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Torsten Söderström ∗

∗ Div. of Systems and Control, Dept. of Information

Technology, Uppsala University, Box 337, SE-751 05

Uppsala, Sweden.

E-mail: {Agnes.Runqvist,Torsten.Soderstrom}@it.uu.se
∗∗ Dept. of Electrical Engineering, Karlstad University,

SE-651 88 Karlstad, Sweden.

E-mail: Magnus.Mossberg@kau.se

Abstract: The problem of optimal sensor locations in nonparametric identification
of viscoelastic materials is considered. Different criteria of the covariance matrix,
connected to A- and D-optimal experiment design, are considered and evaluated.
The results of the paper can be used to design experiments with improved accuracy
of the estimates. Copyright c©2005 IFAC.

Keywords: Experiment design, nonparametric identification, viscoelastic
materials.

1. INTRODUCTION

In order to make efficient use of viscoelastic ma-
terials in constructions, it is important to have
knowledge about the characteristics of the mate-
rial. A viscoelastic material is characterized by its
complex modulus that relates stress and strain,
and can be determined through wave propagation
experiments, as studied in (Sogabe and Tsuzuki,
1986), (Blanc, 1993) and (Hillström et al., 2000).
To get good quality estimates, the collected data
should contain as much valuable information as
possible, and design parameters that influence the
information content must thus be chosen carefully.
Examples of such parameters are the input signal,
the number of sensors used in the experiment, and
the sensor locations. This paper is devoted to the
design of optimal sensor locations for nonpara-
metric identification of viscoelastic materials. The
corresponding problem for the parametric case
was considered in (Mossberg, 2004).

A solid theoretical base for optimal experiment
design is built in (Fedorov, 1972) and (Pukelsheim,
1993), and is widely employed in different areas
of electrical engineering. Some examples include
sensor array signal processing (Hawkes and Neho-
rai, 1999), and robotics (Lizama and Šurdilović,
1996). In the control literature, a survey of the
sensor location problem is presented in (Kubrusly
and Malebranche, 1985).

2. THE EXPERIMENT

The behavior of a viscoelastic material is charac-
terized by its complex modulus E(ω) that relates
stress and strain of the material. The identifica-
tion problem studied in this paper is the one of
identifying the complex modulus of viscoelastic
materials by the use of wave propagation methods.
Fig. 1 shows the experimental setup where a bar
specimen of length L is axially impacted by a
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Fig. 1. Experimental setup

steel hammer or an air gun. As a result of the
impact, longitudinal waves that travel back and
forth along the bar, are generated. The associ-
ated strains ε1, . . . , εn are measured at n differ-
ent sections located at x = [x1, . . . , xn]T , at N
discrete time instances. Similar experiments can
be designed for flexural waves by an impact per-
pendicular to the bar, as in (Mahata et al., 2003),
and for torsional waves. This work will focus on
the case with longitudinal waves but, can easily
be expanded to cover flexural and torsional wave
experiments.

3. THE NONPARAMETRIC
IDENTIFICATION

By solving the wave equation in the frequency
domain

∂2ε̂(x, ω)

∂x2
− γ2(ω)ε̂(x, ω) = 0 (1)

we get the expression (Hillström et al., 2000)

ε̂(x, ω) = c1(ω)eγ(ω)x + c2(ω)e−γ(ω)x, (2)

where ε̂(x, ω) denotes the Fourier transform of the
strain measurements at frequency ω and sensor
location x. In (2), c1(ω) and c2(ω) are complex
valued functions of ω which can be interpreted as
amplitudes of waves at x = 0, going in positive
and negative direction, respectively. Here, γ(ω) is
the wave propagation function, satisfying

γ2(ω) = −
ρω2

E(ω)
. (3)

By identifying γ(ω), the complex modulus E(ω)
is easily determined through (3).

The strains caused by the impact on the bar
are measured at n sections located at x =
[x1, . . . , xn]T . From (2), the system of equations

ε̂(x, ω) = A(x, ω)c(ω), (4)

where

A(x, ω) =







eγ(ω)x1 e−γ(ω)x1

...
...

eγ(ω)xn e−γ(ω)xn






, (5)

c(ω) =
[

c1(ω) c2(ω)
]T

, (6)

ε̂(x, ω) = [ε̂(x1, ω), . . . , ε̂(xn, ω)]T , (7)

can be formed. An estimate of γ(ω) is obtained by
minimizing the loss function

U
(

γ(ω), c(ω)
)

=
∥

∥

ε̂(x, ω) − A(x, ω)c(ω)
∥

∥

2
(8)

with respect to γ(ω) and c(ω). Here, the un-
knowns c1(ω) and c2(ω) act as nuisance param-
eters, giving a total of three unknowns, and the
number of sensors needed for identification must
thus be n ≥ 3. Alternatively, if there exist a free
end at x1 = 0, the boundary condition ε̂1(x1, ω) =
0 can be used as an extra strain measure, reducing
the number of sensors needed by one. Once γ(ω) is
determined, an estimate of the complex modulus
at frequency ω can be obtained through (3).

In (Mahata et al., 2003), an expression for the
covariance matrix for the estimate of the complex
modulus E(ω) is derived, assuming the measure-
ment noise to be white and the SNR large. For
notational simplicity and to stress that the matrix
A(x, ω) implicitly is an analytic function of the
complex modulus, it is from here onwards replaced
by A(eω), where

eω =
[

er(ω) ei(ω)
]T

, (9)

such that

E(ω) = er(ω) + iei(ω). (10)

The covariance matrix can in these notations be
expressed as

E{(êωl
− eωl0)(êωk

− eωk0)
T } =

λ

h(x, ωl)
δl,kI2,

(11)

where λ is the noise variance, δl,k the Kronecker
delta function, and

ωk =











2πk

NT
, 0 ≤ k ≤

N

2
2π(k − N)

NT
,

N

2
≤ k ≤ N

(12)

Further,

h(x, ω) = 2ε̂∗(x, ω)A†∗(eω0)A
∗
r(eω0)P(eω0)

× Ar(eω0)A
†(eω0)ε̂(x, ω)

= 2c∗(ω)A∗
r(eω0)P(eω0)Ar(eω0)c(ω),

(13)

where A†(eω) is the pseudo-inverse of A(eω),
P(eω) the orthogonal projection onto the null
space of A∗(eω), and Ar(eω) is defined as

Ar(eω) =
∂A(eω)

∂er(ω)
. (14)

From (11) we see that the estimate of the complex
modulus at a particular frequency is uncorrelated
with the estimate at any other frequency. We
also see that the estimates of the real and the
imaginary part of E(ω) are uncorrelated at any
given frequency, and that the variances of these
estimates are equal and proportional to 1/h(ω).



Another important aspect of the covariance ma-
trix is that it is implicitly dependent on the sensor
locations x = [x1, . . . , xn]T through A(eω), as can
be seen from equations (5), (13) and (14). The
variance of the estimates is thus influenced by the
choice of sensor locations and the number of sen-
sors n, which in turn means that an optimal choice
of x will improve the accuracy of the estimates.

4. OPTIMAL EXPERIMENT DESIGN

In nonparametric identification, an estimate of
the complex modulus E(ω) is calculated for ev-
ery frequency of interest. As a result, the covari-
ance matrix of the estimates must be evaluated
separately at every such frequency. Naturally, it
is desirable to keep the variance to a minimum
at every given frequency, a task not necessarily
trivial. As it is not possible to consider each fre-
quency individually in the optimization process,
a pertinent scalar measure of the performance is
needed. In this paper, the three scalar criteria

V1(x) =
1

h(x, ωk)
, (15)

V2(x) =
∑

k

1

h2(x, ωk)
, (16)

V3(x) =
∑

k

1

h(x, ωk)
, (17)

are considered and evaluated. Here, V1(x) will
minimize the covariance function at a particular
frequency, while V2(x) and V3(x) by simple math-
ematical relationships are equivalent to minimiz-
ing, respectively, the mean of the determinant or
the mean of the trace of the covariance matrix,
over some frequency range. This frequency range
can be chosen to cover an interval of particular in-
terest, and will comprise all the discrete frequency
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Fig. 2. For n = 3 sensors, criterion V1(x) (a) and
criterion V3(x) (b) are shown as functions
of sensor location x2. Sensors x1 and x3 are
locked to position 0 and 1.98, respectively.
The behavior of criterion V2(x) is similar to
that of V3(x) and is thus omitted.

points, within that interval, at which the complex
modulus are calculated. The argument x of the
criteria will be omitted from here onwards.

In the the theory of optimal experiment design,
treated in (Fedorov, 1972) and (Pukelsheim, 1993)
among others, the criteria V1 and V3 implies A-
optimality, since A-optimality is based on the
average variance of the parameter estimates, i.e.

the trace of the covariance matrix. In the same
way, the criterion V2 implies D-optimality, which
is based on minimizing the determinant of the
covariance matrix. D-optimality is the most com-
mon criterion used in optimal design, since it it is
invariant under re-parameterizations and guaran-
tees that the confidence ellipsoid is kept small.

5. OPTIMIZATION ASPECTS

The three criteria presented in (15)-(17) involves
very hard optimization problems with several lo-
cal minima separated by high peaks, as can be
seen in Fig. 2. It is clear that a global optimiza-
tion algorithm is needed, and in this study an
algorithm based on multilevel coordinate search,
presented in (Huyer and Neumaier, 1999), was
used. Each of these criteria was minimized with
respect to the sensor positions for different num-
ber of sensors n. For implementation aspects, and
in accordance with the work in (Mossberg, 2004),
the following constraints were imposed on the
optimization:

0 + δ1 ≤ xi ≤ L − δ2, i = 1, . . . , n (18)

xi+1 − xi ≥ δ3, i = 1, . . . , n − 1 (19)

Here, δ1 is the minimum distance between a sensor
and the left end of the bar, δ2 the minimum
distance between a sensor and the point of ex-
citation at the right end of the bar, and δ3 the
minimum distance between two sensors. The nu-
merical values chosen in this study were δ1 = 0
and δ2 = δ3 = 0.02 m.

This work is based on the experimental data
obtained in (Hillström et al., 2000), where the
material PMMA (plexiglass) was studied. A rod
of L = 2 m was axially impacted, and strain data
collected at N = 4096 discrete time instances,
with a sampling interval of 20 µs. In the expression
for the covariance matrix in (11) and (13), the true
complex modulus at each frequency is needed.
These values are here replaced by the estimated
complex modulus obtained through (3), where
γ(ω) is the mean of 10 identification experiments,
see (8). In (Hillström et al., 2000) two approaches
to sensor configuration were evaluated. In one
approach the sensors were spaced uniformly on
the rod, so that the distance between any two
sensors was a multiple of 0.2 m. This configuration
was found to have some apparent drawbacks, as
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Fig. 3. 1/h(x, ω) when criterion V1 was mini-
mized for 5 sensors at approximately 3 kHz
(dotted), and 1/h(x, ω) for reference sensor
configuration xref (solid), as a function of
frequency.

the estimate can be expected to be inaccurate
if all sensors are placed so that the distance
between any two sensors, or the distance between
the free left end and the middle sensor if only
three sensors are used, is an integral multiple of
half a wavelength of the frequency, at which the
identification is carried out. In the other approach,
five sensors were unevenly placed on the bar
in order to minimize the risk for such critical
conditions to occur. This configuration, xref =
[0, 0.290, 0.646, 1.078, 1.600]T , has proven to give
a low variance for all frequencies considered in the
identification experiment, and has thus become a
standard configuration in subsequent work. It is
also the configuration used when collecting the
data used in this study, and will be referred to as
the ’reference configuration’ in what follows. The
critical conditions discussed above are important
to keep in mind during the optimizations.

6. INVESTIGATIONS

The way the optimization problem is formulated
allows us to pose a number of questions concerning
the sensor locations and the design of the exper-
iment. Some of these questions will be further
discussed in the examples in this section.

Example 1. Is V1 a good criterion to use? What

happens at other frequencies than ωk, the fre-

quency of minimization?

During the optimizations it was clear that the
surface produced by the criterion V1 is partic-
ularly hard for optimization purposes, and the
optimization algorithm did in many cases not
converge to the global minimum for this criterion.
Furthermore, minimizing the variance at a single
frequency showed a strong tendency to press up
the variance at other frequencies, as can be seen
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Fig. 4. 1/h(x, ω) against frequency for n = 5
sensors for reference sensor placement xref

in (5) (solid), optimal sensor placement by
V2 (dash-dotted), and V3 (dotted). V2 and V3

were minimized in the interval 2 to 8 kHz.

from Fig. 3. The criteria V2 and V3 proved to be
simpler for optimization purposes, even though
summation over a range of frequencies signifi-
cantly increases the computational load. Another
strength of these criteria is that the designer of the
experiment can choose an interval of frequencies,
in which the variance of the estimates should
be kept low. Similarly to V1, both V2 and V3

experience the problem of large inaccuracy in
the estimates for frequencies outside the range
of minimization, but within the chosen interval
the variance is significantly lower than for the
reference sensor configuration xref , see Fig. 4. It
can also be seen that minimizing the criteria V2

and V3 produce a similar result. Within the chosen
interval, neither of these two criteria tolerate large
inaccuracy in the estimates due to the critical
conditions discussed in Section 5. In criterion V1

however, only one single frequency is considered
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Fig. 5. 1/h(x, ω) against frequency for criterion
V1, minimized at approximately 5.2 kHz. Op-
timal sensor placement for n = 3 sensors
(critical sensor configuration for 6.4 kHz, 8.5
kHz, and 11 kHz), (solid), and for n = 4 sen-
sors, (dotted). Observe the logarithmic scale.



Table 1. Minimum values of V1, V2 and V3 and corresponding x for different number
of sensors n. V1 minimized at 3 kHz, and V2 and V3 on the interval I = 2 − 8 kHz.

n x
T Vi(x)

Average 1/h(x, ω) Maximal 1/h(x, ω)
on interval I on interval I

V1

3 [0 1.7238 1.8365] 1.339 1.049 8.846
4 [0 0.0200 1.7364 1.8549] 0.993 0.678 4.444
5 [0 0.0200 0.2056 1.7794 1.7994] 0.736 0.990 4.798
6 [0 0.0200 0.0400 0.1973 1.7889 1.8089] 0.630 0.689 4.860
7 [0 0.0400 0.0600 0.5732 1.7886 1.8086 1.8286] 0.547 0.429 1.661

xref [0 0.2900 0.6460 1.0780 1.6000] 3.729 0.898 3.921

V2

3 [0.0011 1.8449 1.9264] 363.592 0.652 2.939
4 [0 0.0724 1.8073 1.9113] 101.586 0.392 1.219
5 [0 0.0923 0.1861 1.8093 1.9063] 63.364 0.313 1.063
6 [0 0.0200 0.0873 1.7605 1.8412 1.9200] 42.552 0.252 0.812
7 [0 0.0200 0.1000 0.2077 1.7848 1.8635 1.9299] 29.979 0.213 0.729

xref [0 0.2900 0.6460 1.0780 1.6000] 690.143 0.898 3.921

V3

3 [0.0005 1.8399 1.9247] 318.707 0.649 3.083
4 [0 0.0732 1.8145 1.9187] 192.141 0.391 1.278
5 [0 0.0200 0.0908 1.8123 1.9149] 152.680 0.311 1.006
6 [0 0.0200 0.0900 1.7949 1.8941 1.9800] 121.115 0.247 0.869
7 [0 0.0200 0.1000 0.2084 1.8012 1.8955 1.9800] 104.421 0.213 0.805

xref [0 0.2900 0.6460 1.0780 1.6000] 440.924 0.898 3.921

and bad behavior at other frequencies is thus
allowed. The use of more than three sensors sig-
nificantly reduces this problem, as the possibility
of a critical sensor configurations decreases, see
Fig. 5. This should be true for all criteria used.

Example 2. What is the potential to improved

performance compared to the standard configura-

tion xref?

In Table 1 some numerical values for xref are dis-
played together with the corresponding results for
the three criteria considered in this study. From
the table we see that already with three optimally
placed sensors there is a significant decrease of the
function values, compared to the reference config-
uration. For the same number of sensors in the
optimal configuration as in the reference, the de-
crease of function values is even greater. In Table 1
we see that for V1, the function value has gone
from 3.729 to 0.736, corresponding to a decrease
of the variance of the estimates at the frequency
of minimization by 80%. For criterion V2 (and
V3) the related decrease of functional values corre-
sponds to a decrease of 65% (65%) of the average
variance within the interval of minimization or a
decrease of 73% (74%) of the maximal variance
within that interval. These results indicate that
the quality of the estimate of the real and imagi-
nary part of E(ω) can be greatly improved, at one
single frequency or within a range of frequencies,
if an optimal sensor configuration is used.

Example3. What is a good number of sensors to

use?

In Table 1 there is a continuous decrease of func-
tion values and related variances with an increas-
ing number of sensors. The gain from adding one
more sensor is however reduced as more sensors
are added, leaving the designer with the choice

of how many sensors it is reasonable to use. It is
apparent from the table that a great improvement
is achieved for the criteria V2 and V3 when increas-
ing the number of sensors from three to four, but
that more than four sensors give a more moderate
improvement. This can be compared with the
optimal experimental design for the parametric
case studied in (Mossberg, 2004), where a great
improvement was noticed for up to five sensors.
For the criterion V1, there is no such great leap in
function values. One reason for this could be that
these values only depend on the behavior at one
single frequency point and that three sensors are
enough to achieve a reasonably good value at that
point, although using more sensors will improve it
further. As discussed above, it is also preferable to
use more than three sensors to avoid a situation
where the estimation algorithm breaks down for
some frequencies.

Example 4. What effect will changing the con-

straints have on the sensor positions?

If the sensor configurations in Table 1 are studied,
it is apparent that a number of sensors tend to
group as close together as constraint (19) allows,
close to the left end of the bar. For the criterion
V1, the same behavior is also true for the right end.
We therefore examined the optimization problem
without the constraint (19), i.e. δ3 = 0. For
all three criteria, this gave the result that more
sensors were placed at the very left end of the
bar (xi = 0), giving slightly lower values than
those in Table 1. This indicates that, instead of
having an increasing number of sensors, higher
accuracy in the estimates can be achieved by more
accurate measurements at this point. For criteria
V1, sensors also group together towards the right
end of the bar, again indicating that three sensors



are enough to get a good accuracy at one single
frequency point. For implementation aspects, op-
timal sensor configurations when the sensors were
forced further from the ends of the bars than in
the results in Table 1 were also examined (i.e.
δ1 = δ2 > 0.02). The results were similar to
those in Table 1, with sensors grouped together
towards the ends of the bar. For more details, see
(Runqvist et al., 2005).

Example6. Do the optimal sensor configurations

show any characteristic pattern?

From the examples above, and in accordance with
the findings in the parametric case (Mossberg,
2004), it is obvious that it is advantageous to
place sensors close to the point of excitation at
the right end of the bar, and close to the left end.
Furthermore, it is advantageous to make use of a
free end with zero strain at x1 = 0. This behavior
is true for all three criteria.

7. CONCLUSIONS

This paper treats the problem of optimal sensor
locations for estimating the complex modulus of
a viscoelastic material, using longitudinal wave
propagation experiments. The procedure used in
this study also applies to the more general case of
identification experiments, where the covariance
matrix is dependent on the sensor locations. The
number of sensors in the experiment, and their
positions, affect the variance of the estimates,
and results from this study can thus be used to
increase the quality of the estimates in future
experiments. The three design criteria V1, V2 and
V3 in (15)-(17) were studied. The criterion V1

minimizes the variance at one single frequency
point, while the criteria V2 and V3 minimize the
variance over an interval of frequencies, based on
the trace and the determinant of the covariance
matrix, respectively. It was found that minimizing
the variance at a limited number of frequencies
leads to increased variances at frequencies outside
the interval of minimization. This is particularly
bad for V1, while V2 and V3 are less sensitive as
the designer can choose an interval of frequencies,
in which the variance should be kept low. The
criteria V2 and V3 were also found to have a similar
behavior, both in actual sensor placements and in
the behavior inside the interval of minimization.
Furthermore, more than three sensors should be
used. Adding more sensors will continously de-
crease the variances of the estimates, and it is
up to the designer to decide when the cost of
adding one more sensor is not compensated by the
gain. Finally, it is advantageous to place sensors
near the ends of the bar. Moreover, placing more
accurate sensors at critical points of the bar was
found to have an effect similar to that of increasing
the number of sensors.

There are of course other experimental aspects
that influence the accuracy of the estimates. One
example is the input signal to the identification
experiment, and this is a topic for future work.
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