H., CONTROL FOR NONLINEAR STOCHASTIC SYSTEMS:
THE OUTPUT-FEEDBACK CASE

Nadav Berman*:! Uri Shaked **>2

* Ben-Gurion University of the Negev, Dept. of Mechanical
Engineering, Beer-Sheva, Israel
** Tel-Aviv University, School of EE, Tel Aviv, Israel

Abstract: In this paper we develop @h,, control theory, from the dissipation point of view,

for a large class of time-continuous, stochastic, nonlinear, time-invariant systems with output-
feedback. In particular, we introduce a notion of stochastic dissipative systems, analogously
to the familiar notion of dissipation associated with deterministic systems and we utilize it as
a basis for the development of the theory. In particular, we utilize the stochastic version of
what is called Bounded Real Lemma (BRL) to synthesize an output-feedback controller. It
is shown that this controller makes the resulting closed-loop system dissipative. Stability, in
probability and in the mean square sense, is discussed and sufficient conditions for achieving
the stability and thé?, performance are introduceﬁopyrigh@ZOOS IFAC
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1. INTRODUCTION The present paper is an extension of the state-feedback
case ([Berman and Shaked, 2003]) to the case of

In recent years there has been a growing interest, a®utput-feedback control. In particular, we extend some
reflects from the various published research works, in of the H,, theory to nonlinear stochastic systems of
the extension of offf, control and estimation the- the following form.
ory to accommodate stochastic systems (see e.g. [El
Ghaoui, 1995], [Costa and Kubrusly, 1996], [Dragan day = f(2;)dt+g(zy ) ugdt+ g1 (v, dt
and Morozan, 1997], [Dragan and Morozan, 1998],  4g(z,)u,dW; + g2 (2 )v,dW2 4G (x,)dW} 1)
[Henriechsen and Pritchard, 1998], [Gershenal,

2001], [Gershonet al., 2002]). dys = ho (1) dt + g3 () vrdi 4+ G () WS (2)

The main thrust for these efforts stems from the at-

tempt to model system uncertainties as a stochastic

process, in particular, as a white noise, or formally Where{z;},> is a solution to (1) with the initial con-
as a Wiener process. This has led to the developmen€lition zo, an exogenous disturbange; };>0, a con-
of a H, theory for stochastic linear systems with trol signal{u;};>o, and Wiener processgsV; }>o,
multiplicative noise. Wi ezo0, {W7}tiz0, and {W7}i>o . Also, y; is an
observations vector imR? which is corrupted with
noise (a Wiener procesdV;};>o ), and contains an
L Partially supported by the Pearlstone Center uncertain F;omppnent (a stochastic proc@s&t?())' .
2 This work was supported by C&M Maus Chair at Tel Aviv T he following will be assumed to hold throughout this
University, Israel work.




1. Let (2, F,{F;}+>0,P) be a filtered probability =~ This problem may be treated within the context of

space where{F;},>¢ is the the family of subo- stochastic game theory analogously to the utilization
algebras generated by, },>o, Where {W!};>0, of the game theory in the deterministi¢., control
{W2}i>o are taken to bek!- valued andR- valued, and estimation (see, e.g. [Basar and Bernhard, 1995]).
respectively. In this connection, there is also a recent work ([Char-

alambous, 2003 ]) that deals with the problem of sto-
chastic minimax dynamic games using the informa-
tion state concept. The latter work characterizes the
- " LT information state by means of a solution to a certain
R" — R™!. In addition, it is assumed tha(0) = 0, Hamilton-Jacobi equation, and it differ from ours, first
G(0) =0, h2(0) = 0 andG(0) = 0. in its underlying approach, as our is based on the sto-
3.{vt}+>0 is anon-anticipativé?™* -valued stochastic ~ chastic dissipation notion of a system, and second, in
process defined off2, F, { F} }:>0, P), which satisfies  the representation of the observation model, as Char-

E{fg Hvs||2 ds} < oo forall t € [0,00), where E alambous takes the underlying probability space asso-
stands for the expectation Operation’ that iscifs ciated with the measurements to be flnltely additive.

a random variable defined on the probability space ag e adopt the approach that is based on the notion of
(Q, F, P), thenE{z} = [, 2(w)dP(w). stochastic dissipation, we first introduce the concept of
4. {u;}+>0 is a non-anticipativez™-valued stochastic ~ Stochastic dissipative systems, and then discuss some
process defined off2, F, { F, };>0, P). properties of these systems. This is done in Section 2.

. B ] In Section 2 we also state and prove some kind of a
5. zo Is assumed to béy-measurable, and to safisty ynded real lemma for non linear stochastic systems.
E{zol|"} < oo In particular, we introduce a certain Hamilton-Jacobi
Definition 1. The pair {u,v; }s¢((0,00)» OF in short inequality _(HJI for s_h_ort) and we establish necessary
{U,U}, are said to be admissible if the stochastic and sufficient conditions for the HJI to guarantee a
differential equation (1) possesses a unique strongdissipation of the underlying system, which in turn
solution relative to to the filtered probability space implies theL, — gain property of the system.

2
(Q, F,{Fi}1>0, P) so thatE{[[z[|"} < oo for all In Section 3 we develop thél., output feedback
t € [0,00). control theory for non linear stochastic systems which

Remark 1. The family of all admissible pair§u, v} is based on a consequence of the BRL introduced in
will be denoted byA. The notationA, will be used Section 2. In particular, we synthesize a controller
for all admissible pairgu, v} with fixed u. We note ~ Which results from a solution to a certain algebraic

that.4,, may be empty for some non-anticipative HJI and renders the closed-loop systémgain<
_ _ We also discuss the stability of the closed-loop system.
Remark 2. It will be assumed, throughout this paper, |, particular, we establish sufficient conditions under

that {u, v} are admissible. For sufficient conditions \yhich stability in probability and in the mean square
which guarantee the existence of a unique strong so-gense is guaranteed.

lution to (1) (see e.g. [Gihman and Skorohod, 1972],
[Hasminskii, 1980]).

2. All the functions below are assumed to be contin-
uous onR™. f : R — R", g : R® — R™™,
g1 : R* — R"™™ g5 : R — R"™™2 (@G :

2. PRELIMINARIES: DISSIPATIVE

The problem ofH,, output-feedback control is for- STOCHASTIC SYSTEMS, AND THE BRL

mulated in the following obvious way.

Given an output which is to be regulated (entitled, in This section introduces the concept of a dissipative

this paper, controlled output): stochastic system which is to be the basis on which we
lay out ourH , control theory for nonlinear stochastic
2(t) =col{h(x¢,t),us} (3) systems of the type introduced in Section 1.

The notion of dissipative stochastic systems as intro-
duced in this work is in fact a natural extension of
the concept of dissipation introduced by [Willems,
1972]) for deterministic systems; it has been utilized
in the development of thé& ., control and estimation
E{fOT 21> dt} < A2E{|o]” + fOT(||th2)dt} theory for nonlinear deterministic systems by several
researchers (see e.g. [Ball and Helton, 1996], [James,
1993], [van der Schaft, 2000]).

whereh : R™ — R", synthesize a controllei;, =
w(Y?), Yt = {ys : s < t}, such that, for a given
~ > 0, the following H, criterion is satisfied.

for all T > 0 and for all disturbances; in A,

(provided.A,, is nonempty). Whenever the system (1)
satisfies the above inequality, it is said to havelthe The concept of dissipative stochastic system is also
gain property, and we also write,-gain< . related to the notion of passive stochastic systems



that has been introduced by ([P.Florchinger, 1999]). Theorem 1.The functionV, of the above definition is

It is used there as a basis for the development ofa storage function for the system (1) (or equivalently,
a theory for stabilizing, in the probability sense, a the system (1) is dissipative with respect to the supply
class of stochastic nonlinear systems which enjoy thisrate S) iff E{V,(x:)} is finite for allt € [0, 00). The
passivity property. proofs of the next lemma and the following theorem
(entitled Bounded Real Lemma or BRL, in short) may
be found in [Berman and Shaked, 2003] and therefore
are omitted.

Consider the nonlinear stochastic system of (1) to-
gether with the controlled output (3). As in the deter-
ministic case (see, e.g. [van der Schaft, 2000],[Helton
and James, 1999]), the notion of supply rate will play a Lemma 1. Suppose there is a controller = u(x;,t)
fundamental role in the theory dff, control for non- such that the system (1) is dissipative with respect
linear stochastic systems. Define a function R™ x to the supply rateS(v,z) = ~2|jv|*> — |z||> and
R™tm™ —, R, and call it supply rate. assume that the associated storage function satisfies
E{V (0,t)} < v2E ||zol|* for all t > 0. Then, the

Remark 3. Dealing with H,, control, we will be closed-loop system (1) has @n-gain< ~.

concerned exclusively, in this work with the particular
supply rate defined bys(v,2) = ~2||v||> — ||2]|%, Utilizing now the of stochastic dissipation concept, we
where (v,z) € R™ x R"™™ Using the notion of  prove the following:

supply rate, we have now the following definition of

dissipative stochastic systems. Theorem 2. Consider the system described by (1)

with the controlled output of (3), and the supply rate
Definition 2. Consider the system (1) together with S(v,z) = ~2 ||v||* — ||z]|*. Then the following hold:
the controlled output as defined by (3), and $ebe

a supply rate as defined above. Lete such that
A, is nonempty. Then, the system (1) is said to be
dissipative with respect to the supply raieif there

is a functionV : R — R, with V(z) > 0 for all — T -

x € R", so thatV(0) = 0 satisfiesE{V (z)} < o0 V@) = lo:@)) Vas(2)g2() ©)

for all ¢ > 0 whenever is a strong solution to ) . o
1) and toehezo 9 Assume the following HJl is satisfied for alle R™.

A. Suppose there is a positive functidifx, t) € C2.
Let V() satisfyy?I — U (xz) > ol for somea > 0,
and for allz, , whereU (z) is defined by

E{V(xt)}gE{V(xS)}+E{/(72||vU||2—||z(,||2)da} Vx(x)f(x)—i%ﬁx)g(w)[“;gT(x)I/m(x)g(x)]1
forallt > s > 0 and for all admissible disturbances gT(x)VwT(wHva(m)gl(x)h%_§U(x)]_1g{(x) 0

{vt}1>0 In A,. V is then called the storage function Vm(x)+1trace{Gqu)%x(x)G(x)}—|—hT(:1;)h(:1;) <0
of the system (1). 2

Similar to the deterministic theory of dissipative sys- Tnen, foru()=—1 [T+ 157 (9)Voug()] " g2) V()
tems, the theorem below (the proof of which may be the system (1) is dissipative with respect to the supply
found in [Berman and Shaked 2003]) establishes con-rate 5(v, 2) (providedA, is nonempty).

ditions under which the system (1) possesses a storage

function. First we introduce a candidate for a storage B- Assume that for some controli(x) = I(x) the
function. system (1) is dissipative with respect to the supply rate

o ) S(v, z) for some storage functiori € C? which is as-
Definition 3. Consider the system (1). Lete [0,00)  sumed to satisfy2y2I — U (z) > oI for all z. Assume
and letr, be anR"™ valued random variable defined on 5|50 thaw(z) = [2721—U(z)]"1¢7 (2)VI (z) € A,.
the probability spacé(2, F, P). Assume also that;, ThenV (z) satisfies the HJI for alt € R".
is F; measurable. Let be such that4,, is nonempty.

Define
T
Va(z)= sup [—E{] / S(vs, z5)ds] /x4 }] (4) 3. STOCHASTICH,, CONTROL: THE OUTPUT
T>t t FEEDBACK CASE
ve A,
Remark 4. We note that in the case whereis  We consider now the system (1), together with the
deterministic,V;, assumes the following form: observations (2) and the controlled output (3). Since
1 the stater, of the plant is not available, we follow the
Valzy)= sup [—E{/ S(vs, z5)ds}] (5) common practice (the certainty equivalence approach)
T>tve A, + of replacing the the state that is to be processed by

the controller, with the estimator output. A natural



choice of an estimator (see, e.qg. [Isidori, 1994] for the Proof. Application of the HJI (7) yields

deterministic case ) is:

diy= f(Z¢)dt+g(2¢)ui (F¢)dt + g1 (24

Jui (2¢)
IR 8
—gs(e; Godr)
whereK () is the estimator gain, am x r matrix,

uf (2)=—3 439" () Vaw (205 (29)] g7 (20) VS (31)

and
of (&) = 5[V = 5U (&) g (@) V] (20)-

Using nowy; of the observations equation (2) in (8),
we arrive at the following augmented system.

dry = f(af, K)dt + gf (z, K)[ve — vf ()] dt ©)
5 () [vr — v () [dW + G(xf)dW

where
xf = col{ws, T}, th = col{Wt,th,WtQ,WE},
e/ e\ __ f(‘rt)
folai) = [f(f:t) + gl (&)
+01 (2, t)vy (2¢) + g(mt) ¢ (@ t)}
07 (21) + K (&) (ha(2¢) — ha(d4))

+91(2+)

91 (xf, 1) = col{g(z1), K(Z¢)gs (1)}
g5(x¢,t) = col{ga(z+,1),0}

e g(2)u (@) Glay) g2(zgvi(z) 0
G(xt,vt):|:g 0 0 g 0 K(i't)Gz(xt)]
and B

ha(x) = ha(z) — g3(@)v{ ()
ha(Z) = ha(Z) — g3(2)v; (&¢).

We now have the following theorem.

Theorem 3. Consider the stochastic system (1) to-
gether with the augmented system (9) and the con-
trolled output (2). Assume there is a positive function

V : R* — Rt,with V € C? so that it satisfies the

HJI (7) of Theorem 2. Assume also that there are: a

positive functionl? : R — R* and a matrixk (),
which satisfy the following HJI for some > 0, and
that v27 — L(g§(2)]T Waepe (2€)g5(2¢) > ol for
some positive number, and for allz® € R?"™ .

W (2 (1) R (1) (0) - Woe ()
29 [721—%U(xe)]‘1gf(:ce)TVV§ ()

( (10)
—%trace{(Ge) Weze(x E)Ge(xe)} <0

where

U () = [g5 ()] Wieae ()95 (),

he(z®) = u*(x) —u*(2), andr = v — v*(z).
Then, the closed-loop system with the contrd{z) =
_%[I + %QT(C%)VM(i’)g(i)]_lgT(i)Vm(i) is dissi-
pative with respect to the supply raté||v||> — |[|z||?,
it possesses a storage function definedSés®) =
V(x,t) + W(z¢), and has ad.o-gain< ~.

Vx[lf(x))Jrgl( z)o+g(@)u(@)]+1z]* 7 ]|
+=trace{G" (z) Vi (2)G(z)}

+5u " (2)g" (2) Vaa (@)3(2)u

%gT(w)V (2)g(2)) ™ g (@) V(@) +u'(@)]®

—||v—21gg )V @) =l ()~ (@)
Rl S @I = ) = 2l

“@) <lglr+
(11)

Define S(z¢) = V(z) + W (x¢). ThusS is positive
definite and satisfiess(0) = 0. Obviously, the infini-
tesimal generator of the augmented system satisfies

L{S(z%)} = L{V (2)} + L{W ()}

where

L«%V( x)} = Va(x) {f(2) + g1(z)v + g(x)u
+=trace {GT (2) Voo (2)G(2) }
+5u T (2)g" (2) Vaa (@)3(2)u" (2)
i{mw} = Woe [£5(2%) + g5 (a
strace {(G(ze))TWﬁxeGe(xe)}
Recall (11), that is:

(@)}

]+

LAV (@)} +[[2]2 =22 [ol* <[[h* @)1 =[]

By the HJI (10) it follows that
LW (@)} + 15 @)]2 = 2212 < 0
Therefore

L{S(@)} + |I2II° = %[0l ?
—2[oll? + L{W ()} <0

= LAV (2)} + ||z

This implies thatS(z¢) is a storage function for
the closed loop system with the supply rate |? —
v2||v||?, which implies that the closed loop system is
Ly-gain< 1.

Remark 5. As in the deterministic case, it is difficult
to establish, in general, conditions under which there
exists a matri¥< (z, t) so that the HJI (10) is satisfied.
The part of the latter inequality that contais is
given by:

F({f) = Wi () K (24) (ha(:) — ha(i:))
+1(Wi($e)K(5€t)93($t) + Wa(2)g1(24))

w%ff (%)) (Wi (2°) K (&) gs (1) + W ()

o @0)T = T3 W@ (31) = W) o)
K@) W1 (@) =97 (9] = 7 1¥(a) o)

V)~ Wala g () (1 *2%2 Ue)) ™91 ) W, @)



where
v (:ve):1 292 (ha (1) = ha(21)) "+ Wa ()1 ()
(- 27295 (@) W (2)g2(20)) " g3 (20)] Ry (a)

and

Rofwy) = gs (@) (I — %gg(xt)mz(fe)gz ()93 (@)

2y

The gain matrixK(#;) that minimizesT'(K), and
thus leads to a minimum left hand side in (10), is
clearly one that satisfiedl/; (z°)K (i) = W(z°).
Unfortunately, the latter equation may not possess a
solution for K which depends only ofy; . One way to
circumvent this difficulty is to choosE () s.t.

Wi () K (#) = U(2) + ©(2°)  (12)

where®(z*) is a function that allows a solutioR ™
for (12) that is independent af;. For this choice of
K*(#;) the abovd’(K') becomes the following.
1
K)=1s

W () g ) (I T;Uue»*lg?(xt)vﬂ(wen

(@ () Rafw) @(a)~W (1) Ra () ()

Assuming an existence of a solutidd(i;) to (12)
for some function®(z¢), we have established the
following theorem.

Theorem 4. Consider the stochastic system (1) to-
gether with the augmented system (9) and the con-
trolled output (2). Assume there is a positive function
V : R* — R*, with V € (?so that it satisfies the
HJI (7) of Theorem 2. Assume also that there are: a
positive functioniV : R2* — R* in C2 and a matrix

K (%), which satisfy (12). In addition, leti satisfy
the following HJI.

. (
Ve (0)+ a1 (0007 (80) g0 (o)
strace{G @) Weula) G5 u 129 o) We (2

g’ (20)+ 5077 () g )

RamamT(xe)%(:ce)gl<xt><f—§g§<xt>v~vm<x€>

g2(x0)) T (x )W (2)] <0 ¥zt € R*"

Then, the closed-loop system is dissipative with re-
spect to the supply rate?||v||*> — ||z||?, with the
storage function defined &#z¢) = V (z) + W (z°),
and therefore has aln-gain < ~.

3.1 Stability

Various types of asymptotic stability may be consid-
ered. We consider here global asymptotic stability in

probability and mean square sense. A comprehensive
account of stochastic systems’ stability may be found
in [Hasminskii, 1980]. We recall first some sufficient
conditions for global asymptotic stability of the sto-
chastic system given by

with f(0) G(0) = 0, and assume thaf,G
satisfy conditions that guarantee a unique strong
solution relative to the filtered probability space
(QvFv {Ft}tZOaP)'

Sufficient conditions for a global stability in probabil-
ity and in the mean square sense are summarized in
the following two theorems.

Theorem 5. ([Hasminskii, 1980])Assume there exists
a positive functionV (z) € C?, with V(0) = 0, so
that (LV)(z) < 0 for all z € R™. Assume also that
V(z) — oo as||z|| — oco. Then, the system of (13) is
globally asymptotically stable in probability.

Theorem 6. ([Hasminskii, 1980])Assume there exists
a positive functiorV/ (z) € C?, with V(0) = 0. Then
the system of (13) is globally exponentially stable
if there are positive numbers , ks, k3 such that the
following hold.

killz]|? < V() < kallz|?
(LV)(x) < —ks]|z||?
As a consequence of the last two theorems we have
the following results.

Lemma 3. Assume there exists a positive function
V(z) € C? such thatV(z) — oo as|jz| — oo,
satisfying the HJI (7) withh2 (z)hd (z) > 0 for all z.
Assume also that there is a positive functibhe C2,

W : R? — R¥, satisfying the HJI (10) with a strict
inequality, so thatiV(z°) — oo as|z¢|| — oo.
Then, the closed loop system is internally globally
asymptotically stable in probability.

Lemma 4. Assume there exists a positive function
V(x) € C?, with V(0) = 0 which satisfies the HJI
of (7) for somey > 0. In addition, letV” satisfy

kallo]]* < V(x) < kol2]|?
for some positive numbers, , ko. Furthermore, as-
sume that for somes, ki (z)ha(x) > ks||z||? for all
x € R". Assume also that there is a positive function
W e C% andW : R*" — R* with
kall2][ < W (%) < ks[[a€||> 2 € R*"

which satisfies the following algebraic HJI:

- 1 -

We (x) f€ (xe)+§trace {(Ge)Terze (xe)Ge(xe)}
+(h¢(z9)The(2°) < —Q(x°) Vz° € R™
for some positive functior®(z¢) with the property
that (he(x¢,t)The(z°,t) + Q(x¢) > k¢||2||? for all



x¢ € R?", and for somé > 0. Then the closed-loop
system (9) withv = 0 andu = —1¢7(2)V,7 (&) is

processes with stochastic uncertainti&gstems &
Control Letters45, 257-269.

exponentially stable in the mean square sense, and haéihman I.I. and A.V. Skorohod (197 tochastic

the property ofl., — gain < ~, thatis
oo

/ (loel?)dt}

o0
By / lzel2dt} < A?E{llwol® +
0 0

for all non-anticipative stochastic processeghat
satisfy E{ [ (||lv|*)dt} < oo, and wheneverz,
satisfiesE{V (z0)} < V2 E{||zo]|*}.

4. CONCLUSIONS

A comprehensive treatment of output-feedback con-
trol for nonlinear stochastic systems is introduced.

Conditions are found for the existence of stabilizing
controllers that satisfy prescribei,, performance

Differential EquationsSpringer Verlag.

Has’minskii, R.H (1980)Stochastic Stability of Dif-
ferential Equation Sijthoff &Noordhoff.

Helton J.W. and M.R. James (1999). Extending
H, control to nonlinear systems: Control of
nonlinear systems to achieve performance objec
tives, SIAM Advances in Design and Control se-
ries.

van der Schaft, A.J. (2000L,— Gain and Passivity
Techniques in Nonlinear ContraCommunication
and Control Engineering, Springer-Verlag.

James, M.R. (1993). A partial differential inequal-
ity for dissipative nonlinear systenSystems Con-
trol Letters 21, 315-320.

requirements. The theory developed can also be used _ .
to derive nonlinear estimators that achieve a pre- Ball J.A. and J.W. Helton (1996). Viscosity solu-

scribedH, bound on the estimation accuracy.
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