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Abstract: A design of detection system using closed loop information processing
strategy in multiple model framework is treated. The proposed detection system
should simultaneously generate decisions and auxiliary input signal which can
improve fault detection. The design of detection system is formulated as an
optimization problem based on the assumption that the measurements will be
available in the future. Then the dynamic programming can be utilized for
the minimization of a considered criterion. A significant special case where the
relation between the auxiliary input signal and the decision is given a priori is
analyzed.Copyright c© 2005 IFAC
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1. INTRODUCTION

The aim of fault detection and isolation (FDI) is
early recognition and determination of undesired
or even dangerous behavior of the observed pro-
cess. The increasing attention to FDI in recent
years is caused by economical, environmental and
other possible savings. A survey of various design
methods can be found within many of others in
(Willsky, 1976; Basseville, 1988). New and more
complex methods were proposed with growing
availability of faster and cheaper computers. The
survey can be found e.g. in (Isermann, 2004).
The design of detector is usually based on some
sort of mathematical model of a real process and
measurements which can be obtained from this
process. Such detector passively monitors avail-
able measurements and makes decisions.

A lot of the approaches consider that the detec-
tion consists of two steps. The first step is the

generation of residuals which represent inconsis-
tencies between the true and expected behavior
of the observed process and the decisions based
on the residuals are made in the second step. The
large review of methods used for design of residual
generators can be found in (Patton et al., 1989).
Basseville and Nikiforov (1993) aimed to design
both parts of detector and their design is based on
statistical approach mainly. In many papers great
attention is aimed to robustness problem in the
residual generator design (Frank and Ding, 1997).
On the other side the problem of process exci-
tation is often either omitted or the request for
appropriate excitation is stated even if the change
detection methods sensitive to the process excita-
tion are used.

Design of special input signal which can help to
improve change detection is well known from sys-
tem identification (Zarrop, 1979). Zhang (1989)
studied a method for design of input signal for



change detection in multiple model framework.
The auxiliary input is designed there to maxi-
mize the Baram’s distance between possible mod-
els. A method for active fault detection in linear
system subject to inequality-bounded perturba-
tions is presented by Nikoukhah (1998). A sim-
ilar approach where the perturbations are mod-
elled as bounded energy signals is introduced by
Nikoukhah et al. (2000) where the aim is to find
minimum energy auxiliary input signal which en-
ables to decide surely in which mode the process
operates.

Most of the known FDI methods do not consider
the future information as a mean for minimizing
the possible losses caused be wrong decisions.
They utilize all available information at the mo-
ment of decision but the fact that the additional
information will be obtained in the future is not
considered. If it is considered that decision can
influence the process progression, then the future
information can backward affect this decision.
This idea is elaborated by Šimandl and Herejt
(2003) where three different information process-
ing strategies (open loop, open loop feedback and
closed loop) to change detection in multiple model
framework are considered. The design procedure
based on closed loop information processing strat-
egy is superior to commonly used Bayesian ap-
proach e.g. (Berec, 1998) which matches the open
loop feedback information processing strategy.

The aim of the paper is to extend the idea pre-
sented in (Šimandl and Herejt, 2003), where the
generator was given a priori and depended on
decision in known manner, to more general case
for which the generator of the auxiliary input is
also searched.

The paper is organized as follows. In Section 2 the
model of observed process together with a general
description of detection system are presented.
The choice of possible criterion is also discussed.
The general solution of stated problem utilizing
dynamic programming is presented in Section 3.
Section 4 is devoted to above mentioned special
case, where the generator of the auxiliary input is
given a priori and depends on the decision. The
solution for additive criterion is examined in both
cases. The designed approach together with the
Bayesian approach are applied and compared in a
simple example in Section 5.

2. PROBLEM FORMULATION

Time-discrete models will be considered due to
using digital devices to fault detection. Descrip-
tion of observed process is considered in multiple
model framework. Therefore, it is assumed that
the process can be described at each time k ∈

T = {0, 1, . . . , F} by a model chosen from a priori
known and complete set of possible models and
the process model can change at each sampling
time. Similarly as in the area of FDI, it is supposed
that one of models defines the safety behavior
and the others describe individual faulty modes.
Then the system can be described by the known
transition probability density function (pdf)

f(xk, θk|xk−1, θk−1,uk−1) (1)

and the measurement pdf

g(yk|xk, θk), (2)

with given a priori pdf

f(x0, θ0|x−1, θ−1,u−1) = f(x0, θ0), (3)

where uk ∈ Uk ⊂ R
nu and yk ∈ R

ny are inputs
and measurements, respectively. The pair [xk, θk]
creates hybrid state of the system. The first part
xk ∈ R

nx denotes continuous part of the hybrid
state, the second part θk ∈M = {1, 2, . . . , N} is a
scalar variable denoting index of the model which
represents process at time k and N is number of
possible models. If the state space representation
of process is given the conditional pdf’s (1) and
(2) can be obtained from state equation and
measurement equation, respectively. Now, some
useful assumptions on the pdf (1) which lead to
computational simplification will be introduced.
The parts xk and θk of the state are considered to
be mutually independent and the transition pdf
(1) can be factorized as

f1(xk|xk−1, θk−1,uk−1)f2(θk|xk−1, θk−1,uk−1),
(4)

where f1 and f2 are transition pdf’s describing
evolution of xk and process of model changes,
respectively. The sequence of models is considered
to be a finite-state Markov chain with known tran-
sition probabilities P (θk|θk−1). Thus, the second
factor of (4) is

f2(θk|xk−1, θk−1,uk−1) = P (θk|θk−1). (5)

Now, the first factor of (4) and the pdf (2) can be
considered in the following form

f1 =

N
∑

i=1

δi,θk−1

if1(xk|xk−1,uk−1), (6)

g =

N
∑

i=1

δi,θk−1

ig(yk|xk), (7)

where if1(xk|xk−1,uk−1) and
ig(yk|xk) are pdf’s

of the particular model i and δi,θk
is the Kronecker

delta defined as

δi,j =

{

1, i = j

0, i 6= j.
(8)

The class of considered problems is restricted
only by assumption (5) which does not allow the
dependence of transition probabilities f2 on the
part xk−1 of the state and the input uk−1.



Now, the description of a detection system will
be presented. The aim of design is to find the
detection system which generates the optimal de-
cision and the optimal auxiliary input at each
time k ∈ T . It is obvious that the best possible
behavior of such system at time k can be reached
by utilization of all information available at time
k. Thus, the general description of the detection
system by means of the joint pdf should be sup-
posed in the following form

ρk(uk, dk|I
k
0), (9)

where dk ∈ M denotes decision of detector at

time k, Ik0 = [yk
0

T
,uk−1

0

T
, dk−1

0

T
]T denotes all

available information and the notation yk
0 =

[y0
T ,y1

T , . . . ,yk
T ]T is used for description of

whole history of considered variable or pdf. The
joint pdf (9) can be factorized in two different
ways

ρk(uk, dk|I
k
0) = γk(uk|I

k
0 , dk)σk(dk|I

k
0), (10)

ρk(uk, dk|I
k
0) = σk(dk|I

k
0 ,uk)γk(uk|I

k
0), (11)

but the stress will be laid only on the factorization
(10) in this paper, because it covers the situations
in which the relation γk between the auxiliary
input and the decision is given.

The goal of the design is to choose such detection
system which makes statistically least mistakes.
So, a loss function in the criterion should penalize
wrong decisions and the value of the criterion can
be assumed as expectation of the loss function
over the finite detection horizon. The general
criterion is following

J(ρF0 ) = E
{

L(θF0 , d
F
0 )
}

, (12)

where E{·} denotes expectation operator over all
included random variables and the loss function
L(θF0 , d

F
0 ) is a real-valued non-negative function

which is chosen with respect to real costs caused
by the decisions.

3. GENERAL SOLUTION

In this section the main concern is to find the
best pdf’s ρF0 describing detection system. The
optimal detection system (9) has to minimize the
general criterion (12) or some additive criterion
(24) for given system (1), (2). The general solu-
tion is found by means of dynamic programming
(Bertsekas, 1995; Žampa et al., 2004). It will be
shown that the optimal decision d∗k and input u∗k
are functions of all available information Ik0 at
time k and hence the pdf (9) is zero everywhere
except at [u∗k, d

∗
k]. Next a recursive solution will

be presented and the case of an additive criterion
will be examined.

Firstly, some important relations which will be
used throughout the paper are introduced

p(θj0|I
k
0 ,uk, dk) = p(θj0|y

k
0 ,u

k−1
0 ), (13)

p(yk+1|I
k
0 ,uk, dk) = p(yk+1|y

k
0 ,u

k
0), (14)

where 0 ≤ j ≤ k. The criterion (12) can be written
in the following form

J(ρF0 ) =
∫

L(θF0 , d
F
0 )p(θ

F
0 , I

F
0 ,uF , dF )d(θ

F
0 , I

F
0 ,uF , dF ) =

∫

Wk(I
k
0 ; ρ

F
k )p(I

k
0)dI

k
0

(15)

and the following factorization of joint pdf is
supposed

p(θF0 , I
F
0 ,uF , dF ) = p(θF0 |I

F
0 ,uF , dF )

F
∏

i=0

[

p(uF−i, dF−i|I
F−i
0 )

p(yF−i|I
F−1−i
0 ,uF−1−i, dF−1−i)

]

,

(16)

where Wk(I
k
0 ; ρ

F
k ) denotes the estimate of partial

losses at time k based on available information Ik0
and the future sequence of pdf’s ρFk . It is supposed
for a while that all future optimal pdf’s ρF∗

k+1 are
known and the searched pdf ρk has to minimize
the estimate of the partial losses Wk(I

k
0 ; ρk, ρ

F∗
k+1)

for given Ik0 . In order to determine optimal pdf ρk
the estimate Wk(I

k
0 ; ρk, ρ

F∗
k+1) can be written as

Wk(I
k
0 ; ρk, ρ

F∗
k+1) =

∫

C∗
k+1(I

k
0 ,uk, dk; ρ

F∗
k+1)ρk(uk, dk|I

k
0)d(uk, dk)

(17)

and from (15) it is obvious that the following
relation holds

C∗
k+1(I

k
0 ,uk, dk; ρ

F∗
k+1) =

∫

W ∗
k+1(I

k+1
0 ; ρF∗

k+1)p(yk+1|I
k
0 ,uk, dk)dyk+1,

(18)

where W ∗
k+1(I

k+1
0 ; ρF∗

k+1) represents minimum of
the best estimate of partial losses based on all
available information at time k+1. Thus the real-
valued non-negative function C∗

k+1 is independent
of future behavior and it is assumed that it has a
global minimum with given constraints on uk and
dk for every given Ik0 . For such pair u∗k, d

∗
k it holds

that

C∗
k+1(I

k
0 ,u

∗
k, d

∗
k; ρ

F∗
k+1)≤C

∗
k+1(I

k
0 ,uk, dk; ρ

F∗
k+1).

(19)

Now, it is obvious that the best pdf (9) is the
product of Dirac function and Kronecker delta for
uk and dk, respectively. If there is multiple global
minimum it does not matter which will be chosen.
In general, the optimal decision d∗k depends on



the auxiliary input uk and vice versa. If it can
be assumed that the optimal input u∗k and the
optimal decision d∗k will be used at all times, the
both values can be written only as some functions
of available information Ik0 . Thus, the optimal
detection system is deterministic and the resulting
optimal pdf (9) is

ρk(uk, dk|I
k
0) = δ(uk − u∗k)δdk,d

∗

k
, (20)

where δ(·) is the Dirac function. The recursive
solution can be easily derived from equations (17)
and (18) as

W ∗
F+1=L(θF0 , d

F
0 ), (21)

W ∗
k (I

k
0)= min

uk∈Uk
dk∈M

E
{

W ∗
k+1(I

k+1
0 )|Ik0 ,uk, dk

}

, (22)

u∗k, d
∗
k=arg min

uk∈Uk
dk∈M

E
{

W ∗
k+1(I

k+1
0 )|Ik0 ,uk, dk

}

,

(23)

where the computation starts from the end of the
detection horizon F (k = F, F − 1, . . . , 1, 0).

In the following text the additive criterion will be
considered. The main idea of solution is to divide
partial losses into the present and the future.
The major contribution of an additive criterion
is a simplifications of computations and complete
mutually independency of the optimal decision d∗k
and the optimal auxiliary input u∗k. Let the loss
function has the following special form

L(θF0 , d
F
0 ) =

F
∑

i=0

Li(θi, di). (24)

The function W ∗
F (I

F
0 ) can be written with regard

to additivity of the criterion as

W ∗
F (I

F
0 ) = min

uF ∈UF
dF ∈M

[

E

{

F−1
∑

i=0

Li(θi, di)|I
F
0 ,uF , dF

}

+E
{

LF (θF , dF )|I
F
0 ,uF , dF

}

]

.

(25)

With respect to equation (13) only the second
term on right hand side of equation (25) can be
minimized by decision dF and such a minimal
value will be denoted V ∗

F (y
F
0 ,u

F−1
0 ) and called

Bellman function. The function W ∗
F−1(I

F−1
0 ) can

be decomposed in a similar way and it can be
rewritten using Bellman function V ∗

F (y
F
0 ,u

F−1
0 )

as

W ∗
F−1(I

F−1
0 ) = min

uF−1∈UF−1

dF−1∈M

[

E

{

E

{

F−2
∑

i=0

Li(θi, di)|I
F
0 ,uF , dF

}

+

E
{

LF−1(θF−1, dF−1)|I
F
0 ,uF , dF

}

+

V ∗
F (y

F
0 ,u

F−1
0 )|IF−1

0 ,uF−1, dF−1

}

]

.

(26)

Denoting the last two terms in (26) by

VF−1(I
F−1
0 ,uF−1, dF−1) (27)

and using relation

E {E {ϕ(a)|bc} |c} = E {ϕ(a)|c} , (28)

the (26) can be written as

W ∗
F−1(I

F−1
0 ) = min

uF−1∈UF−1

dF−1∈M

[

E

{

F−2
∑

i=0

Li(θi, di)|I
F−1
0 ,uF−1, dF−1

}

+

VF−1(I
F−1
0 ,uF−1, dF−1)

]

,

(29)

where only the second term VF−1 on right hand
side can be minimized by uF−1 and dF−1 if
the relations (13) and (14) are considered. The
minimal value of VF−1 has the following form

V ∗
F−1(y

F−1
0 ,uF−2

0 ) =

min
dF−1∈M

E
{

LF−1(θF−1, dF−1)|y
F−1
0 ,uF−2

0 , dF−1

}

+ min
uF−1∈UF−1

E
{

V ∗
F (y

F
0 ,u

F−1
0 )|yF−1

0 ,uF−1
0

}

.

(30)

The presented procedure of derivation repeated
at all time steps leads to the resulting backward
recursive solution starting at time F

V ∗
F+1 = 0,

V ∗
k (y

k
0 ,u

k−1
0 ) =

min
dk∈M

E
{

Lk(θk, dk)|y
k
0 ,u

k−1
0 , dk

}

+

min
uk∈Uk

E
{

V ∗
k+1(y

k+1
0 ,uk

0)|y
k
0 ,u

k
0

}

,

(31)

where the minimum V ∗
k (y

k
0 ,u

k−1
0 ) in (31) is

achieved using the optimal decision and the op-
timal auxiliary input

d∗k=arg min
dk∈M

E
{

Lk(θk, dk)|y
k
0 ,u

k−1
0 , dk

}

, (32)

u∗k=arg min
uk∈Uk

E
{

V ∗
k+1(y

k+1
0 ,uk

0)|y
k
0 ,u

k
0

}

. (33)

The proposed design procedure provides the gen-
eral solution to active FDI formulated as op-
timization problem. The additivity of criterion
caused that the optimal detection system could
be divided into two independent parts. The first
one is the optimal detector and the second is the
optimal auxiliary input generator. The optimal
decision d∗k in (32) minimizes conditional mean
of loss at time k. The optimal auxiliary input
signal u∗k in (33) handles the fact that the fu-
ture measurements will be used for detection and
tries to provide sufficiently excited signals. This
design procedure has some common features with
optimal stochastic control problem and it is the
general case of the problem studied by Šimandl
and Herejt (2003). Unfortunately, the closed loop
solution is intractable in most cases and a numer-
ical approximation must be used.



4. A SPECIAL CASE

The situations where the generator of auxiliary
signal depends on the decision is considered in this
section. Only the main results will be presented
because the derivation is analogical to the ones
in previous section. The factorization (10) of the
pdf is considered and it is assumed that the
generator of auxiliary input uk is given by a
known function h(Ik0 , dk) of available information
and current decision. Thus, the conditional pdf γk
can be written as

γk(uk|I
k
0 , dk) = δ(uk − h(Ik0 , dk)), (34)

where it is required that the range of function
h(Ik0 , dk) is a subset of Uk. With mentioned fac-
torization (10) and the known description of gen-
erator (34) the equation (17) is

Wk(I
k
0 ;σk, σ

F∗
k+1) =

∫

C∗
k+1(I

k
0 ,h(I

k
0 , dk), dk;σ

F∗
k+1)σk(dk|I

k
0)d(dk).

(35)

Similarly to the general case the pdf σk of optimal
detector is again Dirac function at the point where
the function C∗

k+1 for given Ik0 has its minimum
with respect to dk. The recursive solution for the
general criterion (12) can be found in the following
form

W ∗
F+1 = L(θF0 , d

F
0 ), (36)

W ∗
k (I

k
0) = min

dk∈M
E{W ∗

k+1(I
k+1
0 )|Ik0 , dk}, (37)

d∗k = arg min
dk∈M

E{W ∗
k+1(I

k+1
0 )|Ik0 , dk} (38)

and the recursive solution for additive criterion
(24) is

V ∗
F+1=0,

V ∗
k (y

k
0 ,u

k−1
0 )= min

dk∈M

E
{

Lk(θk, dk)+V
∗
k+1(y

k+1
0 ,uk

0)|y
k
0 ,u

k
0 , dk

}

,

(39)

where the minimum V ∗
k in (39) is obtained by the

optimal decision

d∗k=arg min
dk∈M

E
{

Lk(θk, dk)+V
∗
k+1(y

k+1
0 ,uk

0)|y
k
0 ,u

k
0 , dk

}

.
(40)

The optimal decision d∗k minimizes sum of two
terms in (40). The first term represents the es-
timate of current loss and the second term is
estimate of future losses, both caused by this
decision. Standard approaches based on Bayesian
technique do not consider existence of the second
term and minimize only the first one. Comparing
(31) and (39) it can be seen that given relation-
ship between optimal decision and auxiliary input
leads to higher value of criterion and thus to worse
behavior of the detection system. Of course, it still
provides better results than standard Bayesian
approaches in cases where the relation (34) exists.

5. ILLUSTRATIVE EXAMPLE

Both the general and the special case presented
in this paper are compared with commonly used
Bayesian approach in a numerical example. It
should demonstrate an influence of individual
approaches on value of the criterion. In all cases
the additive criterion (24) is assumed and the
detection horizon F = 1 is chosen. The considered
values of auxiliary input are kept the same in
all three situations to provide comparability. The
set of models is M = {1, 2} and the process is
described by one of the following models at each
time k

θk = 1 : xk+1 = 0.3xk + uk +
1wk,

yk = −2xk +
1vk,

(41)

θk = 2 : xk+1 = 0.5xk + 1.5uk +
2wk,

yk = 1.5xk +
2vk,

(42)

where {1wk}, {
1vk}, {

2wk}, {
2vk} are mutually in-

dependent random sequences. Their distribution
is zero mean Gaussian with variance σ2 = 0.25.
The initial condition x0 has also Gaussian dis-
tribution with mean 0 and variance σ2

x = 0.1
and is independent of processes {1wk}, {

1vk},
{2wk}, {

2vk}. A priori probabilities of models are
P2(θ0 = 1|θ−1) = P2(θ0 = 2|θ−1) = 0.5. The
transition probabilities are defined for all times k
as

P (θk|θk−1) =

[

0.2 0.8
0.8 0.2

]

. (43)

In both cases the loss function is chosen as zero-
one loss function

θk = dk ⇒ Lk(θk, dk) = 0,
θk 6= dk ⇒ Lk(θk, dk) = 1.

(44)

Unknown detector and generator (CL1)
The main diagnostic tools are digital devices as
mentioned. Thus, the auxiliary input can be con-
sidered in discrete values from bounded interval
only. The possible values of input are chosen as

uk ∈ Uk = {1.5,−0.1}. (45)

The Bellman function at time k = F = 1 is

V ∗
1 (y

1
0 , u0)= min

d1∈M

∑

θ1

L1(θ1, d1)p(θ1|y
1
0 , u0) (46)

and the optimal decision d∗1 is found as

d∗1 = arg min
d1∈M

∑

θ1

L1(θ1, d1)p(θ1|y
1
0 , u0). (47)

Any admissible auxiliary input u∗1 can be used
because it does not influence the value of criterion.
The optimal decision d∗0 and the optimal auxiliary
input u∗0 at time k = 0 are

d∗0 = arg min
d0∈M

∑

θ0

L0(θ0, d0)p(θ0|y0), (48)

u∗0 = arg min
u0∈U0

∫

V ∗
1 (y

1
0 , u0)p(y1|y0, u0)dy1.

(49)



Unknown detector and known generator (CL2)
The description of the auxiliary input generator
is supposed to be

uk = h(dk) =

{

1.5, dk = 1
−0.1, dk = 2.

(50)

The rule for the optimal decision d∗1 and Bellman
function V ∗

1 (y
1
0 , u0) at time 1 are the same as in

the previous case and the optimal decision d∗0 at
time k = 0 is

d∗0 = arg min
d0∈M

[

∑

θ0

L0(θ0, d0)p(θ0|y0)+

∫

V ∗
1 (y

1
0 , h(d0))p(y1|y0, h(d0))dy1

]

.

(51)

The inputs u∗0 and u∗1 are determined by the
corresponding optimal decisions according to (50).

Unknown detector and known generator (BA)
It was shown in (Šimandl and Herejt, 2003) that
such approach matches open loop feedback strat-
egy. The dependency of the auxiliary input on
decision is same as in the previous situation and
the optimal decisions for k ∈ {0, 1} are found as

d∗k = arg min
dk∈M

∑

θk

Lk(θk, dk)p(θk|y
k
0 , u

k−1
0 ).

A bank of Kalman filters is used to compute
needed probabilities and the integrals in (49) and
(51) must be computed numerically using trape-
zoidal rule. Mean and variance of the estimate Ĵ of
the criterion J presented in Table 1 were obtained
by 1000 Monte Carlo simulations.

Table 1. Values of the criterion
CL1 CL2 BA

E{Ĵ} 0.4659 0.4997 0.7411

VAR{Ĵ} 3.02 · 10−4 2.23 · 10−4 4.99 · 10−4

The value of criterion slightly increases with re-
strictive assumption on the auxiliary input gener-
ator but Bayesian approach provides considerably
worse value of criterion.

6. CONCLUSION

The active fault detection approach respecting
availability of future information was formulated
as an optimization problem. The dynamic pro-
gramming was utilized to minimization of a pro-
posed criterion on finite detection horizon. It was
shown that the optimal decision and the optimal
auxiliary input are independent in general case
of additive criterion. The presented formulation
allows to derive easily some special cases and
the case with a priori given input generator was
introduced. Both general and considered special
case produce better decisions comparing to the
Bayesian approach.
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