the interconnected
system is ISS. We are, however, not able to impose
a particular strength of ISS a priori. For example,
the nonlinear gain with respect to input r and
state x may be very large. In contrast, Theorem
6 allows us to prescribe a dissipative property de-
termined by the supply rate ρcl(e1, r1). Theorem
6 shows that an additional parameter λ̂P (s) can
be used for obtaining the dissipative property.

Remark 7. An easy way to pick an initial supply
rate −α1(|x1|)+σ1(|u1|) fulfilling the ISS small-
gain condition(38) is to take copies of functions
in the supply rates of Σ2. If we choose σ1 such
that σ1(s) = kα2(s) holds for k > 0, the two
constraints (43) and (44) become identical. Then,
it is not necessary to calculate (47). The simple
choice λ̂P (s) = λ̂(s) is one pair of functions
fulfilling (43) in such a case.

Remark 8. There always exist τ1 and m such
that (47) holds. It is also possible to remove the
intermediate variable τ1 appearing in Theorem 6.
Indeed, the constraint

s

α2 ◦ σ−1
1 (s)

: non-decreasing (50)

which does not involve neither τ1 nor m is suf-
ficient for ensuring (44). Thus, the subordinate
conditions (47) are removed completely.



Remark 9. Theorem 2 and Theorem 6 do not
require explicit information of the ISS Lyapunov
function V2. They use only α−1

2 ◦ ᾱ2(s) which
is a composite map describing the gap between
lower and upper bounding estimates for V2. For
instance, if V2 is limited to quadratic functions,
the function α−1

2 ◦ ᾱ2(s) can be easily computed
as a linear function ks with a real number k > 0.

4. LYAPUNOV FUNCTIONS

Although detailed proofs are omitted due to the
space limitation, this section shows Lyapunov
functions establishing the main results.

Sketch of the proof of Theorem 2 : Let τ1

and m be any real numbers satisfying

0≤m, 1<τ1 <c1, (τ1/c1)m≤(τ1 − 1)(c2 − 1)

Select a function f : s ∈ R+ → R+ so that it is
continuous at all s ∈ [0,∞) and satisfies

f(s) > 0, ∀s ∈ (0,∞)

f(s)λ̂(s), f(s)κ(s) : non-decreasing on R+

where κ is a class K function given by

κ(s)=
[
α2◦σ−1

1 ◦ 1
τ1

α1◦ᾱ−1
1 (s)

][
1
τ1

α1◦ᾱ−1
1 (s)

]m

Such a function f(s) always exists. Define

λ0(s) = f(s)κ(s) (51)

λ2(s) =
c2

(c2−1)

√
c1

τ1

[
ν ◦ σ1◦ α−1

2 (s)
]×[

σ1◦ α−1
2 (s)

]m+1
(52)

ν(s)=
[
f ◦ᾱ1◦α−1

1 (τ1s)
][

λ̂◦ᾱ1◦α−1
1 (τ1s)

]
(53)

The C1 function

Vcl(t, x)=
∫ V1(t,x1)

0

λ0(s)ds +
∫ V2(t,x2)

0

λ2(s)ds (54)

satisfies αcl(|x|) ≤ Vcl(t, x) ≤ ᾱcl(|x|) with some
αcl, ᾱcl ∈ K∞ for all x∈Rn and t∈R+, and there
exist αcl ∈ K∞ and σcl ∈ K such that

V̇cl≤−αcl(|x|)+σcl(|r|), ∀x∈Rn, r∈Rm, t∈R+

holds along the trajectories of Σ.

Sketch of the proof of Theorem 6 : Define
λ0(s) and λ2(s) as (52)-(53) and

λ0(s) =
1

λ̂P (s)
, f(s) =

1

λ̂P (s)κ(s)
(55)

The function Vcl(t, x) given by (54) satisfies (48)
with some αcl, ᾱcl ∈ K∞, and achieves (49).

5. CONCLUDING REMARKS

This paper has developed new tools to establish
stability properties of interconnected nonlinear
systems. The parametrization of supply rates has
provided us with a set of supply rates with which
a single ISS small-gain condition can establish
the desired ISS or dissipative property of the
interconnected system. The results in this paper
have the following features:

• The ISS guaranteed by Theorem 2 in this pa-
per is stronger than the asymptotic stability
addressed in Ito (2003).

• Theorem 6 enables us to establish a desired dis-
sipative property of the interconnected system,
which was impossible in Ito (2003).

• Theorem 2 and Theorem 6 allow more flexible
supply rates than the previous result presented
in Ito (2003). We do not have to take copies of
functions in the supply rate of Σ2 for selecting
initial supply rate of Σ1.

• This paper has removed an assumption (c1−
1)(c2 − 1) > 1 made in Ito (2003) which is
not required in the original ISS small-gain
theorem(Jiang et al., 1994; Teel, 1996). Due to
the removal, the parametrization of supply rates
precisely includes the ISS small-gain theorem as
a special case.
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