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Abstract: In this paper, a robust scheduling method is suggested in the optimization of batch 
plant with uncertainties considering not only expected value but also variance. Many papers 
treating scenario-based stochastic programming took expected values as objective functions. 
However, the meaning of expected value itself is sum of the probability of each scenario times 
each objective value. It implies nothing but currently calculated biggest value. It doesn’t work 
when unexpected event happens. Therefore it is required to consider an additional criterion. I 
will choose variance and standard deviation of objective function. Copyright © 2005 IFAC 
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1. MOTIVATION 
 

Researches on multiproduct and multipurpose 
batch plants have been carried out for a few decades. 
Because the batch plants have their flexibility of 
processes and they are suitable for high-value-added 
products with short product life cycle. In 
mathematical approaches, there follow several 
assumptions by limitation of formulation and usage of 
solver program. Especially, certain process variables 
are fixed and determined in problem. Although before 
current computers and solver programs are developed 
solving a deterministic problem itself has an impact. 
Recently it is more important that how useful 
solutions are provided in real process. Therefore, a 
deterministic solution has much limitation. Active 
researches for solving with uncertain parameters, 
which is not deterministic but has certain distribution, 
are required in current trends.  

Researches on robust scheduling are performed by 
Pinedo and Weiss (1987), De et al. (1992), Petkov and 

Maranas (1997), Harding and Floudas (1997), Vin 
and Ierapetritou (2001), Subramanian et al. (2001) 
and so on. Pinedo and Weiss (1987), De et al. (1992) 
and Vin and Ierapetritou (2001) suggested a robust 
scheduling method considering expected value and 
variance of uncertain parameters of which 
distributions are known.  

Schmidt and Grossmann (1996) tackled 
optimization of sequence of testing tasks when a 
pharmaceutical company or an agrochemical 
company developed a new product and made several 
samples, which is a representative example of 
stochastic programming problem. Lee et al.(2004) 
scheduled their testing tasks considering retest of the 
most expensive test. Jain and Grossmann (1999) took 
into account resource constraint when several projects 
were simultaneously processed and would make 
influence on other projects. Maravelias and 
Grossmann (2001) solved design and planning of 
same kind of stochastic problem. They formulated 
determinant variables of design and planning steps 



 

 

and solved large size of problem with Lagrangean 
Decomposition method.  

Originally in formulation/solving steps, problems 
including uncertain parameters can be solved only 
when values of the parameters are given. A solution 
obtained by a set of given values of the parameters is 
called ‘wait and see solution’. But this solution only 
is meaningless. So many researchers make use of 
expected value considering all scenarios of possible 
parameters.  

Most previous researches handling scenario based 
stochastic problems took expected value as objective 
function of their problem. However, the meaning of 
expected value itself is sum of the probability of each 
scenario times each objective value. It implies 
nothing but currently calculated biggest value. It 
doesn’t work when unexpected event happens. 
Therefore it is required to consider an additional 
criterion. In the context of scheduling, robustness can 
be defined as a measure of resilience of the 
scheduling objective to change in the face of 
parameter uncertainty and disruptive events. 
Scheduling is performed to satisfy variety of different 
objectives such as makespan minimization or 
maximization of profit or production. The most 
important determinant variable of scheduling problem 
is sequence. Briefly speaking, robust scheduling of 
stochastic problem is taken as to find a sequence that 
minimizes the influences by any events. Next sections 
follow illustrative examples, results and discussion 
for further works carefully. 
 
 

2. ILLUSTRATIVE EXAMPLES 
 
When solving the problem containing uncertain 

parameters we must know the distribution of each 
parameter, which could be obtained by reference or 
experimental data from the past operations. I would 
examine robust scheduling with a simple example 
with the system that manufactures three products of A, 
B and C through 4 equipment units multiproduct 
batch process. Processing times in equipment unit 1 
and 2 are not deterministic due to the characteristics 
of products and process. The processing times are 
assumed to be distributed like Table 1. The number of 
all the scenarios is 846(3×3×4×4×3×2). MILP 
formulation is below. To avoid the confusion between 
‘objective value’ and ‘objective function’ here, I 
would note ‘objective value’ to makespan, cost and 
profit, which is the interesting value. ‘Objective 
function’ would be generally defined to be minimized 
or maximized in the model, like expected makespan 
or something  

Objective function:  
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Ps implies probability and MSs is makespan of 
scenario s respectively. Then, equation (1) is the 
expected makespan based all the scenarios. Equations 
(2a) and (2b) mean the sum of expected value and its 
variance or its standard deviation.  
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Xki is 0-1 variable, which is valued one when product 
k is produced in ith sequence. Product k must be 
processed one of all sequences, which equation (3) 
implies. Equation (4) means that one of the products 
must be processed in each sequence.  
In unit j at ith sequence, the completion time of ith 
product (Cijs) must be greater than the completion 
time of directly previous product (Ci-1,j,s) plus its 
processing time (PTkjs) for each scenario s.  
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In unit j after second, each ith product is processed 
after the task of the previous unit is completed. 
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Makespan is the completion time of the last product.  
 

Table 1. The distribution of processing times 
 

Prod. Unit Processing time / Probability 
1 15/0.4 16/0.1 17/0.5 - 
2 8/0.55 9/0.25 11/0.2 - 
3 11 - - - A 

4 18 - - - 
1 14/0.05 16/0.6 18/0.05 19/0.3
2 8/0.45 10/0.35 13/0.05 15/0.15
3 12 - - - B 

4 9 - - - 
1 15/0.45 17/0.3 20/0.25 - 
2 7/0.4 8/0.6 - - 
3 17 - - - C 

4 7 - - - 
 

When the model has an objective function of 
expected makespan, the best sequence is A, C and B. 
Whereas, robust model found the sequence of B, A 
and C. A representative Gantt chart is shown in Figure 
1. There are three diagrams in Figure 2. Figure 2(a) is 
the result when expected makespan, i.e. equation (1) 
is taken as the objective function. Figure 2(b) 
represents the distribution when equation (2) is used. 



 

 

And Figure 2(c) is built by equation (3) as objective 
function. The distributions of makespans are different 
from each other. 

 

 
(a) Expected makespan 

 
(b) Expected makespan plus variance 

Figure 1. Gantt chart of example 1 
 

In Figure 2, which is the best? Which of the three 
gives more exact answer “when is whole the 
production process over?” or “By when I could 
receive my order?” If Figure 2(a) is called ‘normal’, 
Figure 2(b) could result in ‘lateness’ but could give 
better answer of ‘when’. Figure 2(c) is ‘intermediate’. 
Expected values and variances are represented in 
Table 2. There is a tradeoff between fast completion 
and reliability. That implies which is important 
between the target value and the robustness. So 
alternative objective functions could be recommended.  
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If the value of λ is 0, this function is same with 
equation (1). If λ is larger but smaller than 1, it is 
getting narrower but could be shift to right. If the 
value of λ is smaller but larger than 0, the distribution 
of objective values is declined to shift to left but is 
getting broader. The value of λ depends on decision 
makers. Published papers tackling stochastic 
problems with uncertain parameters almost took only 
expected values of cost or profit etc. as objective 
function. However additional criterion is suggested 
here in order to consider both objective value and its 
robustness.  
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 (b) Expected makespan plus variance 
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 (c) Expected makespan plus standard deviation 
 

Figure 2. Distributions of makespan with different 
objective function, example 1 

 

 

 

Figure 3. Robust schedules of testing tasks 
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(b) heavy robustness  



 

 

 
Now we bring another example which was treated 

by Schmidt and Grossmann(1996) to schedule testing 
tasks that must be passed to develop and issue a new 
pharmaceutical product. The parameter was given in 
Table 2 of their work. The formulation with the 
expected objective value brought the schedule like 
Figure 3(a). However, robust schedule, i.e. the value 
of λ over 0.75, found the schedule like Figure 3(b). 
During the scheduling to be robust, expected cost 
increased about 12.6%. On the other hand, standard 
deviation reduced about 95%. Which is more 
important factor between two criteria? Expected cost 
implies the sum of cost times of probability of each 
scenario. If the project is undergoing so well, all the 
tasks have to be performed. Then the word ‘expected’ 
is not so significant meaning. Instead, simultaneous 
start of all tasks is not so good policy, either. The 
recommended policy is that the longest task is 
undergone first and the others are done before the half.  

 

 
Figure 4. Quantity discount model 

 
Heo et al.(2003) solved an integrated production 

and distribution of a chemical company who operates 
PVC plants in the view point of SCM. In the 
formulation quantity discount model was applied. The 
equations are below and referable figure is in Figure 4.  
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When they purchase the amount of Q, it is includes in 
only one interval of set ‘r’ by the equations 8-11. The 
total profit is given in equation 12.  
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There are three suppliers of ethylene which is raw 

material of PVC, four plants and eleven warehouses 
in Korea. There are two suppliers, two plants and four 
warehouses respectively in China. They assumed that 
all the parameters were deterministic. However, we 
built a scenario of crude oil prices which was 
analyzed by data through last three years and has 
average value of the last year. Figure 5 represents the 
scenario. This scenario cannot provide the exact 
trends of the variable price, but gives the information 
how much probability it has had up to last three years.  
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Figure 5. Scenario of Crude oil  
 

This assumption will be applied when the manager 
has to build a contract of the whole year at the start 
point. The objective value is to maximize sales profit 
minus transportation, inventory and operating cost. 
This robust planning will make the profit, 
transportation and operating cost efficient against 
unexpectedly variable price of the crude oil and 
resources. As a result, ‘robustness’ bring different 
interval of ‘Q’ from plants to warehouses. For 
example, Ulsan plant transport different amount of 
PVC to warehouses under normal and robust planning. 
Refer to Figure 6. Robust planning tells Ulsan plant to 
transport more amounts to Ulsan warehouse to 
prepare for fluctuation of the crude oil price which 
could make an influence of resource, product prices 
and transportation, operation costs.  

 
 

3. DISCUSSION 
 
The application of proposed robust scheduling of 

stochastic programming with uncertainty method to 
other uncertain parameter seems to be reasonable. 
First of all, it is desirable to optimize the sequence of 
testing tasks when a pharmaceutical company or an 
agrochemical company developed a new product and 
made several samples, which were tackled by 
Schmidt and Grossmann (1996), Jain and Grossmann 
(1999) and Maravelias and Grossmann (2001). They 
used objective function with only expected value. 
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Second, the price of crude oil is inclined to 
unexpectedly fluctuate. The proposed policy could 
not tell what the price of next day is, but could make 
the effect minimized. Third, a manager could estimate 
the budget easily due to the robust scheduling and 
preparation   

Treating skill of MINLP problem has much to be 
improved. Although nonlinear terms of example 2 can 
be piecewise linearized, it could be impossible due to 
the characteristics of objective variables. Then, 
Generalized Benders Decomposition method could be 
appropriate.  
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Table 2. The values of objective function and 

metric 
 

Objective type 
Expected 

value 
Variance 

E(MS) 
81.08 11.87 

E(MS) + V(MS) 
83.60 1.18 

E(MS) + σ(MS) 

Example 1

81.85 5.08 

Objective type 
Expected 

value 
Standard 
Deviation 

E(Cost) 
7.31e+5 4.48e+4 

0.5E(Cost) + 0.5σ (Cost) 
7.32e+5 4.39e+4 

0.4E(Cost) + 0.6σ (Cost) 
7.38e+5 3.91e+4 

0.3E(Cost) + 0.7σ (Cost) 
7.63e+5 2.63e+4 

0.25E(MS) + 0.75σ(MS) 

Example 2

8.24e+5 1.80e+3 

Objective type 
Expected 

value 
Standard 
Deviation 

E(Profit) 
7.07e+9 5.86e+8 

E(Profit) - σ (Profit) 
7.07e+9 5.86e+8 

E(Profit) - 5σ (Profit) 
7.06e+9 5.83e+8 

E(Profit) - 8σ (Profit) 

Example 3

7.03e+9 5.79e+8 

 

 
NOMENCLATURES 

 
Indices 
i : ith sequence 



 

 

j : unit 
k : product 
r : discrete point for quantity discount 
s : scenario 
 
Parameters 
λ : weight of robustness 

rC : discrete price for quantity discount 
Ps : probability of scenario s 
PTkjs : processing time of product p in unit j of 

scenario s 

rQ : discrete amount for quantity discount 
 
Variables 

C : cost 
Cijs : completion time of ith product in unit j of 

scenario s 
MSs : makespan of scenario s 
 
 
Q : quantity 
Xki : binary, 1 when product k is processed in ith 

sequence 
Zr : binary, 1 when Qr is in the interval r-1 and r 
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Figure 6. Comparison of Ulsan Plant (stick: robust, line and legend: normal) 


