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1. INTRODUCTION

In recent years there has been a growing interest, as
reflects from the various published research works, in
the extension of ofH∞ control and estimation the-
ory to accommodate stochastic systems (see e.g. [El
Ghaoui, 1995], [Costa and Kubrusly, 1996], [Dragan
and Morozan, 1997], [Dragan and Morozan, 1998],
[Henriechsen and Pritchard, 1998], [Gershon,et al.,
2001], [Gershon,et al., 2002]).

The main thrust for these efforts stems from the at-
tempt to model system uncertainties as a stochastic
process, in particular, as a white noise, or formally
as a Wiener process. This has led to the development
of a H∞ theory for stochastic linear systems with
multiplicative noise.

1 Partially supported by the Pearlstone Center
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The present paper is an extension of the state-feedback
case ([Berman and Shaked, 2003]) to the case of
output-feedback control. In particular, we extend some
of the H∞ theory to nonlinear stochastic systems of
the following form.

dxt =f(xt)dt+g(xt)utdt+g1(xt)vtdt
+ḡ(xt)utdWt +g2(xt)vtdW 2

t +G(xt)dW 1
t

(1)

dyt =h2(xt)dt+g3(xt)vtdt+G2(xt)dW 3 (2)

where{xt}t≥0 is a solution to (1) with the initial con-
dition x0, an exogenous disturbance{vt}t≥0, a con-
trol signal{ut}t≥0, and Wiener processes{Wt}t≥0,
{W 1

t }t≥0, {W 2
t }t≥0, and{W 3

t }t≥0 . Also, yt is an
observations vector inRp which is corrupted with
noise (a Wiener process{W 3

t }t≥0 ), and contains an
uncertain component (a stochastic process{vt}t≥0).
The following will be assumed to hold throughout this
work.



1. Let (Ω, F, {Ft}t≥0, P ) be a filtered probability
space where{Ft}t≥0 is the the family of subσ-
algebras generated by{Wt}t≥0, where {W 1

t }t≥0,
{W 2

t }t≥0 are taken to beRl- valued andR1- valued,
respectively.

2. All the functions below are assumed to be contin-
uous onRn. f : Rn → Rn, g : Rn → Rn×m,
g1 : Rn → Rn×m1 , g2 : Rn → Rn×m2 , G :
Rn → Rn×l. In addition, it is assumed thatf(0) = 0,
G(0) = 0, h2(0) = 0 andG2(0) = 0.

3.{vt}t≥0 is a non-anticipativeRm1-valued stochastic
process defined on(Ω, F, {Ft}t≥0, P ), which satisfies
E{∫ t

0
‖vs‖2 ds} < ∞ for all t ∈ [0,∞), whereE

stands for the expectation operation, that is ifx is
a random variable defined on the probability space
(Ω, F, P ), thenE{x} =

∫
Ω

x(ω)dP (ω).

4. {ut}t≥0 is a non-anticipativeRm-valued stochastic
process defined on(Ω, F, {Ft}t≥0, P ).

5. x0 is assumed to beF0-measurable, and to satisfy
E{‖x0‖2} < ∞ .

Definition 1. The pair {ut, vt}t∈[(0,∞), or in short
{u, v}, are said to be admissible if the stochastic
differential equation (1) possesses a unique strong
solution relative to to the filtered probability space
(Ω, F, {Ft}t≥0, P ) so thatE{‖xt‖2} < ∞ for all
t ∈ [0,∞).

Remark 1. The family of all admissible pairs{u, v}
will be denoted byA. The notationAu will be used
for all admissible pairs{u, v} with fixed u. We note
thatAu may be empty for some non-anticipativeu.

Remark 2. It will be assumed, throughout this paper,
that {u, v} are admissible. For sufficient conditions
which guarantee the existence of a unique strong so-
lution to (1) (see e.g. [Gihman and Skorohod, 1972],
[Hasminskii, 1980]).

The problem ofH∞ output-feedback control is for-
mulated in the following obvious way.

Given an output which is to be regulated (entitled, in
this paper, controlled output):

z(t)=col{h(xt, t), ut} (3)

whereh : Rn → Rr, synthesize a controllerut =
u(Y t), Y t = {ys : s ≤ t}, such that , for a given
γ > 0, the followingH∞ criterion is satisfied.

E{∫ T

0
‖zt‖2 dt} ≤ γ2E{‖x0‖2 +

∫ T

0
(‖vt‖2)dt}

for all T ≥ 0 and for all disturbancesvt in Au

(providedAu is nonempty). Whenever the system (1)
satisfies the above inequality, it is said to have theL2-
gain property, and we also writeL2-gain≤ γ.

This problem may be treated within the context of
stochastic game theory analogously to the utilization
of the game theory in the deterministicH∞ control
and estimation (see, e.g. [Basar and Bernhard, 1995]).
In this connection, there is also a recent work ([Char-
alambous, 2003 ]) that deals with the problem of sto-
chastic minimax dynamic games using the informa-
tion state concept. The latter work characterizes the
information state by means of a solution to a certain
Hamilton-Jacobi equation, and it differ from ours, first
in its underlying approach, as our is based on the sto-
chastic dissipation notion of a system, and second, in
the representation of the observation model, as Char-
alambous takes the underlying probability space asso-
ciated with the measurements to be finitely additive.

As we adopt the approach that is based on the notion of
stochastic dissipation, we first introduce the concept of
stochastic dissipative systems, and then discuss some
properties of these systems. This is done in Section 2.
In Section 2 we also state and prove some kind of a
bounded real lemma for non linear stochastic systems.
In particular, we introduce a certain Hamilton-Jacobi
inequality (HJI for short) and we establish necessary
and sufficient conditions for the HJI to guarantee a
dissipation of the underlying system, which in turn
implies theL2 − gain property of the system.

In Section 3 we develop theH∞ output feedback
control theory for non linear stochastic systems which
is based on a consequence of the BRL introduced in
Section 2. In particular, we synthesize a controller
which results from a solution to a certain algebraic
HJI and renders the closed-loop systemL2-gain≤ γ
We also discuss the stability of the closed-loop system.
In particular, we establish sufficient conditions under
which stability in probability and in the mean square
sense is guaranteed.

2. PRELIMINARIES: DISSIPATIVE
STOCHASTIC SYSTEMS, AND THE BRL

This section introduces the concept of a dissipative
stochastic system which is to be the basis on which we
lay out ourH∞ control theory for nonlinear stochastic
systems of the type introduced in Section 1.

The notion of dissipative stochastic systems as intro-
duced in this work is in fact a natural extension of
the concept of dissipation introduced by [Willems,
1972]) for deterministic systems; it has been utilized
in the development of theH∞ control and estimation
theory for nonlinear deterministic systems by several
researchers (see e.g. [Ball and Helton, 1996], [James,
1993], [van der Schaft, 2000]).

The concept of dissipative stochastic system is also
related to the notion of passive stochastic systems



that has been introduced by ([P.Florchinger, 1999]).
It is used there as a basis for the development of
a theory for stabilizing, in the probability sense, a
class of stochastic nonlinear systems which enjoy this
passivity property.

Consider the nonlinear stochastic system of (1) to-
gether with the controlled output (3). As in the deter-
ministic case (see, e.g. [van der Schaft, 2000],[Helton
and James, 1999]), the notion of supply rate will play a
fundamental role in the theory ofH∞ control for non-
linear stochastic systems. Define a functionS : Rm ×
Rr+m1 → R, and call it supply rate.

Remark 3. Dealing with H∞ control, we will be
concerned exclusively, in this work with the particular
supply rate defined byS(v, z) = γ2||v||2 − ||z||2,
where (v, z) ∈ Rm × Rr+m1 Using the notion of
supply rate, we have now the following definition of
dissipative stochastic systems.

Definition 2. Consider the system (1) together with
the controlled output as defined by (3), and letS be
a supply rate as defined above. Letu be such that
Au is nonempty. Then, the system (1) is said to be
dissipative with respect to the supply rateS if there
is a functionV : Rn → R, with V (x) ≥ 0 for all
x ∈ Rn, so thatV (0) = 0 satisfiesE{V (xt)} < ∞
for all t ≥ 0 whenever{xt}t≥0 is a strong solution to
(1), and

E{V (xt)}≤E{V (xs)}+E{
t∫

s

(γ2‖vσ‖2−‖zσ‖2)dσ}

for all t ≥ s ≥ 0 and for all admissible disturbances
{vt}t≥0 in Au. V is then called the storage function
of the system (1).

Similar to the deterministic theory of dissipative sys-
tems, the theorem below (the proof of which may be
found in [Berman and Shaked 2003]) establishes con-
ditions under which the system (1) possesses a storage
function. First we introduce a candidate for a storage
function.

Definition 3. Consider the system (1). Lett ∈ [0,∞)
and letxt be anRn valued random variable defined on
the probability space(Ω, F, P ). Assume also thatxt

is Ft measurable. Letu be such thatAu is nonempty.
Define

Va(xt)= sup
T ≥ t
v ∈ Au

[−E{[
T∫

t

S(vs, zs)ds]/xt}] (4)

Remark 4. We note that in the case wherex is
deterministic,Va assumes the following form:

Va(xt)= sup
T ≥ t, v ∈ Au

[−E{
T∫

t

S(vs, zs)ds}] (5)

Theorem 1.The functionVa of the above definition is
a storage function for the system (1) (or equivalently,
the system (1) is dissipative with respect to the supply
rateS) iff E{Va(xt)} is finite for all t ∈ [0,∞). The
proofs of the next lemma and the following theorem
(entitled Bounded Real Lemma or BRL, in short) may
be found in [Berman and Shaked, 2003] and therefore
are omitted.

Lemma 1.Suppose there is a controllerut = u(xt, t)
such that the system (1) is dissipative with respect
to the supply rateS(v, z) = γ2 ‖v‖2 − ‖z‖2 and
assume that the associated storage function satisfies
E{V (x0, t)} ≤ γ2E ‖x0‖2 for all t ≥ 0. Then, the
closed-loop system (1) has anL2-gain≤ γ.

Utilizing now the of stochastic dissipation concept, we
prove the following:

Theorem 2. Consider the system described by (1)
with the controlled output of (3), and the supply rate
S(v, z) = γ2 ‖v‖2 − ‖z‖2. Then the following hold:

A. Suppose there is a positive functionV (x, t) ∈ C2.
Let V (x) satisfyγ2I − 1

2U(x) ≥ αI for someα > 0,
and for allx, , whereU(x) is defined by

U(x) = [g2(x)]T Vxx(x)g2(x) (6)

Assume the following HJI is satisfied for allx∈ Rn.

Vx(x)f(x)− 1
4
Vx(x)g(x)[I+

1
2
ḡT (x)Vxx(x)ḡ(x)]−1

gT(x)V T
x (x)+

1
4
Vx(x)g1(x)[γ2I− 1

2
U(x)]−1gT

1(x)

Vx(x)+
1
2
trace{GT(x)Vxx(x)G(x)}+hT(x)h(x)≤0

(7)

Then, foru(x)=− 1
2 [I+ 1

2 ḡT(x)Vxxḡ(x)]−1gT(x)V T
x (x)

the system (1) is dissipative with respect to the supply
rateS(v, z) (providedAu is nonempty).

B. Assume that for some controlu(x) = l(x) the
system (1) is dissipative with respect to the supply rate
S(v, z) for some storage functionV ∈ C2 which is as-
sumed to satisfy2γ2I−U(x) ≥ αI for all x. Assume
also thatv(x) = [2γ2I−U(x)]−1gT

1 (x)V T
x (x) ∈ Au.

ThenV (x) satisfies the HJI for allx ∈ Rn.

3. STOCHASTICH∞ CONTROL: THE OUTPUT
FEEDBACK CASE

We consider now the system (1), together with the
observations (2) and the controlled output (3). Since
the statext of the plant is not available, we follow the
common practice (the certainty equivalence approach)
of replacing the the state that is to be processed by
the controller, with the estimator output. A natural



choice of an estimator (see, e.g. [Isidori, 1994] for the
deterministic case ) is:

dx̂t =f(x̂t)dt+g(x̂t)u∗t (x̂t)dt + g1(x̂t)v∗t (x̂t)
+K(x̂t)(dyt − h2(x̂t)dt− g3(x̂t)v∗t (x̂t)dt) (8)

whereK(x̂t) is the estimator gain, ann× r matrix,
u∗t (x̂t)=− 1

2 [I+1
2 ḡT (x̂t)Vxx(x̂t)ḡ(x̂t)]−1gT(x̂t)V T

x (x̂t)
and
v∗t (x̂t)= 1

2 [γ2I− 1
2U(x̂t)]−1gT

1 (x̂t)V T
x (x̂t).

Using nowyt of the observations equation (2) in (8),
we arrive at the following augmented system.

dxe
t = fe(xe

t ,K)dt + ge
1(x

e
t , K)[vt − v∗t (xt)]dt

+ge
2(xt)[vt − v∗t (xt)]dW 2

t + Ge(xe
t )dW̄ 1

t
(9)

where

xe
t = col{xt, x̂t}, W̄ 1

t = col{Wt,W
1
t , W 2

t ,W 3
t },

fe(xe
t ) =

[
f(xt)
f(x̂t) + g(x̂t)u∗t (x̂t)
+g1(xt, t)v∗t (xt) + g(xt)u∗t (x̂t)

+g1(x̂t)v∗t (x̂t) + K(x̂t)(h̃2(xt)− h̃2(x̂t))

]

ge
1(x

e
t , t) = col{g1(xt),K(x̂t)g3(xt)}

ge
2(xt, t) = col{g2(xt, t), 0}

Ge(xe
t ,vt)=

[̄
g(x)u∗(x̂) G(xt) g2(xt)v∗t(xt) 0

0 0 0 K(x̂t)G2(xt)

]

and
h̃2(x) = h2(x)− g3(x)v∗t (xt)
h̃2(x̂) = h2(x̂)− g3(x̂)v∗t (x̂t).

We now have the following theorem.

Theorem 3. Consider the stochastic system (1) to-
gether with the augmented system (9) and the con-
trolled output (2). Assume there is a positive function
V : Rn → R+, with V ∈ C2 so that it satisfies the
HJI (7) of Theorem 2. Assume also that there are: a
positive functionW̃ : R2n → R+ and a matrixK(x̂),
which satisfy the following HJI for someγ > 0, and
that γ2I − 1

2 [ge
2(x

e)]T W̃xexe(xe)ge
2(x

e) ≥ αI for
some positive numberα, and for allxe ∈ R2n .

W̃xe(xe)fe(xe)+he(xe)T he(xe) +
1
4
W̃xe(xe)

ge
1(x

e)[γ2I− 1
2
Ū(xe)]−1ge

1(x
e)TW̃T

xe(xe)

+
1
2
trace

{
(Ge)TW̃xexe(xe)Ge(xe)

}
≤ 0

(10)

where

Ū(xe) = [ge
2(x

e)]T W̃xexe(xe)ge
2(x

e),
he(xe) = u∗(x)− u∗(x̂), andr = v − v∗(x).

Then, the closed-loop system with the controlu∗(x̂) =
− 1

2 [I + 1
2 ḡT (x̂)Vxx(x̂)ḡ(x̂)]−1gT (x̂)Vxx(x̂) is dissi-

pative with respect to the supply rateγ2||v||2 − ||z||2,
it possesses a storage function defined asS(xe) =
V (x, t) + W̃ (xe), and has anL2-gain≤ γ.

Proof. Application of the HJI (7) yields

Vx[f(x))+g1(x)v+g(x)u∗(x̂)]+‖z‖2−γ2 ‖v‖2

+
1
2
trace{GT (x)Vxx(x)G(x)}

+
1
2
u∗T (x̂)ḡT (x)Vxx(x)ḡ(x)u∗(x̂)} ≤‖1

2
[I+

1
2
ḡT(x)Vxx(x)ḡ(x)]−1gT(x)V T

x (x)+u∗(x̂)‖2

−‖v− 1
2γ2

gT
1 (x)V T

x (x)‖2 = ||u∗(x)−u∗(x̂)||2

−γ2||v − v∗(x)||2 = ||he(xe)||2 − γ2||r||2

(11)

DefineS(xe) = V (x) + W̃ (xe). ThusS is positive
definite and satisfies:S(0) = 0. Obviously, the infini-
tesimal generator of the augmented system satisfies

L{S(xe)} = L{V (x)}+ L{W̃ (xe)}
where

L {V (x)} = Vx(x) {f(x) + g1(x)v + g(x)u∗(x̂)}
+

1
2
trace

{
GT (x)Vxx(x)G(x)

}

+
1
2
u∗T (x̂)ḡT (x)Vxx(x)ḡ(x)u∗(x̂)

L
{

W̃ (xe)
}

= W̃xe [fe(xe) + ge
1(x

e)r]+
1
2
trace

{
(G(xe))T W̃xexeGe(xe)

}

Recall (11), that is:

L {V (x)}+||z||2−γ2||v||2≤||he(xe)||2−γ2||r||2

By the HJI (10) it follows that

L
{

W̃ (xe)
}

+ ||he(xe)||2 − γ2||r||2 ≤ 0

Therefore

L {S(xe)}+ ||z||2 − γ2||v||2 = L {V (xe)}+ ||z||2
−γ2||v||2 + L

{
W̃ (xe)

}
≤ 0

This implies thatS(xe) is a storage function for
the closed loop system with the supply rate||z||2 −
γ2||v||2, which implies that the closed loop system is
L2-gain≤ γ.

Remark 5. As in the deterministic case, it is difficult
to establish, in general, conditions under which there
exists a matrixK(x̂, t) so that the HJI (10) is satisfied.
The part of the latter inequality that containsK is
given by:

Γ(K) = W̃x̂(xe)K(x̂t)(h̃2(xt)− h̃2(x̂t))

+
1
4
(W̃x̂(xe)K(x̂t)g3(xt) + W̃x(xe)g1(xt))

(γ2I−1
2
Ũ(xe))−1(W̃x̂(xe)K(x̂t)g3(xt)+W̃x(xe)

g1(xt))T =
1

4γ2
[W̃x̂(xe)K(x̂t)−Ψ(xe)]Ra(xt)

[
KT(x̂t)W̃T

x̂ (xe)−ΨT (xe)
]
− 1

4γ2
[Ψ(xe)Ra(xt)

ΨT(xe)−W̃x(xe)g1(xt)(I− 1
2γ2

Ũ(xe))−1gT
1(xt)W̃T

x (xe)]



where

Ψ(xe)=−[2γ2(h̃2(xt)−h̃2(x̂t))T +W̃x(xe)g1(xt)

(I− 1
2γ2

gT
2(xt)W̃xx(xe)g2(xt))−1gT

3 (xt)]R−1
a (xt)

and

Ra(xt)=g3(xt)(I− 1
2γ2

gT
2(xt)W̃xx(xe)g2(xt))−1gT

3(xt)

The gain matrixK(x̂t) that minimizesΓ(K), and
thus leads to a minimum left hand side in (10), is
clearly one that satisfies̃Wx̂(xe)K(x̂t) = Ψ(xe).
Unfortunately, the latter equation may not possess a
solution forK which depends only on̂xt . One way to
circumvent this difficulty is to chooseK(x̂t) s.t.

W̃x̂(xe)K(x̂t) = Ψ(xe) + Φ(xe) (12)

whereΦ(xe) is a function that allows a solutionK∗

for (12) that is independent ofxt. For this choice of
K∗(x̂t) the aboveΓ(K) becomes the following.

Γ(K∗)=
1

4γ2
[Φ(xe)Ra(xt)ΦT(xe)−Ψ(xe)Ra(xt)ΨT(xe)

+W̃x(xe)g1(xt)(I − 1
2γ2

Ũ(xe))−1gT
1 (xt)W̃T

x (xe)]

Assuming an existence of a solutionK(x̂t) to (12)
for some functionΦ(xe), we have established the
following theorem.

Theorem 4. Consider the stochastic system (1) to-
gether with the augmented system (9) and the con-
trolled output (2). Assume there is a positive function
V : Rn → R+, with V ∈ C2so that it satisfies the
HJI (7) of Theorem 2. Assume also that there are: a
positive functionW̃ : R2n → R+ in C2 and a matrix
K(x̂), which satisfy (12). In addition, let̃W satisfy
the following HJI.

W̃t(xe)+W̃x(xe)[f(xt)+g1(xt)v∗t (xt)+g(xt)u∗t (x̂t)]
+W̃x̂(xe)[f(x̂t)+g1(x̂t)v∗t (x̂t)+g(x̂t)u∗(x̂t)]+
1
2
trace

{
G(x)TW̃xx(xe)G(x)

}
+

1
2
u∗T(x̂t)ḡT(xt)W̃xx(xe)

ḡ(xt)u∗(x̂t)+
1
2
v∗T (xt)gT

2(xt)W̃xx(xe)g2(xt)v∗(xt)

+he(xe)The(xe)+
1

4γ2
[Φ(xe)Ra(xt)ΦT (xe)−Ψ(xe)

Ra(xt)ΨT(xe)+W̃x(xe)g1(xt)(I− 1
2γ2

gT
2 (xt)W̃xx(xe)

g2(xt))−1gT
1 (xt)W̃T

x (xe)] ≤ 0 ∀xe ∈ R2n

Then, the closed-loop system is dissipative with re-
spect to the supply rateγ2||v||2 − ||z||2, with the
storage function defined asS(xe) = V (x) + W̃ (xe),
and therefore has anL2-gain≤ γ.

3.1 Stability

Various types of asymptotic stability may be consid-
ered. We consider here global asymptotic stability in

probability and mean square sense. A comprehensive
account of stochastic systems’ stability may be found
in [Hasminskii, 1980]. We recall first some sufficient
conditions for global asymptotic stability of the sto-
chastic system given by

dxt = f(xt)dt + G(xt)dWt (13)

with f(0) = G(0) = 0, and assume thatf,G
satisfy conditions that guarantee a unique strong
solution relative to the filtered probability space
(Ω, F, {Ft}t≥0, P ).

Sufficient conditions for a global stability in probabil-
ity and in the mean square sense are summarized in
the following two theorems.

Theorem 5.([Hasminskii, 1980])Assume there exists
a positive functionV (x) ∈ C2, with V (0) = 0, so
that (LV )(x) < 0 for all x ∈ Rn. Assume also that
V (x) →∞ as‖x‖ → ∞. Then, the system of (13) is
globally asymptotically stable in probability.

Theorem 6.([Hasminskii, 1980])Assume there exists
a positive functionV (x) ∈ C2, with V (0) = 0. Then
the system of (13) is globally exponentially stable
if there are positive numbersk1, k2, k3 such that the
following hold.

k1||x||2 ≤ V (x) ≤ k2||x||2

(LV )(x) ≤ −k3||x||2
As a consequence of the last two theorems we have
the following results.

Lemma 3. Assume there exists a positive function
V (x) ∈ C2 such thatV (x) → ∞ as ‖x‖ → ∞,
satisfying the HJI (7) withhT

2 (x)hT
2 (x) > 0 for all x.

Assume also that there is a positive functionW̃ ∈ C2,
W̃ : R2n → R+, satisfying the HJI (10) with a strict
inequality, so thatW̃ (xe) → ∞ as ||xe|| → ∞.
Then, the closed loop system is internally globally
asymptotically stable in probability.

Lemma 4. Assume there exists a positive function
V (x) ∈ C2, with V (0) = 0 which satisfies the HJI
of (7) for someγ > 0. In addition, letV satisfy

k1||x||2 ≤ V (x) ≤ k2||x||2
for some positive numbersk1, k2. Furthermore, as-
sume that for somek3, hT

2 (x)h2(x) ≥ k3||x||2 for all
x ∈ Rn. Assume also that there is a positive function
W̃ ∈ C2. andW̃ : R2n → R+ with

k4||x̂||2 ≤ W̃ (xe) ≤ k5||xe||2 xe ∈ R2n

which satisfies the following algebraic HJI:

W̃xe(xe)fe(xe)+
1
2
trace

{
(Ge)TW̃xexe(xe)Ge(xe)

}

+(he(xe)T he(xe) ≤ −Q(xe) ∀xe ∈ R2n

for some positive functionQ(xe) with the property
that (he(xe, t)T he(xe, t) + Q(xe) ≥ k6||x̂||2 for all



xe ∈ R2n, and for somek6 > 0. Then the closed-loop
system (9) withv = 0 andu = − 1

2gT (x)V T
x (x̂) is

exponentially stable in the mean square sense, and has
the property ofL2 − gain ≤ γ, that is

E{
∞∫

0

‖zt‖2 dt} ≤ γ2E{‖x0‖2 +

∞∫

0

(‖vt‖2)dt}

for all non-anticipative stochastic processesv that
satisfy E{∫∞

0
(‖vt‖2)dt} < ∞, and wheneverx0

satisfiesE{V (x0)} ≤ γ2E{||x0||2}.

4. CONCLUSIONS

A comprehensive treatment of output-feedback con-
trol for nonlinear stochastic systems is introduced.
Conditions are found for the existence of stabilizing
controllers that satisfy prescribedH∞ performance
requirements. The theory developed can also be used
to derive nonlinear estimators that achieve a pre-
scribedH∞ bound on the estimation accuracy.
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