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Abstract: In conventional internal combustion engines, the periodic fuel combustion in 
cylinders and oscillating masses result in pulsating engine torque. In hybrid powertrains, 
the electrical motor can be used to control such pulsations. The main originality of this 
paper is to present an efficient harmonic controller synchronized with the engine speed: 
the feedback law controls the Fourier parameters of the command. For time-variation of 
the engine speed, the adaptation of the harmonic controller ensures the convergence of 
the command. Conditions of stability are given, and the robustness of the approach is 
presented. Simulation shows that the undesirable harmonics of engine speed oscillations 
are perfectly rejected in spite of engine speed variation. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
 
In conventional internal combustion engines, the 
periodic fuel combustion in cylinders and oscillating 
masses result in pulsing engine torque which affects 
the smoothness and quality of the vehicle’s ride, 
causes increased noise, vibration and harshness and 
reduces fuel economy (Chauvin et al, 2003). Usually, 
the mean value of the instantaneous torque over an 
engine cycle is controlled and the instantaneous 
torque waveform produced by each cylinder is 
imposed. Usually, only passive solutions are 
implemented to attenuate the torque pulsations as the 
flywheel for example. In hybrid powertrains, an 
electric motor is coupled to the thermal engine from 
the crankshaft in order to improve its energy 
efficiency. But, the electrical motor can also be used 
to control the instantaneous torque produced by the 
thermal engine. Consequently, it can control their 
undesirable effects such the vibrations. 
 

One possible application of the instantaneous torque 
control is the implementation of a virtual flywheel 
(Gusev, 1997). The impact is to reduce the mass 
flywheel or to control torsional vibrations affecting the 
driveline. Previous experimental studies have shown that 
open loop control of the electrical motor can lead to 
reduce the engine speed oscillations (Nakajima et al., 
2000). Such active flywheel must be efficient over an 
engine speed range, hence the controller must be able to 
actively control a periodic disturbance of time-varying 
frequency. Simulations show that a harmonic activation 
neural network can be used to compensate the 
combustional torque pulsation (Beuschel and Schroder, 
1999). The neural network gives interesting results but it 
does not  physical insight about the parameters to adapt. 
Also, simulations show that a learning control provides 
adequate active damping and high robustness with 
respect to system parameter variations (Zaremba, 1998); 
but, the effects of actuator dynamics and sensor noise on 
learning control performance need to be evaluated. 
Finally, a mixed H2/H∞ synthesis can be applied to 
design a parameter-dependent state feedback gain, i.e. a 
gain scheduling controller (Tnami et al, 2004). 
 



     

On the other hand, a time-frequency controller is well 
adapted to reject time-varying tonal disturbances 
(Micheau and Coirault, 2000). For this problem 
where the frequency can be perfectly measured, the 
time-frequency controller can be implemented as a 
harmonic controller: it will measure the Fourier 
parameters of the engine speed in order to adapt the 
Fourier parameters of the command signal. Such 
approach provides a narrowband filtering of the 
disturbance which reduces the noise effects, and it 
increases the robustness because the dynamic of the 
physical system can be reduced to a gain. Section 2 
presents the engine dynamics and the synchronous 
machine modelling with this approach. Section 3 
presents the signal processing tools, the MIMO 
harmonic model, and the design of the gain 
scheduling harmonic controller. The robustness of the 
approach is presented in Section 3.5. Finally, 
simulations presented in section 4. 
 
 

2. MODEL 
 

2.1 Model of the thermal engine 
 
The torque balance on the crankshaft of an internal 
combustion engine is given by (Kiencke and Nielsen, 
2000) : 
 

loadmcombosc TTTTb
dt
dJ −++=+ ωω  

(1) 

 
With J : lumped inertia, b : effective damping 
coefficient, ω : crankshaft angular velocity, oscT :  
torque generated by oscillating masses and 
connecting rods,  combT : combustion torque, also 
referred the indicated torque,  loadT :  exogenous load 
torque, mT :  torque of the synchronous machine 
coupled to the internal combustion engine from the 
crankshaft. 
 
For a simple two-mass model for the rod, the 
oscillating torque results of the sum each oscillating 
mass indexed k, due to the motion of each piston and 
each rod: 
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with  
l
r

=λ ,  πθθ kk += : angle associated to the kth 

piston, θ : crankshaft angle,  )sin()sin( kk θλϕ −= ,  
CYL : number of cylinder,   l : length of the 
connecting rods,  r : course of the stroke,  

3/2roda mm = : mass of the connecting rod,  pm : 
mass of the piston. 
 

The combustion torque results of the sum of the each 
cylinder indexed k: 
 

)tan()(sin1)cos()( 22

1
kkkk

CYL

k
comb lrPT ϕθλθθ 






 −+= ∑

=

 (3) 

 
where )( kP θ   is the upward thrust on the kth stroke. 
 
For the electric motor coupled to the crankshaft, 
Equations (2) and (3) model a disturbance torque due to 
the thermal engine, comboscd TTT += .  This torque can 
be split in a constant mean torque, dT , and a periodic 
torque pulsation perfectly synchronized with the 
crankshaft angle, dT~ : ddd TTT ~

+= . Usually, the energy 
management in hybrid powertrains implies the driving of 
the mean electromagnetic torque mT  in order to assist the 
thermal engine. For 0>mT ,  the electric motor delivers 
supplementary power to the powertrain. For  0<mT , the 
electric motor is used as a generator (it brakes the 
thermal engine) in order to produce electrical energy 
stored in batteries or super-capacities (Westbrook, 2001). 
But, the purpose of this paper is to reject the periodic 
disturbance torque dT~ . For this purpose, we assume that 

loadT  is a constant value and that the electric torque is 
composed of a constant mean torque, mT , plus a periodic 

anti-torque pulsation, mT~ : mmm TTT ~
+= . Hence, 

according to Equation (1),  the crankshaft angular 
velocity can be split in two terms, )(~)( tt ωωω += , a 
constant mean engine speed, ω , plus a periodic engine 
speed pulsation, ω~ . The torque balance for pulsating 
terms is given by : 
 

md TTb
dt
dJ ~~~~

+=+ ωω  
(4) 

 
In the sequel, only the pulsating terms of the engine 
speed will be considered. 
 
 
2.2 Model of the Permanent Magnet Synchronous Motor 
 
Using the d-q transformation, the permanent magnetic 
synchronous machine is described in the rotor reference 
frame as follows (Boldea and Nasar, 1999): 
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where R : stator resistance, dv  and  qv : stator voltages,  

di  and qi : armature currents, ω : rotor speed, p: number 
of pole pairs. The stator flux linkages are written as: 
 

addd iL λλ +=  (7) 



     

qqq iL=λ  (8) 

 
with dL  and qL  are the stator inductances, and aλ  
is the flux linkage per phase due to the permanent 
magnet. The torque of the electric motor is given by:  
 

( )qaqdqdm iiiLLpT λ+−= )(
2
3  

(9) 

 
The d-q stator currents in the rotor reference frames 
can be defined with the stator current amplitude, 

22
dqs iii += , and the torque angle δ  ( the angle 

between the rotor field and stator current phasor) : 
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Substituting Eqs. (10) into (9), yields 
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The first term of Eq. (11) represents the reluctance 
torque (maximum at 4/πδ = ) and the second term 
is the electromagnetic torque produced by the 
permanent magnet flux (maximum at 2/πδ = ). In 
the PMSM drive system, the commonly used strategy 
is the constant torque-angle control with 2/πδ =  (R. 
Krishnan, 2001). This mode of operation is for speeds 
lower than the base speed. The d-axis reference 
current is made to be zero, 0=di , and the 
electromagnetic torque (11) is controlled by the q-
axis current: 
 

qTm iKT =  (12) 

 

with aT pK λ
2
3

= : torque constant. Consequently, to 

generate the pulsating anti-torque, mT~ , it is necessary 
to drive a pulsating q-axis current.  
 
 
2.3 Indirect voltage and current vector control 
 
The control problem of the synchronous machine is to 
reach zero d-axis current, 0→di  and that q-axis 

current converges to a reference one, *
qq ii → , in 

spite of the coupling effects, dωλ  in Equation (5) 
and qωλ−   in Equation (6). This problem may be 
solved by using stator voltage equation for voltage 
decoupling (Boldea and Nasar, 1999):  
 

qd pv ωλ−=  (13) 

upv dq ++= ωλ  (14) 

 

where u is the new input of the synchronous machine 
drive. Such approach is equivalent to a feedback 
linearization of the non-linear system described by the 
equations (5) and (6) (Slotine, 1991). In other words, the 
non-linear feedback (13) and (14) allow to linearize 
Equations (5) and (6). Equations (5), (8), (12) and (14) 
describe a stable linear system of input, u , and output 

mT  (by assuming a perfectly estimated inductance and 
no saturation) :  
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Equation (15) in Equation (4) with 0=u   (or uu ~= ) 
leads to write:  
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with the transfer functions  
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is bJm /=τ  and the electric time constant is 
RLqe /=τ . 

 
 

3. HARMONIC CONTROLLER 
 
3.1 Harmonic analysis of the engine speed 
 
The oscillating terms, ω~ , coming from the disturbance 
pulsating torque dT~ , can be written as a Fourier series of 
N harmonics to reject: 
 

( ))(Re2)(~ θθω XYt=  (17) 

 
where the Fourier series is written with θ  the crankshaft 
angle,  [ ]N

t AA …1=Y  and 

[ ]θθθ jNjt ee …=)(X . By applying Equation (16) in 
Equation (4), it could be possible to compute theoretical 
values of the Fourier coefficients with the balance 
harmonic method. However, for a practical issue, the 
Fourier coefficients must be obtained from the 
measurement of the instantaneous engine speed. 
Moreover, their values can not be assumed constant: they 
are time-varying due to the time-varying engine speed, 
the time-varying load torque and the active control action 
of the synchronous machine. Hence, the Fourier 
coefficients must be periodically actualized. If we 
consider an actualization at every ½ turn of the 
crankshaft, the vector ][kY  is obtained by harmonic 
analysis of the crankshaft angle captured for ½ turn: 
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where [ ]θθθθ jNjjt eee −−−=− …2)(X  and 
[ ]2/)1(;2/ ππ += kkSk  is the angle support of 

integration at the iteration k. For example, the 
actualization may be synchronized at the top dead 
center of the piston movements.  
 
 
3.3 Harmonic Model 
 
The considered command of the synchronous 
machine is the fluctuating q-axis voltage. This is a 
periodic signal written as a Fourier series:  
 

( ))(][Re2)( θθ XU ku t=  for  kS∈θ . (19) 

 
where the Fourier coefficients are written under the 
compact form:  [ ]N

t UUU …21=U  .  
 
By applying Fourier series in Equations (4), (17) and 
(19), we obtained the following discrete time system: 
 

)(][)(][ ωω DUHY += kk  (20) 
 
where  { })()( ωω jnHdiag=H  a diagonal matrix 

with   
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of disturbances, D , is the harmonic analysis of the 
engine speed pulsation without active control: YD =  
when 0U = . According to Equations (2), (3) and (4), 
the values in this vector are time-varying for mean 
engine speed variation. 
 
 
3.4 Harmonic Controller 
 
With harmonic controller, an iterative algorithm is 
designed to minimize a quadratic error criterion : 

2
2)( YU =J . According to the Parseval’s theorem, 

this equivalent to minimize ∫S
dt2~ω . One of the most 

useful learning laws is the Newton algorithm which is 
used to iteratively adjust the vector U  according to 
the law: Jkk UU∆UU ∇−=+ −1][]1[ µ  where JU∇  

and JU∆  are respectively the gradient and the 
hessien of the criterion, and µ  the adaptation 
coefficient. According to Equation (20), the gradient 
is YHU )(2 ω=∇ J  and the hessien 

)()(2 ωω HH∆U
hJ =  (h denotes the hermitian), 

consequently, the learning law is: 
 

][)(ˆ][]1[ 1 kkk YHUU ωµ −−=+  (21) 

 
where )(ˆ ωH  is a biased estimation  of )(ωH  due to 
the parameter variations. Such harmonic controller is 

equivalent to N independent resonant controllers tuned 
on each harmonic (Sievers and Flotow, 1992). 
 
 
3.5 Stability analysis of the harmonic controller 
 
For a given ω , Equations (20) and (21) give 
 

][]1[ kk AXX =+  (22) 
 
where the evolution matrix is NNC ×∈−= ∆IA µ , 

N
opt C∈−= UUX  and ∆  is a multiplicative 

uncertainty: ∆HH ˆ= . Hence, the closed loop system is 
stable if and only if 1)( <Anλ  for any n, which is 
equivalent to say that the necessary and sufficient 
condition of stability is :  
 

( )n∆< Re2µ  for any n (23) 
 
When the system is perfectly estimated, 1=∆n , the 
upper bound on the adaptation coefficient is 2, but the 
tuning 1=µ  ensures a theoretical convergence in one 
step. On the other hand, in case of biased estimation, 

1≠∆n . 
 
A necessary condition of stability is ∆  to be positive 
definite: 0>+∆∆h  where h∆  denotes the hermitian of 
∆ . In our case, with diagonal matrix, this implies that 

( ) 0Re >∆n  for any n. Such condition is verified if the 
phase-shift errors, the angle of each n∆ , are bounded 
between  2/π−  and 2/π . Hence, a slow but robust 
control can be achieved with a low adaptation 
coefficient. However, if the phase-shift errors is superior 
than 2/π , or inferior than 2/π− , robust harmonic 
control may not be achieved. For our application, the 
next section explains that robust stability may be 
achieved. 
 
3.6 Robust Stability of the harmonic controller 
 
When the frequencies to control are superior than the 
natural cut-off frequencies of the electrical system and 
mechanical system, en τω /1>>  and mn τω /1>> , an 

approximation of )(sH  is 22/3)( sJLpsH qaλ≈ . In 
other words, the complex gains are approximated by  

22
2)(

1 ω
ω

nk
jnH

−≈  with aq pJLk λ3/22 = . This 

means that the phase shift of )(ωH  is not a function of 

2k . Consequently, the necessary condition of stability is 
verified for any values of inertia or inductance and most 
critical cases are for low values of inertia of inductance. 
Hence, a practical issue to ensure the stability of the 
harmonic controller consists to estimate the lower bound 
on 2k  (associated to the lower values of inertia and 
inductance): min,22 kk > ; then, the adaptation coefficient 
can be chosen such that 
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(24) 

 
In other words, an adaptation coefficient sufficient 
small according to Equation (24) can ensure the 
stability of the harmonic controller in spite of slow 
time variation of the inertia of inductance. 
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Fig. 1. diagram of the adaptive harmonic controller. 
 
 

4. SIMULATION  
 
4.1 Simulator 
 
The simulation is carried out using Matlab/Simulink. 
Table 1 presents the values used for the parameters.  
Figure 2 shows the pressure in the cylinder versus the 
crankshaft angle. The internal combustion engine 
speed is 3000 rpm.  
 
 

Table 1 values used for the simulation. 
 

damping b 2 N.m/s 
Mass of the rod ma 0.335 Kg 

Mass of the piston mp 0.840 Kg 
Rayon of the rod r 49x10-3 m 
Length of the rod l 0.186 m 

Rod Centre of mass losc 0.093 m 
Diameter of the 

piston 
d 0.08 m 

Mass of the 
crankshaft 

mcrank 1 Kg 

Direct self Ld 8.5x10-3 H 
Quadrature self Lq 8.5x10-3 H 

Resitance R 0.2875 Ω 
Number of pole pairs p 4  

Rotor flux linkage λa 0.3  
 
 
 

4.2 Simulations  
 
To demonstrate the usefulness of the controller in 
counteracting periodic load disturbances, Figures 3 and 4 
present the responses without active control from 0 to 0.1 
s, and with active control after 0.1s. The order 2, 4, 6 and 
8 are considered by the controller. The complex gains 
used by the controller are approximated by  

22
2)(

1 ω
ω

nk
jnH

−≈  and the adaptation coefficient is 

set to µ=1. From 0.1 s to 0.25 s the speed fluctuations 
associated to the orders converge to zero.  
 
The simulations were done for different mean engine 
load torque. Figure 5 is the plot of the mean engine speed 
versus time. Figure 6 shows the active control of the 
engine oscillation after each transient in spite of quick 
variation of the mean engine speed in the range 2500 rpm 
to 3200 rpm. This is a critical case. In fact, the harmonic 
control is not the first priority during acceleration or 
deceleration of the engine: the PMSM will be used to 
assist the thermal engine during these phases instead to 
control the harmonic. Hence, the most important is to 
ensure the convergence of the controller after the 
transient, and that is what the Figure 6 shows.  
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Fig. 3. Transient of the instantaneous engine speed 
versus the time when the active control is activated: 
without active control before t=0.1 s, and with active 
control after t=0.1s . 
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Figure 4: Transient of Fourier coefficient versus time 
when the active control is activated at time t=0.1s. 
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Fig. 5. instantaneous engine speed versus the time for 
different mean engine speed. 
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Figure 6: the coefficients versus time when the mean 
engine speed is time-varying. 
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