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Abstract: This paper proposes Kalman filter algorithms, including one-step prediction and
filtering, for non-uniformly sampled multirate systems. The stability and convergence
of the algorithms are analyzed, and their application to fault detection as well as state
estimation in the framework of irregularly sampled data is investigated. Numerical
examples are provided to demonstrate the applicability of the newly proposed algorithms.
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1. INTRODUCTION

Originally developed (Kalman, 1960) in the 1960s,
Kalman filters have demonstrated their significant
power in state estimation, system identification,
adaptive control, signal processing (Haykin, 1996)
and found many industrial applications (Sorenson,
1970). In a chemical engineering process, Kalman
filters are frequently used to estimate unmeasured
variables based on available measurements of other
process variables. There have been numerous variants
of the discrete-time (DT) Kalman filtering algorithms
(Sorenson, 1985). However, most of them are for
single rate systems.

In many industrial processes, variables are sampled
at more than one rate, i.e. multiple rates. Take a
polymer reactor as an example, where the manipulated
variables can be adjusted at relatively fast rates
(Gudi et al.,, 1994), while the measurements of
quality variables, e.g. the composition, and density are
typically obtained after several minutes of analysis.
Furthermore, the sampling is termed as non-uniform,
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if the sampling intervals for each variable are non-
equally spaced, as is typically the case when manual
samples are taken for laboratory analysis.

This paper attempts to develop Kalman filters for non-
uniformly sampled multirate (NUSM) systems. The
development is conducted in a generic framework:
each variable in a physical system is non-uniformly
sampled with multiple rates. This represents a very
general starting point. All other multirate sampling
scenarios are sub-sets of this case.

This paper considers a physical system with multi-
inputs and multi-outputs represented by a continuous-
time (CT) state space model. Moreover, the non-
uniformly sampling technique proposed by Sheng et
al., (2002) is utilized to [lift such a system. Lifting
discretizes a CT system with variables sampled at
different rates, and converts the resulting time-varying
multirate system into a time-invariant single rate
system.

2. PROBLEM FORMULATION

Consider the following CT state space system:



X(t) = Ax(t) + Ba(t) + (1)
y(t) = Cx(t) + Du(t) M

where (i) u(t) € R! and y(t) € R™ are noise-free
inputs and outputs, respectively; (ii) x(¢) € R" is the
state; (iii) ¢ (¢) is a Gaussian distributed white noise
vector with covariance R, i.e. ¢(t) ~ R(0,Ry); and
(iv) A, B, C and D are known system matrices.

2.1 The lifted model for a NUSM system

For t € [kT,kT + T), where T is a frame period,
we collect data non-uniformly from Eqn. 1 as follows:
(Sheng et al., 2002)

e The inputs 0(t) are sampled g times at time
instants: {kT + t1, kT + to, kT + t3,--- kT +
to},where 0 =t <to < --- <ty <T.

e The outputs y(¢) are sampled p times. Moreover,
within the time interval [kT +¢;, kT +t;41), for
i = [1,g], n; (> 0) output samples are taken at
instants: {kT +t}, kT + 2, kT +t}} with
tp <th <t <t < tipgand tyy = T.
Note that p=>9_n;.

For simplicity we assume that (i) the [ inputs and the
disturbances are sampled synchronously; and (ii) the
m outputs may be sampled asynchronously relative to
the inputs.

We construct the lifted vectors for inputs and outputs,
respectively,

[ y(kT 4 t7)
(KT + 1) F(KT + 1)
u(k) = : Y (k) = :
(KT +t,) y(KT +t;)
Ly(kT +t”g)_

In addition, the lifted vector for the disturbance, ¢(k),
is structurally identical to u(k).

The lifted model of Eqn. 1 can be derived as follows
(Sheng et al., 2002):

x(k+ 1) = A x(k) + B (k) + W (k)
(k) =Cx(k) + D a(k) +I o(k) )

where A, B, C, D, J, and W are functions of A, B,

C, D,Z, glditfiviz = 1,---,g. Eqn. 2 preserves
the causality, controllability and observability of Eqn.
1, if the frame period 7" is non-pathological relative to

matrix A (Sheng et al., 2002).

2.2 Statement of Kalman filtering problems

At the time instant k:T—&-tg ,for j = [1,n;], the sampled
outputs are

M(k) =

y(kT +t)) =y(kT +t)) + o(kT +t!)  (3)

where o( ) ~ N(0,R,) is the measurement error,
and independent of the initial state, x(0). However, at
instant kT + t; for i = [1,g], uw(kT + t;) = a(kT +
t;), because the inputs to a plant in a closed loop
system are the controller outputs, which can be known
exactly.

It follows from Eqn. 3 that y (k) = y(k)+o(k), where
y(k) and o(k) have the identical structure to y(k).
Consequently, Eqn. 2 can be rewritten as

x(k+1)=Ax(k)+Bu(k) + Wo(k) 4
y(k) =Cx(k) + Du(k) + J ¢(k) + o(k)
where, o(k) ~ R(0,R;), and Ry = I, ® Ry with I,

being a p X p identity matrix and ® standing for the
Kronecker tensor product.

Given {A,B,C,D,J, W, R, R, } and {u(i), y (i)},
for i € [1,k], the Kalman filters for NUSM sys-
tems should estimate x(k) such that the covariance
of x(k) — %(k|i) is minimized for ¢ = k — 1,k,
where X(k|i) is the estimate of x(k) from data
{u(1),y(1),--- ,u(é),y(?)}. The algorithms serve as
one-step predictor if i = k — 1 or filters if i = k.

3. KALMAN FILTERS FOR NUSM SYSTEMS
3.1 Algorithms for one-step prediction

Let the Kalman filters for one-step prediction have
the following form (Astrom, 1970; Astrom and
Wittenmark, 1997):

%(k+ 1/k) = A %(k|k — 1) + B u(k) + (5)
L(k) [y(k) — C%(k|k — 1) — D u(k)]
where, L(k) is the Kalman gain. Define x(i|i — 1) =
x(i) — %x(i]¢ — 1) as the estimation error vector, for
i =k or k + 1. Then, we can derive from Eqns. 4 and
5 that

x(k+1k) =]

A -L(k)Clx(k[k-1)+  (6)
(W —L(k)J] ¢(k) -

L(k)o(k)
By choosing x(0] — 1) = Ex(0), we arrive at

E [x(k|k — 1)] = 0,V k, where E( ) is the expectation
of the argument.

To develop the Kalman filters, the covariance,
E [x(k|k — D)X/ (k|k — 1)], of x(k|k —
1) must be minimized, where ( )’ stands for the
transpose. Eqn. 6 gives

M(k + 1) = E[x(k + k)X (k + 1|k)] (7
=[A - L(k)C]M(k) [A — L(k)C]'
[ L(k)J] Ry [W — L(k)J]'

J]
L(kR, L'(k)



where the independency among x(k|k — 1), ¢(k), and
o(k) has been considered. It can be proved that M (k+
1) is at least positive semidefinite because M(k), R,
and E¢ are covariance matrices (Haykin, 1996).

0%

Eqn. 7 is the algebraic Ricatti difference equation
(ARDE), and can be further manipulated into

M(k+1)=AM(k)A + WR,W' — (8)
(AM(k)C'+WR,J)H
(AM(K)C' + WR, T) +
[L(k) — (AM(K)C' +WR,J)e

) —
~H(k)[H(k) o [L(K) —

(AM(K)C'+ W R, J')H ' (k)]
where, H(k) = CM(k)C'+J R, J'+R is positive

definite. Eqn. 8 achieves its minimum

M(k+1)=AM(k)A + WR,W' —
(AM(KC +WR,J)H '(k)e
(AM(KC' +WR, ) )

if and only if (Astrom, 1970)

AM
AM

L(k) = (AM(k)C' + WR, J)H (k) (10)

At last, we define

y(klk =1)=y(k)

as the innovation vector, where y(k|k — 1) =
Cx(Kk|k — 1) + D u(k) is the prediction of y (k). The
innovation is a white noise vector as proved, e.g. in
Haykin (1996), with covariance Cov[y(k|k — 1)] =
H(k).

— Y (klk—1) (11)

Eqns. 5, 9, 10, and 11 construct the Kalman filers for
one-step prediction given a system described by Eqn.
4 and initial conditions x(0|] — 1) = E[x(0)]. The
estimated states X(k|k — 1) are unbiased.

3.2 Stability and convergence analysis

Manipulating Eqn. 7 yields
M(k +1)=[A ~ L(k)C] M(k) [A — L(k)C]' +
W, (k)R,W/, (k) + L(k)R,L' (k)

where W, (k) = W (k) — L(k)J. With M(0) > 0
assume that (i) the pair {A, C} is detectable; and (ii)
there exists no unreachable mode of {A, W (k)ﬂ;/ %)

(B(lb/ 23(1/ - B¢) on the unit circle. By extending
the stability analysis in (Souza et al., 1986), it can
be proved that the ARDE has a unique stabilizing
solution M(k) (poles of A—L(k)C are within the sta-
bility boundary), and M(k) converges exponentially
to M(c0).

3.3 Algorithms for filtering

In a plant, the state variables usually represent the
controlled variables (CVs). To ensure that the CVs are
manipulated around their desired values in a closed-
loop control system, precise measurements of the
CVs are needed. However the CVs are either not
always measurable or noisy in practice. If this is the
case, the Kalman filtering algorithms can be used to
provide accurate estimates of the CVs, i.e. x(k|k)

from {u(1),y(1),--- ,u(k),y(k)}.

x(k|k) is the least mean-square (LMS) projection
of x(k) onto the space spanned by data matrix
(Haykin, 1996), Z, ;. = [z(1) - - - z(k)], i.e. x(k|k) =
(k|z .)» where z(i) = y(i) — D u(i), for i =
k According to (Haykin, 1996), V k, we can
have the decomposition, Z,.,, = Z;.;,_, ®y(klk—1),
where Z;.;_; is similar to Z.,, and & indicates the
direct sum of two spaces. As a result,

X (k[k)

x(klz,, ,)+*x(klg@k-1))
= (bl — 1) + N(k)y(klk — 1) (12)

where X(klk — 1) = X(klz,, ). X(klg@r-1)) =
N(k) y(k|k — 1) is the LMS projection of x(k) onto
y(k|k — 1), and N(k) is a gain matrix.

The substitution of Eqn. 11 into Eqn. 12 leads to
X(klk) = x(k|k—=1)+N(k){C [x(k) — X(k[k — 1)]+
J ¢(k) + o(k)}, from which the estimation error can
be obtained as

X(k|k) = [I - N(k)C] x(k[k — 1) —
N(k) [I(k) + o(k)] (13)
Note that E[x(k|k)] = 0. Thus the covariance
of x(k|k) is Cov[x(k|k)] = E[X(k[k)X'(k|k)] =
I - N(k)C]M(k) [I - N(k)C]' + N(k)(J Ryd' +

R,)N'(k). Minimizing Cov[x(k|k)] leads to

N(k) = M(k)C' H' (k) (14)

which in turn results in Cov [x(k|k)] = M(k) —
M(k)C'H ™' (k)C M(k). Finally, with % (k|k),

3 (k[k) = Cx(k[k) + D u(k) (15)
The one-step prediction algorithms plus Eqns. 12, 14,
and 15 constitute the Kalman filtering algorithms.

4. APPLICATION OF KALMAN FILTERS FOR
FAULT DETECTION

Since the pioneering work of Mehra and Peschon
(1971), Kalman filters have been applied to fault
detection and isolation (FDI) in single rate systems. A
survey of this area has been provided by Frank (1990)



and the most recent work has been reported by Keller
(1999).

Recently, research attention has been diverted to FDI
in uniformly sampled multirate systems (Fadali and
Shabaik, 2002; Zhang et al., 2002). In addition, FDI
in NUSM systems has also been considered (Li and
Shah, 2004; Li et al., 2005) by extending the Chow-
Willsky scheme (Chow and Willsky, 1984). We next
investigate the use of Kalman filters for FDI in NUSM
systems. For simplicity, we only consider the detection
of faults in output sensors. Nevertheless, the scheme
of fault detection to be proposed later can be readily
extended to actuator and additive process faults.

The measured outputs with sensor faults, for j =
[1, n;], can be represented by

y(kT 4+ t]) = y* (KT + t]) + £,(kT +t}) (16)

where y* (KT +1]) is the fault-free value, and f, (KT +

tf ) is the fault magnitude vector with zero and non-
zero elements.

Given data: {u(kT + t;)} and {y(kT + t})}, for
i=[1,9],5=[1,n],and k = [1,2,---), the purpose
of sensor fault detection is to indicate if f, (kT +t]) is
non-zero.

We define a lifted vector:

yk) =y

where y (k) and f, (k) are structurally similar to y (k).
Substituting Eqn. 17 into Eqn. 4 produces

(k) + £, (k) (17)

x(k+1)=Ax(k) + Bu(k) + W ¢(k)
y(k)=Cx(k) + Du(k) +J ¢(k) + o(k) +
£, (k) (18)

We use the developed one-step prediction algorithms,
ie.,

%(k+1|k) = A x(k|k — 1) + Bu(k) +
Ly(klk—1)
y(k|k — 1) = Cx(k|k — 1) + D u(k)

y(klk—1)=y(k)

to generate a primary residual vector (PRV) for fault
detection, where L is the steady value of L(k).
Combining Eqn. 18 and Eqn. 19 further results in

—y(klk—1) (19)

(k4 1)k) = A x(klk — 1) + Bu(k) +

Ly(klk - 1)
Cx(k[k = 1) + I ¢(k) +
o (F

Subtracting Eqn. 18 by Eqn. 20 gives

y(klk =1)= ofk) +

(20)

\ )
=

%(k+1lk) = (A~ L O) x )
(W —-LJ)¢(k) — Lo(k) (21)

It follows from Eqn. 21 that

x(klk — 1) = *(k|k —1) -

[

(A-LC)*"'Lf,(i) (22)
1=0

where x*(klk — 1) = (A—LC)*x(0] — 1) +
S (A-LO)* ' [(W—LJ) (i) - Lo(i)] is
the fault-free value of x(k|k — 1), while the second
term on the RHS is the fault-contributed value.

If we substitute Eqn. 22 into Eqn. 20 and then define
e(k) = y(k|k — 1) as the PRV for fault detection,
we are led to e(k) = e*(k) + ef(k). In e(k),
e*(k) = Cx*(k|k — 1) + J ¢(k) + o(k) is the
fault-free value. It is a Gaussian distributed white
noise vector with covariance R.(k) = H(k), while
(k) = —CX ) (A-LC)" ' £,(i) +£,(k)
is the fault-contributed value.

In the absence of sensor fault, e(k) = e*(k) ~
N [0, R.(k)]. However, in the presence of any faults,
e(k) ~ XN[e/(k),Re(k)]. Therefore, the main
objective in fault detection is to test if the PRV
is zero-mean. One can define a scalar fy(k) =
€' (k)R !(k)e(k), which follows a (non-central) chi-
square distribution with mp degrees of freedom in the
normal (faulty) case (Basseville and Nikiforov, 1993).
Given a threshold, X%(mp) for fq(k), where (3 is a
level of significance; fa(k) < x3(mp) indicates the
absence of fault and f4(k) > x3(mp) triggers sensor
fault alarms.

5. NUMERICAL EXAMPLES

A quadruple tank system described in (Ge and Fang,
1988) is used as a test bed to justify the correctness
and effectiveness of the proposed Kalman filters in
a NUSM scenario. In Example 1, the Kalman filter-
based scheme is applied for sensor fault detection.
In Example 2, the Kalman filtering algorithms are
applied for estimation of the state variables in the
system. Physically the state variables are levels of the
tanks. The tank system is depicted in Figure 1, where
four identical tanks are serially connected by outlets
that have identical cross sectional areas. The model of
the tank system, linearized at a steady operating point,
can be described by (Ge and Fang, 1988):

x(t) = Ax(t) + Ba(t) + ¢(t)
y(t) =Cx(1) (23)
where the input, @(t), is the controlled water flowing

into Tank 1; x(t) is the state variable vector whose
th element, x;(t), represents the level of the i” tank,



water flowing in Tank 1

* i)
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Fig. 1. Schematic of a quadruple tank system

fori = 1---4; y(t) is the output vector; and ¢(t)
accounts for the linearization and modelling errors. It
is assumed that ¢(t) is a Gaussian-distributed white
noise vector with covariance Ry = 0.1%1,. The
values of {A, B, C} are not reproduced due to space
limitation.

The noise-free input to the tank system is simulated
by (Ge and Fang, 1988) a(t) = 200901 4+
0.36sint] cm®/minute., where t is in the unit of
minute. A frame period 7' = 0.5 minute is selected.
For k = [0,1,---), within the period [kT, kT + T,
we sample 4(t) att = kT and t = kT +0.2; and y (¢)
att = kT and t = kT + 0.3, respectively. Thus, the
lifted input and output vectors are

a(k) = [@ (kT) @ (kT +0.2)] € ®*
y(k)= [ (kT) y' (kT +0.3)]" € ®®.

The lifted model of Eqn. 23 can be represented by
Eqn. 2.

A white noise, o( ) ~ R(0,Ryg) with Ry = 41y, is
introduced at the outputs, y( ). However, the exact
value of (k) is supposed to be known, i.e. u(k) =
which are not presented due to the lack of space in
this paper, we calculate steady-state values of L(k)
by means of the one step prediction algorithms after
100 iterations. In addition, the covariance, R.(k) =
C M(k) C', of y(k|k — 1) with & = 100 is also
calculated. B

In the fault-free case, given 5 = 0.01, the confidence
limit for fy(k) is X3 o1 (8) = 20.090. It must be noted
that in the fault detection results to be shown later,
all the fault detection indices are scaled to have a unit
confidence limit.

5.1 Example 1, sensor fault detection

Fault detection results in two cases are presented next.
In each case, a fault is introduced in one of the four
output sensors at any time.

Case 1. The CT function, 0.01(t — t;) with t > t¢, is
employed to simulate an incipient fault, which is then
sampled in the same way as y(t) is. Assume that the

first output sensor begins to be faulty at ty = 473 *
T = 236.5 minutes, we construct f, (k) and have
y(k) = y*(k) + £,(k). The fault detection results
are depicted in the first subplot of Figure 2, where in
the x-axis each sample represents one frame period of
0.5 minute. In addition, Fd is the scaled fault detection
index. It can be seen that Fd is beyond its confidence
limit, 1, after the occurrence of the fault, indicating
successful fault detection.

Case 2. A bias fault with magnitude 10 is intro-
duced in one output sensor at ty = 801 * 0.5 =
400.5 minutes. The fault detection results are dis-
played in the second subplot of Figure 2, where the
fault is detected promptly after it occurs.

Yoo I, R
We define 77/, = ‘oana i

2, Iy B
signal ratio, to measure the sensitivity of the proposed
fault detection scheme. Note that || || stands for the
norm of a vector, and Ny (= 2000) is the total frame
period of used data. In Cases 1 and 2, r¢,, = 2.62%
and 77/, = 4.81%, respectively. This demonstrates
that the sensitivity of the proposed fault detection
scheme is satisfactory with respect to any sensor
faults.

%, as the fault-to-

5.2 Example 2, estimation of the state variables

We use Eqn. 4 to generate simulation data with initial
states x(0) = [1 1 1 1]. A set of data within 2000
frame periods is collected for states estimation. The
exact states (the first column), the estimate (the second
column), and the estimation errors (the third column)
are depicted in Figure 3, where the i*" subplot in each
column corresponds to the i* element of the shown
vector.

We define r,,/s = Z,ICV:“l H;Eg”% to quantify the

corruption O}i noise in the lifted output vectors, and

D RkIR) |
Pafe = S0 (o]
errors of the states. In this example, with Ny =
2000, we obtain 7,,/, = 14.1% and p,,z = 0.52%,
indicating that the developed Kalman filters work well
with noisy data.

% to quantify the estimation

6. CONCLUSION

Kalman filters for NUSM systems have been proposed
and applied to two numerical examples. Example 1
justifies the effectiveness of the one-step prediction
algorithms in fault detection. Furthermore, Example
2 shows the power of the filtering algorithms in
estimating the state variables from highly noisy
measurements.



Detection of an incipient fault in the first output sensor
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Fig. 2. Fault detection results in Example 1
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Fig. 3. State estimation results in Example 2
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