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Abstract: In many processes, variables which indicate product quality are irreg-
ularly sampled. Often, the inter-sample behavior of these quality variables can
be inferred from manipulated variables (MV) and other process variables which
are measured frequently. When the quality variables are irregularly sampled,
Maximum Likelihood Estimation (MLE) can be performed using the Expectation
Maximization (EM) approach. The initial model required for the EM algorithm
can be obtained using a realization-based subspace identification technique. We
describe such a model identification method and present its application on simu-
lation and industrial case studies. Copyright c©2005 IFAC
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1. INTRODUCTION

In many applications outputs, such as composi-
tion, molecular weight or a product quality vari-
able, may not be available as frequently as would
be desired for satisfactory closed-loop control. The
relationship used to predict quality variables from
other process variables is called an inferential sen-
sor. For a number of such applications, it might
be possible to identify dynamic models and design
state estimators.

Traditional system identification techniques for
sampled-data systems with uniformly spaced sam-
pling intervals include MLE, the closely related
Prediction Error Methods (PEM), Instrumental
Variable Techniques (Ljung, 1999) and Subspace
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Identification (VanOverschee and DeMoor, 1996).
MLE has been popular because of its theoretical
optimality properties and well researched practi-
cal issues such as variance and bias distributions.
However, MLE suffers from a number of practical
problems. In general, MLE may involve solving a
non-convex optimization problem. This is gener-
ally tackled using a gradient-based iterative search
strategy, which can suffer from serious numerical
issues when a canonical state-space parameteri-
zation is chosen (Deistler, 2000). Subspace Iden-
tification avoids these parameterization problems
and identifies models in an arbitrary state-space
basis (VanOverschee and DeMoor, 1996). However
many statistical properties of these techniques
have not yet been established.

In many processes, we can distinguish three
classes of measurements; inputs manipulated at a
fast-rate (e.g., control-valves), outputs measured
at a fast-rate (e.g., temperatures) and outputs
measured at a slow rate (e.g., compositions). Pro-



cesses with differing sample rates are known as
multirate processes and model identification for
such processes is of great practical interest to the
process industry. We call the fastest sample rate
the base sample rate and unavailable data points
in the slow measurements, missing data.

The problem of identifying optimal models with
some irregularly sampled variables has been stud-
ied using the EM approach (Dempster et al., 1977;
Shumway and Stoffer, 1982; Ninness and Gibson,
2002). The traditional gradient-based MLE algo-
rithm has been implemented by Isaksson (1993)
with the observed data likelihood function calcu-
lated using a modified form of the Kalman filter
(Ansley and Kohn, 1983) to account for missing
observations and it is shown that the presence of
missing-data can aggravate the numerical prob-
lems faced by these techniques resulting in slow
convergence. While the work in Isaksson (1993) is
restricted to ARX models, we present the missing-
data identification problem for state-space mod-
els. In Ninness and Gibson (2002), state-space
identification using the EM approach has been
addressed, but the missing-data case has not been
considered. Shumway and Stoffer (1982, 2000) and
Tanaka and Katayama (1990) use the EM algo-
rithm for state-space identification for time series
with missing-data. However, they assume that the
state-output transformation matrix is known and
give no guidelines on choosing the parameters for
the initial model which is an important step in the
MLE procedure.

In this paper, we perform state-space model iden-
tification from data which has irregularly sam-
pled outputs. We use a realization-based subspace
identification technique to obtain an initial model
(Kung, 1978) which is then used in the EM al-
gorithm. Expressions for the state-space matrices
obtained in the Maximization step, in the presence
of irregular observations, are provided. The rest
of this paper is organized as follows. In Sec. 2, we
present the problem description. We present the
gradient-based MLE procedure in Sec. 3.1 and the
EM-based state-space model identification proce-
dure in Sec. 3.2. The initial model identification
procedure is described in Sec. 3.3. Expressions for
the model parameters at the end of each iteration
and the modifications in the case of irregular out-
put measurements are provided in Sec. 3.4 and
illustrative case studies are provided in Sec. 4.

2. PROBLEM DESCRIPTION

2.1 Model Structure and Assumptions

Let us assume that the process is represented by
the following discrete-time state-space model:

xt = Axt−1 + But−1 + wt

yt = Cxt + vt (1)

xt ∈ Rn is the state vector, ut ∈ Rm is
the manipulated input, yt ∈ Rp is the out-
put, and wt ∈ Rn and vt ∈ Rp are the state
and measurement noise vectors. Assume that
x0 ∼ N(µ0,Σ0),wt ∼ N(0,Rw),vt ∼ N(0,Rv).
For simplicity, E

(
vtwT

t

)
= 0, E

(
x0wT

t

)
=

0 and E
(
x0vT

t

)
= 0. The outputs are clas-

sified into fast-sampled outputs (y1 ∈ Rp1)
and slow-sampled outputs (y2 ∈ Rp2). yt =
[yT

1,t yT
2,t]

T ,C = [CT
1 CT

2 ]T and vt = [vT
1,t vT

2,t]
T .

We assume that the fast-sample interval (Ts1) is
fixed, the slow-sample interval (Ts2) is variable
and the slow-sample interval is an integral mul-
tiple of the fast-sample interval. We assume that,
E

(
v1,tvT

2,t

)
= 0. We define, Ys ≡ {y1, . . . ,ys},

Us ≡ {u1, . . . ,us} and Zs ≡ {Ys,Us}. We define
the conditional expectations, xs

t = E(xt|Zs) and
Ps

t1,t2 = E((xt1 −xs
t1)(xt2 −xs

t2)
T |Zs). For conve-

nience, Ps
t,t is written as Ps

t . We are interested in
optimally estimating the model parameters Θ̂ ≡
(µ0,Σ0,A,B,C1,C2,Rw,Rv1,Rv2) using all the
available samples in the identification data set.
The data comprises N samples of u and y1 and
No unequally spaced samples of y2, No ≤ N .

3. EM-BASED STATE SPACE MODEL
IDENTIFICATION

MLE-based algorithms are usually implemented
using gradient-based numerical optimization tech-
niques. EM was developed for MLE from data
sets with missing observations. It can also be used
for state-space model identification. We briefly
summarize these techniques.

3.1 Maximization of the likelihood function

The parameters in Eq. 1 can be estimated by
maximizing the likelihood function of the observed
data (ZN ≡ {YN ,UN}), which is written in terms
of one-step-ahead prediction errors:

εt ≡ yt − E (yt|Zt−1) = yt −Cxt−1
t (2)

εt ∼ N(0,Σt), Σt = CPt−1
t CT + Rv

The innovations form of the likelihood function
(Schweppe, 1965) can be written as:

L(Θ|ZN ) =
N∏

t=1

1
(2π)

p
2 |Σt| 12

exp
(−εT

t Σ−1
t εt

2

)
(3)

|Σt| refers to the determinant of the matrix Σt.
The quantities xt−1

t and Pt−1
t are calculated

using the Kalman filter recursions. These, and
the Kalman smoother recursions required for the



EM algorithm can be derived along the lines of
Shumway and Stoffer (2000) and are not provided
here due to space constraints. Due to the mono-
tonicity of the log function, MLE can be per-
formed by minimizing the negative log-likelihood
function. Due to the non-convexity of this prob-
lem, numerical techniques are used (Gupta and
Mehra, 1974). In order to account for missing
data, the observed data likelihood function can be
calculated using a modified Kalman filter (Ansley
and Kohn, 1983). However, these techniques suf-
fer from a number of problems. The likelihood
function need not increase from iteration to it-
eration (Gupta and Mehra, 1974). On the other
hand, in the EM algorithm the likelihood always
increases and convergence to a stationary point
is guaranteed (Wu, 1983). Isaksson (1993) shows
some surprising results through simulations which
indicate that the EM can be much faster than the
gradient-based techniques when there is a signifi-
cant amount of missing data.

3.2 EM algorithm

The EM algorithm is a simple and efficient al-
ternative for MLE from incomplete data records.
Denote the observed data set as ZN and the unob-
served data set as XN . Assume that the complete
data set consists of both ZN and XN . The distri-
bution of the complete data can be factored as,

fzx(ZN ,XN |Θ) = fz(ZN |Θ)fx(XN |ZN ,Θ) (4)

Hence, the log-likelihood can be decomposed as,

`(Θ|ZN ,XN ) = `(Θ|ZN ) + log fx(XN |ZN ,Θ)(5)

This can be rewritten as,

`(Θ|ZN ) = `(Θ|ZN ,XN )− log fx(XN |ZN ,Θ)(6)

Consider the expected value of Eq. 6 conditioned
on the observed data ZN , and an estimate of the
parameters, Θ′.

`(Θ|ZN ) = Q(Θ|Θ′)−H(Θ|Θ′) (7)

where,

Q(Θ|Θ′)≡ E (log fzx(ZN ,XN |Θ)|ZN ,Θ′)

H(Θ|Θ′) ≡ E (log fx(XN |ZN ,Θ)|ZN ,Θ′) (8)

Theorem 1. The EM algorithm increases `(Θ|ZN )
at each iteration, i.e.,

`(Θk|ZN ) ≥ `(Θk−1|ZN ) (9)

Proof : This theorem is a key result of Dempster
et al. (1977). Consider a sequence of iterates,
`(Θ0), `(Θ1), . . ., where `(Θk) = M(`(Θk−1)) for

some function M( ). The difference in the values
of `(Θ|ZN ) at successive iterates is,

`(Θk|ZN )− `(Θk−1|ZN )

= [Q(Θk|Θk−1)−Q(Θk−1|Θk−1)]

−[H(Θk|Θk−1)−H(Θk−1|Θk−1)] (10)

The EM algorithm chooses Θk to maximize
Q(Θ|Θk−1). Hence, the first part of the RHS of
Eq. 10 is positive. For the second part, we have the
following result which is established using Jensen’s
inequality (Rao, 2001).

H(Θ|Θk−1) ≤ H(Θk−1|Θk−1) (11)

In effect, the EM procedure reduces to finding the
expected value of the Q-function at each iteration
conditioned on all the available data and the esti-
mated parameters from the previous iteration, fol-
lowed by a multivariate regression. From an appli-
cation point-of-view, the convergence can be mon-
itored by calculating the negative-log-likelihood
(NLL) function.

The EM algorithm can be summarized as follows:
Start with an initial estimate of the parameter
vector, Θ0 and carry out the following steps at
each iteration, k, until convergence:

• Expectation (E-step): Find the expected
value of the complete data log likelihood
function(Q-function) given the observed data
set, ZN and the previously estimated param-
eter vector, Θk−1. This conditional expecta-
tion is obtained using Kalman smoothers.

• Maximization (M-step): Maximize the Q-
function with respect to the parameter vec-
tor. Expressions for calculating these param-
eters are provided in Sec. 3.4.

The above steps ensure that the NLL function
decreases at every iteration. Therefore, the EM
algorithm is guaranteed to converge to a local
minimum of the likelihood function.

3.3 Identification of the initial model

We now present a realization-based subspace iden-
tification technique (Kung, 1978) which can be
used to identify the initial model. Let us represent
the process described in Eq. 1 as a multivariate
FIR model:

yt,a =
m∑

b=0

2s−1∑
c=0

habcut−c,b + νt,a, ∀ a = 1, . . . , p (12)

where, ν represents an arbitrary noise process.
The impulse response coefficients in Eq. 12 can
be estimated even in the presence of some miss-
ing observations. Following the estimation of the



impulse response coefficients ĥabc we can form
a set of matrices of the impulse response coef-
ficients, Ĥr ∈ Rp×m corresponding to the lags
r = 0, . . . , 2s − 1. Using the matrices Ĥr we can
form a Hankel matrix Ĥ as shown below:

Ĥ =




Ĥ1 Ĥ2 · · · Ĥs

Ĥ2 Ĥ3 · · · Ĥs+1

...
...

. . .
...

Ĥs Ĥs+1 · · · Ĥ2s−1


 ∈ Rps×ms (13)

The matrix H can be factorized as, H = ΓsΩs,
where Γs is the extended observability matrix
and Ωs is the extended controllability matrix.
Estimates of these matrices can be obtained by
performing a singular value decomposition of Ĥ.

Ĥ = Q̂ŜV̂T =
[
Q̂s Q̂n

] [
Ŝs 0
0 0

] [
V̂T

s

V̂T
n

]

Γ̂s = Q̂sŜ
1
2
s , Ω̂s = Ŝ

1
2
s V̂T

s .

We can choose the appropriate system order by
looking at a plot of the singular values. The B̂ and
Ĉ matrices can be read out from the first block
column of Ω̂s and the first block row of Γ̂s respec-
tively. Â can be estimated from the shift invariant
structure of either Γ̂s or Ω̂s (VanOverschee and
DeMoor, 1996).

Remark: Using an FIR model structure for the
initial model restricts it to the output-error class
of models. Hence the identification result yields
only the deterministic sub-system. In order to
include stochastic dynamics, it is necessary to fit
a pre-whitening filter to the irregularly spaced
residuals using the EM algorithm.

3.4 Expressions for new model parameters in the
M-step

The new model parameters at the end of each
iteration are obtained by solving the optimization
problem in the M-step, which can be written as:
Θk = arg min

Θ
{−2Q(Θ,Θk−1)} =

arg min
Θ

[log |Σ0|+ N log |Rw|+ N log |Rv| +

tr{Σ−1
0

(
PN

0 + (xN
0 − µ0)(x

N
0 − µ0)

T
)}+

tr{R−1
w (β1−β2[A|B]T−[A|B]βT

2 +[A|B]β3[A|B]T )}
+tr{R−1

v

(
β4 − β5CT −CβT

5 + Cβ1CT
)}]

β1 to β5 are functions of the observed data and
smoothed estimates. β1 =

∑N
t=1(P

N
t + xN

t (xN
t )T )

β2 =

[
N∑

t=1

(PN
t,t−1 + xN

t (xN
t−1)

T )
N∑

t=1

(xN
t uT

t−1)

]

β3 =




N∑
t=1

(PN
t−1 + xN

t−1(x
N
t−1)

T )
N∑

t=1

(xN
t−1u

T
t−1)

N∑
t=1

(xN
t−1u

T
t−1)

T
N∑

t=1

ut−1uT
t−1




β4 =
∑N

t=1(ytyT
t ) β5 =

∑N
t=1(yt(xN

t )T ).

The solution we obtain by setting the first deriva-
tives of −2Q(Θ,Θk−1) to zero is given by:

µ0 = xN
0 ,Σ0 = PN

0 , [A | B] = β2β
−1
3 ,

C = β5β
−1
1 ,Rw = 1

N (β1 − β2β
−1
3 βT

2 ),
Rv = 1

N (β4 − β5β
−1
1 βT

5 ).

Expressions for the missing-data case: In-
stead of the standard Kalman filter expressions,
the E-step involves the Kalman smoother which
uses the missing-data Kalman filter (Ansley and
Kohn, 1983). Also, the expressions for estimating
the C and Rv matrices in the M-step change.
Assume that there are Nm instances in which y2

is not measured and No = N − Nm observations
in which y2 is measured. The term involving the
C and Rv matrices can be written as:

E
(
(yt −Cxt)T R−1

v (yt −Cxt)|{Yobs
N ,UN},Θk−1

)

= N log |Rv| + tr{R−1
v (∆1 − C∆2 − ∆T

2 CT +
C∆3CT )}, where yobs

t = Dtyt, Dt = Ip if y2,t

is measured and Dt = [Ip1 0] if y2,t is missing
where, Ip and Ip1 refer to the p × p and p1 × p1

identity matrices respectively and,

∆1 =




N∑
t=1

y1,tyT
1,t

∑

No

y1,tyT
2,t

∑

No

y2,tyT
1,t

∑

No

y2,tyT
2,t + NmRk−1

v2




∆2 =

[
N∑

t=1

xN
t yT

1,t

∑

No

xN
t yT

2,t

]

∆3 =




N∑
t=1

PN
t + xN

t (xN
t )T

∑

No

PN
t + xN

t (xN
t )T

∑

No

PN
t + xN

t (xN
t )T

∑

No

PN
t + xN

t (xN
t )T


,

where Rk−1
v2 refers to the value of Rv2 at the

previous iteration. Notice that some of these terms
involve summations over No observations. The
expressions for the C and Rv matrices become,
C = ∆T

2 ∆−1
3 , Rv = 1

N (∆1 −∆T
2 ∆−1

3 ∆2).

4. ILLUSTRATIVE APPLICATIONS

4.1 Simulated Case-study: 3rd order underdamped
system

In this example, we use the proposed EM-based
strategy for identifying an underdamped system
in the presence of missing data. The simulated
system is defined by the state-space matrices:

A =




0.3688 0.4767 0.0114
−0.5976 0.6095 −0.5408
−0.0156 −0.0686 0.0422


 B =




0.34
0.56
0.78




C =
[

0.5 0.3 0.1
1.2 0.96 1.5

]
Rv =

[
0.0398 0

0 0.0398

]

Rw =




0.0407 0.0001 0.0015
0.0001 0.0407 −0.0020
0.0015 −0.0020 0.0428



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The system is excited using N = 5000 samples
of a random binary input signal. To simulate ir-
regular sampling, samples of y2 at instants which
are multiples of 3 and 5 were dropped. Hence
2333 samples out of the 5000 samples of y2 were
dropped. The FIR model was identified with 20
FIR coefficients. The singular value plot was used
for selecting the order of the initial model (Fig. 1).
Following this, the EM-algorithm was applied and
the NLL function was displayed for monitoring
convergence (Fig. 2). A comparison of the step
responses of the true system and the identified
model (Fig. 3) shows that the identified model
is close to the true system. In addition, a plot
showing a small portion of the true output val-
ues, measured observations and the Kalman filter
predictions is given in Fig. 4.
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4.2 Industrial Case-study: Bleaching unit in a
BCTMP mill
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Fig. 5. Simplified flow sheet of Mechanical Pulp
mill
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Fig. 6. Distribution of the output sampling inter-
vals

We present the results of an industrial application
of the proposed identification strategy. In this
application, model identification was performed
for the bleaching operation of a Bleached-Chemi
Thermo-Mechanical Pulp process at Millar West-
ern, Whitecourt, AB, Canada. The unit consists of
2 towers, has 4 MV’s and 2 disturbances. We show
the results for one of the output variables, the
pulp brightness. A simplified process schematic
is presented in Fig. 5. The MV’s were chemical
add-rates to the two towers, sampled every 10
minutes. The process has plug-flow characteris-
tics. Forward path dynamics can be captured by
low-order delay dominant models, with significant
chemical recycle. The recycle effect can be taken
into account using input terms lagged by the
delay in the loop. The distribution of the out-
put sampling intervals (Fig. 6) shows significant



variation in the sample times between consecutive
samples, i.e. the outputs are irregularly sampled.
We had to use routine operating data for model
identification because plant tests could not be eco-
nomically justified. However, it was feasible to use
operating data in this case, because it contained
enough excitation. The models obtained have to
conform to a priori process knowledge which can
be summarized as, fast forward-path dynamics,
significant recycle and positive gains. The pre-
dictions from the proposed identification strategy
are shown in Fig. 7 where the output values have
been re-scaled for confidentiality reasons, and the
corresponding step responses are shown in Fig. 8.
The correlation coefficient (CC) between the pre-
dicted and measured values is 0.984 and the root-
mean-squared error (RMSE) value is 0.87. The
predictions are good. More importantly, the step
responses conform to our qualitative knowledge
about the process dynamics.
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Fig. 7. Brightness predictions using EM-based
strategy

5. CONCLUSIONS

An EM-based strategy for identification of pro-
cesses with irregularly sampled outputs has been
presented. The initial model required for the
EM algorithm is obtained from FIR coefficients
through an SVD procedure. Applications of the
proposed approach to simulation and industrial
case-studies have been presented and these show
that the EM-based identification strategy is useful
for data-based identification of state-space models
even when output observations are missing, at
regular or irregular intervals.
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Fig. 8. Step responses using EM-based strategy
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