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Abstract: In this paper, we propose an algorithm for identification of dynamic ITR
nonlinear systems without prior structural information. The algorithm is based
upon the well-known kernel method, which is generally used for probability density
function estimation. Asymptotic convergence properties (in probability) are rigor-
ously established for identification of IIR nonlinear systems. The performance of
the algorithm is tested on three real world applications and one simulated example,
thus showing the efficiency of the method. Copyright© 2005 IFAC
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1. INTRODUCTION

Identification of nonlinear systems is an impor-
tant problem which received much attention in
recent years. Unfortunately, despite of various
progresses made regarding specific methods, see
e.g. (Haber and Unbehauen, 1990; Juditsky et
al., 1995; Sjoberg et al., 2000), the problem re-
mains mostly intractable if the structure is un-
known and/or the input is non-Gaussian.

In this paper, we study identification of a time-
invariant nonlinear IIR system of the form

y(k)=f(y(k=1),..., y(k—n),u(k—1),..., u(k—n)Ho(k), (1)

where u(+) is an iid random input over the interval
[u, @] with an unknown probability distribution,
v(-) is a bounded iid random noise of zero mean
and unknown variance o2 and y(-) is the output.
Obviously, the output variable y(k) is a random
variable. The order n of the system is assumed
to be known. However, no a priori information on
the structure of f is available or used. We also
assume that the system is exponential input-to-
output stable, see e.g. (Sontag, 1963) and refer-
ences therein.

In this paper, we propose to use the kernel ap-
proach, see e.g. (Parzen, 1962; Nadaraya, 1989)
for identification of nonlinear IIR systems. The
kernel approach falls in the class of nonparamet-
ric estimation and is frequently used for estimat-
ing density functions, or other static nonlinear
functions. The main technical contribution of the
paper is therefore to extend existing asymptotic
convergence results (in probability) of the kernel
method to identification of dynamic nonlinear ITR
systems. Because of the page limit, the proofs are
condensed. For complete derivations, the inter-
ested readers may refer to the full version of the
paper (Bai et al., 2004) .

2. PRELIMINARIES

For given initial time ko, initial conditions
{y(ko),-..,y(ko —n + 1)}, input and noise sequences
{u(") ’,zoiln and {v(-)}; , let the solution of (1) at

time k be denoted by

y(k) = &k, {y(ko), - y(ko —n+ D)}, fu@} ot (@},



Assumption 2.1. (1) The nonlinear system (1) is
assumed to be exponentially input-to-output

stable (Sontag, 1963), i.e.,
e For any k > k¢ and any initial conditions

{y(ko)avy(ko_n+1)}7 .
| €k, {y(ko), - - y(ko —n + D}, {u(@ )i L, 0

(W@)}E, 1) |<Mi(y(ko).. . (ko —n + 1)AFF0

+v( max {|u(d)], [v(d)]}),
ko<i<k

for some 0 < A < 1 and some bounded

positive functions M7 and ~.

e Consider two solutions started at the
initial time ko with different initial con-

ditions but the same input and noise
sequences. Then,
€k {y(ko),- - sy(ko—n + D)} {w(i) g s

{0@)}Yeg41) — &k, L3 (ko), - G(ko — n + 1)},
IO R CIO) DN
< M2(y(k70)7 (R} y(ko —n+ 1)7 @(kO)) (X3}

Glko — n+ 1))A" 0,

for some bounded positive function My
and 0 < XA < 1. In other words, the
contribution of the initial condition is
forgotten exponentially if the input and
the noise for the two solutions are the
same after the initial time kq.

(2) The function f(y1,...,Yn,U1,.-.,Uy) 18 lo-

cally Lipschitz.

(3) For all k, the probability density func-
tion of the random output y(k) and the
joint probability density function of y(k —
1),...,y(k — n) exists and are continu-
ous. Moreover, the joint probability den-
sity function of the random variables y(k —
1),...,y(k—n),u(k-1),...,u(k—n), denoted
by qi(y1,-.-,Yn,U1,-..,u,) is locally Lips-
chitz in y1,...,yn, i.e., for sufficiently small
Ay, ..., Ay,, we have

| ar(y1 + Ay1, ... yn + Ayn,ur, ..., un)

—qr(Y1, -, Yn, UL, .-, Un) | < M3 1??§R|Ayi|:

for some bounded positive function Ms.

Lemma 2.1. Consider the system (1) with ini-
tial time ky = 0 under Assumption 2.1. Then,
for any «, the probability density functions

Ph,{y(0),....y(—nt+1)} (*) of y(k) and
PL{G(0).....5(—n+1)} () of y(I) satisfy
1Pk, {y(0),....y(—n+1)} (B) = P {9(0),....5(—n+1)} (%)
— 0, as min{k,l} — oo,

for any y(0),...,y(—n 4+ 1),9(0),...,9(—n + 1)
provided that

max{|y(0)], .., l[y(=n+ D), [9(0)], ..., [9(—n+ 1D} < M < oo.

Proof: W.l.o.g., we may assume that [ —k = j for
some j > 0. We now make three observations.

(1) Consider the system (1). For j —m > 1,
let §(j — m) be the solution with the initial
conditions {g(0),...,9(—n+ 1)},

§(G—m) = &([G—m, {§(0), ..., I(=n+D)} {u(®}

o} ™).
We may now write y(I) in terms of the initial
time j and initial conditions {§(j),...,45(j —
n+1)},
y(1) = €1, {9(0), ..., §(=n+ D} {u@} 5l fv@)H)
= &(k+3, {80, - 3G —n+ D)}, (w555, o@D

The system (1) is time invariant. By shifting
the time by j units, it follows that

y(®) = &k, 5(0), ., 5(—n+ D} {a@ L 5@},
where y(0) = §(j),....y(-n+1) = 9(j —
n+ 1), = Uitj, Vi = Vigj.
(2) From the input to output exponential stabil-
ity and the above observation, we have

ly(1) — €(k, {0, ..., 0} {a()}" L, {5 (0)}))]
= 1&(k, {5(0), ..., 5(—n + D}, {a@)}E L, {5())
—&(k, {0, ., 0}, {a(®)} 1 {0()}D))]
=181k, 5(0), ..., g(—n +1))| < MiA" =0, as k— oo,
and
ly(k) — €(k, {0, ..., 0}, {u(@)}" 1 {v(0)}))]
= &k, {y(0), ..., y(—n + D}, {u(@} 4 o)) -
€k, {0, ., 0} {u(} Y 1 {v()}D)]

= |82(k, y(0), .., y(—n + 1))| < M1 A*¥ =0, as k — oco.
(3) {u;} and {@;} = {u;+;} are two iid random

sequences with the identical distributions.

Further, {v;} and {v;} = {v;1;} are two iid

noise sequences with the identical distribu-
tions. Thus, the solutions

€k, {0, 0}, {u()}0 L {u()}))
and

£k, {0, 0} {m(@)} L (o))
must have the identical probability density
function, say pi qo,....03(*)-

From the above three observations, we have

PL{5(0),....5(—n+1)} (T) = Tn Prob{y(l) < z}
. d k-1 ok
= Prob{¢(k,{0,...,0}, {a(@)} > 1, {v()})) <z +61}
d 461
=0 Pk, {0....,0}(8)ds = P {0,..., y(z + 1)
— o0
Similarly,

d
Ph,{y(0),...,y(—n+1)} (&) = T Prob{y(k) <z}

= % Prob{{(k, {0,...,0}, {u(z)}ﬁ;il’ {0} < 2 + 62}

x+6
d 2

T dz
— 00

Dk, {0,...,0} (8)ds = D 1o0,...,0} (T + J2).

Since the density function py, 1o,...03 (+) is assumed
to be continuous and §; and do — 0 as k — oo,
the conclusion follows.

The result implies that the probability density
function of y(-) does not depend on time k if k
is large enough. In other words, in the steady
state or the initial time ky = —oo, the contri-
bution due to the initial condition vanishes. To
avoid unnecessary complications, in the rest of



the paper, we assume that the steady state has
been reached or the initial time starts at —oo
so that the probability density functions do not
dependent on k.

3. NONLINEAR SYSTEMS IDENTIFICATION

The goal of this paper is to estimate the nonlin-
ear function f(y1,...,Yn,u1,...,u,) for bounded
y; € [y,9] and u; € [u,u] based on the input-
output measurements y(k), u(k) € [y,y] x [u,u].

Lemma 3.1. Let q(y1,.-.,Yn,U1,.-.,Uy) be the

joint probability density function of

ylk—=1),...,y(k—n),u(k—1),...,u(k —n) and
q(yla"'vyn7u1a"'7un | y(l_1)77y(7'_n)7

u(i —1),...,u(i —n))
be the conditional probablhty density function of
ylk=1),...,y(k—n),u(k—=1),...,u(k—n) given
y(i—1),...,y(i —n),u(i—1),...,u(i —n). Then,
there exists My, M5 < oo and 0 < A < 1 so that
for k — i > Ms5,

l[a(y1, - yn,uty oo yun | y(E = 1), .., y(i —n),

wu(t—1),. .., u(i—n)) —q(Y1, - Yn, ULy, un)| < MgARTE
Proof:Let y(k) be the solution of (1) at time & for
given y(i — 1),...,y(i —n),u(i — 1),...,u(i —n).
When k — i > n, y(k) may be written as

y(k) =&k, {y(i—1),..., y(i*n)},{u(l)}k v {v)})
=&k {y(i+n — 1), .y} fu@}; ™ o}
Let §(k) be a solution for arbitrary initial condi-
tions {g(i — 1),...,9(i —n)},
(k) = &k, {g(i — 1), 90 — )} {u®} T, o))
=&k {7 +n—1),..., 9@} {u®}; oD},
for some g(i+n—1),...,7(i). By the exponential
input-to-output stability,
My

AT = Mt

ly(k) =g (k)| < MaA*~0F =
In other words,

g(k) = y(k) + Ay(k), |Ay(k)| < Mg\F.

Hence, these exists M; > 0 and for k — ¢ > M7,
we have

(Y1, Yns UL, s U | y(i— 1)7---7u(i—n))
42n
q(s1, s Sns
= dyr.dyndus duy,
w1, ywn | y(i—1),.. .,y(z n) u(7.—1) ..... u(l n))dsy - -
J42n
ds,dwi - - - dw, = Prob{y(k — 1) < y1,

dyy - - - dynduy - - - dunp
coylk—=n) Sy u(k—1) <wg,..

u(k —’I’L) < up
[yt —1),...,y(t—n),u(i—1),...,u(t —n)}
d2n

= Prob{g(k — 1) < Ay(k —1),..,
dyy + - - dynduq - - - duy rob{y( ) S vt Ay )
gk—n) <yn+Ay(k—n),u(k—1) <wui,...,u(k—n) <up}
=q(y1 +Ay(k —1),...,yn + Ay(k —n),u1, ..., un).

From the assumption that the joint density
function is locally Lipschitz, it follows that there

exist My, My < oo and 0 < A < 1 such that for
k—i> Ms;,
la(y(k=1),...,y(k—=n),u(k—=1),...,u(k—n) | y(i—1),...,

u(i—n)) —q(y(k = 1),...,y(k —n),u(k —1),..., u(k —n))|
=le(y(k—1)+Ay(k=1),...,y(k—n)+Ay(k—n), u(k—1),...,
w(k! =n))—q(y(k=1),..,y(k = n), u(k — 1),..,u(k—n))| < M.
This completes the proof.

Let the kernel function K(y1,...,Yn, U1, .-, Un)
be a bounded and continuous function satisfying

K1, . ,Yn, UL, .., Un)

0, vi¢

aln
Y Y o w
[ [ [ i)
v v Ju u

dyy - - -dynduy - - - dup, = 1.
Given {y(k),u(k)}, we now define the estimate
TN, ooy Yny Uty ooy tn) OF f(Y1, .oy Yn, Uty .oy Up) aS

(Q:g) and u; € (Hvﬂ)zz: 17"'7”7
[y, 9] or u; & [u,u] for some 3,

v, ..., Yny Uy - up) =
1 —y(i— i1
ZF K4z y(] ) i yij n)’ ulwy )7“’

ZN K(y1wij 1)7 .

=1

Bt yy ()

yn—y(@G—n) ui—u(G—1) un—u(j—n)

(2)

for some sufficiently small » > 0. The kernel esti-
mate (2) can be computed recursively by setting

fO(yl aaaaa Yns ULy - - -y un) = go(Wi,-- -, Yns UL, -« -y un) =0,

y1—y(—'1)  yn—y(li—n) ui—u(i—-1) up—u(i-In)
K Yo , yees )
s s s s

v yn—y(i—n) wi—u(@—1)  un—ui—n)
— . , e . :
We now show the convergence of the estimate (2).

Theorem 3.1. Consider the system (1). Then,

for every (yi,....Yn,u1,...,un) € (y,9)" X
(u,@)™ so that the probability density function

q(ylv'“?ynvula"'uun) 7& 07 we have

fAI\(ylw"v y’nvula'wun)_)f(yl'r'aynaulv"aun)

in probability as N — oo, provided that r —
0, r2"N — 0o as N — oc.

Proof: Since q(y1,.--,Yn,u1,...,up) # 0, it suf-

fices to show tlllvat in probability

iy = gy KT, el =ty )

= qY1, - Yn, U, un) F(Y1, - Yns UL, - Un ), (3)
N
1 y1—y(G—1) un—u(j —n)
den = K
EN TQ”NZ ( r ” )
j=1
_)q(ylv"'7yn7u17"-7un)' (4)

To simplify notation, we define

K@y =g yl=D  un—ul—n),




fO=flyl=1),...,y(l=n)ul -1),...,u(l = n)),
a) =q(yl—1),...,y( —n),ul —1),...,ull —n)),
q(i | 7)=q(@E—1),...,y( —n),u(i —1),...,u(i — n)
ly(G = 1),y —n)u( —1),...,u(j —n)),
dy; = dy(l — 1)dy(l — 2) -+ - dy(l — n),
duy = du(l — 1)du(l — 2) - - - du(l — n),

where | = i, j. Now, to show (3), we write
Elnun—F(Y1, - Yn> Ui, s Un)q(Y1, -, Yn,s U1, - - - ,'u,n)|2
= [E(nun)? — (Bnuy)?] + [Enuy —
F@1s s Yns Uty oo )AL, oy Yns UL, - - un)] (5)

,where E stands for the expectation operator.
First, we have

N
B(nuy)? = B3 > K@)(/(0) + ()]
=1
N N
rzﬂ > K r% > KOG+
i=1 Jj=1
N N
By DO K@) e > K6+
i=1 j

N
%N Z K(i)f(i)

Clearly, the last term of (6) is zero. Also, since
Ev(i)v(j) = 0 for i # j, we have for all r > 0

—y(i—J) _ _ _ o
y < " <g<=vy; —rg<y(i—j) <y —ry,
uj —u(i—j) _ .
u< ———= <a<=u; —ra <u(i —j) <uj —ru,
r
where j = 1,...,n and
7

Yn—y(t —n) u—u@ —1)
s - ) - yens

Next, define two new variables s; and w;

Up —u(j—n
T(J )ﬂyidu%

yi —y@E—j) =rs;, uy —u(i—j)=rwj, j=1,2,...,n

It follows that

ETQ—nK2 / / / /K2(51,..., s

Wi, ..., Wn)ds1 - - dspdwi - - - dwp

which is bounded. Thus, the middle term of (6) is
bounded by

Tanz ZE ]) =0( 2nN)
In turn, this implies that
E(nuy)? — (Enuy)? = O(%N) + ﬁ
ZZ{EK@ ) 6)F () ~BK @) fOEK(G)f()}
=1 j=1
oty !

r2n N rdn N2

ZZ/ // /Kw(z (7))

i=1 j=1
la(y(i-1), .., y(i—n), u(i—1),..
u(—1), ...,u(i—n))—q(y(i-1), ..
y(i—n), u(i—1),..

u(lfn) y(jfl)v"’y(an)a
Sy(i—n), u(i=1), ..,u(i=n))

q(y(G—1),. .. u(j—n))ldy;duidy;du;.
Then, we write
gyt —1),...,y(t —n),u(i —1),...,u(i — n),
y(j_1)7"'1y(j_n)7u(j_1)7"'7u(j_n)) =
gyt —1),...,y(t —n),u(i —1),...,u(i — n)
‘ y(jf1)7"'7y(j7n)7u(j71)7"'7“(j7n))
A = 1),y —n)u(f = 1), ..., u(j —n)).

From the definitions of ¢(i) and ¢(i | j), it follows
that

B(nux)? ~ (Bruy)? = O(—) + Ni
ZZ{/ // / ) o KG)IG)
i=1 j=1 ¥

(@ 19) — a()]a() Yy duidy;du;.
We make two observations here.
e The integral within the parenthesis in the
above equation is bounded by some constant
C for all i and j.
e Because of exponential input-to-output sta-
bility, there exist some My, M5 and 0 < A <
1, and for |i — j| > M5
la(i | §) = q(i)] < ML,
It follows that
[E(nuy)? = (Bnuy)?| < O(’I‘ZTN

> C+ = S ma

i,j=1,...,N,|i—j|>Ms

)+

1
DY

i,0=1,..., N,|li—j|<Msg

=0( (N = M5)*) +

c o,
+ —(N?% -
r?ﬂN) ~a

My —i
WE :2()\M5+)\1\45+._.+>\N )

42,\M5 1
O(— =0
)+ ( )+ N 1-2x (72"N

<O(mw )+0(—)

r2n N

This bounds the first term in (5). Similar to the
derivation of (6), we now consider the second term
in (5).

N
1 Cyl—1 —y(i—
Enuy = E E gAY v mylion)
r2n N r r
i=1

up —u(i —n)

e )
(fly(i - 1), . u(i —n)) + v(i))

yy(i —n),u(i — 1), ...,
:T%NZ / / / = / K (5) (i) q(i) dy du
e

up —u(t— 1)

S

)8, Wi, - W)



1 u u
/ / K(81,...,8n, W1,..,wy)ds1- - -dwn
u u

g @ @
+/ / / K (815 y8n, Wi,y .. ,Wp)
Y Y u u

O(r)dsy - -+ dwp,
= fly1,---, Yny ULy ooy Un)q(Y1, - -, Yns ULy - oy up) + O(r),

for sufficiently small r. This implies that the
second term in (5) is given by

[ELUfo(ylv'“ 7'U«n)q(yl,-~~ 7u’"«)}2
= O(r).
Combining the first and the second term in (5),
we have

E|(nux) — f(y1,..

y Yn, UL, - - yYn, UL, - - -

Yy UL, o, Un)Q(YL, s Yy UL, -y Un )|

1
r2n N

< O(—5) +0(5) + O(r),
and this implies
7u")f(y11 e

Convergence of (4) can be similarly established.
This finishes the proof.

nun — q(Y1, -y Yn, UL, - - S Yns ULy -« oy Up ).

4. APPLICATION EXAMPLES

To show the efficacy of the proposed algo-
rithm without a priori structural information, we
present identification results for 4 examples in this
section.

The first two data sets are obtained from Identi-
fication Database DalSy

www.east.kuleuven.ac.be/ tokka/daisydata.html

and the third one is from the University of lowa
Hospital and Clinic. Advantages using the real
system data are obvious. A disadvantage is that
no information on the actual nonlinear function f
is available and thus, it is not easy to compare
the actual f with the estimated f. To be able
to compare f and f directly, we also include a
computer simulation example, where f is known
exactly, though no information was used in simu-
lation.

Example 1: This is a computer generated exam-
ple. Let the unknown nonlinear system be

y(k) = fly(k —1),u(k — 1)) +v(k)
0.2y(k — 1)—0.5y(k —1)?u(k—1)4+u(k—1)+v(k)

where the inputs u(k)’s are iid. uniformly in [—1, 1]

and the noise is iid uniformly in [—0.05,0.05].
For simulation purposes, we take N = 20000
and » = 0.05. Figure 1 shows f(y,u) and its
estimate f(y,u) which is very close to the true
but unknown f, as expected. To further test the
obtained estimate f, we generate a new data set
k = 20001,...,20100 and define the predicted
output as

(k) = fly(k = 1), u(k - 1))

where f was estimated from the previous data
set £ = 1,...,20000. Figure 2 shows the actual

output y(k) (solid) and its estimate (dash-dotted)
9(k). Again, the actual output and its estimate
almost coincide.

Example 2: This is an input-output record of a
continuous stirring tank reactor, where the input
is the coolant flow (1/min) and the output is the
concentration (mol/l). The data set consists of
7500 samples. No a priori knowledge on the actual
model, including the structure and the order, is
available. We model this tank reactor by a first
order IIR nonlinear system
y(k) = f(y(k — 1), u(k — 1)).

The first 6000 data points were used to obtain
the estimate f with r = 0.1. Then, the output
estimates, k = 1,...,7500

§(k) = fly(k — 1), ulk — 1))

were calculated and compared to the actual output
y(k). The results are given in Figure 3. The top
figure shows the whole range and the bottom one
focuses on y(k) (solid) and (k) (dash-dotted)
for k = 6001,...,7500. Note that y(k)’s, k =
6001, ..., 7500 were not used in identification and
their estimates §(k) do predict y(k)’s very well.
This validates the identification method proposed
in the paper.

Example 3: This data set is input-output sam-
ples of a liquid-saturated steam heat exchanger,
the input is the liquid flow rate and the output
is the outlet liquid temperature. The data set
contains 4000 samples and no a priori knowledge
on the actual model is available. We model this
tank reactor by a first order IIR nonlinear system

y(k) = f(y(k — 1), u(k — 1)).

The first 3500 data points were used to obtain
f with » = 0.1. Then, the output estimates,
k = 3501, ...,4000

9(k) = f(y(k = 1), u(k - 1)
were calculated and compared to the actual output
y(k). The results are shown in Figure 4. The top
figure shows the whole range and the bottom one
focuses on y(k) (solid) and §(k) (dash-dotted) for

k = 3501, ...,4000.

Example 4: This is a recorded patient EEG data
and no actual model of EEG signal is available.
In fact, no input signal is available. We model
the EEG signal y(k) by a first order nonlinear
equation
y(k) = f(y(k — 1), u(k — 1))

where y(k — 1) is the recorded EEG value at time
k—1 and u(k) is iid in [—1, 1]. The form of f is un-
known. The given data set contains 4000 samples.
We use the first 3000 samples, £ = 1,...,3000,
to obtain the estimate f and then, to predict
G(k) = fly(k—1),u(k—1)) for k = 3001, ..., 4000.
The actual and predicted EEG signals y(k)(solid)
and g(k)(dash-dotted) are shown in Figure 5. The
top graph is the whole range k£ € [3000,4000]
and the bottom is a zoomed-in graph for k =
3900, . ..,4000. Clearly, (k) predicts y(k) satis-
factorily, which demonstrates the efficacy of the
identification method introduced in this paper.



fiylk-1)u(k-1))

Fig. 1. f(y,u) and its estimate f(y7u)
5. CONCLUDING REMARKS

In this paper, identification of IIR nonlinear sys-
tems is studied, and asymptotic convergence prop-
erties of the kernel method are shown. To test the
efficacy of the method proposed, three real world
examples are used together with a simulation ex-
ample. The numerical results obtained are very
promising.
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Fig. 2. Actual output y(k)(solid) and the pre-
dicted output §(k)(dash-dotted) based on the
estimate f(y,u).
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Fig. 3. Actual concentration (solid) and the pre-
dicted concentration (dash-dotted).
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Fig. 4. Actual temperature(solid) and the pre-
dicted temperature (dash-dotted).
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Fig. 5. Actual EEG signal(solid) and the predicted
EEG signal(dash-dotted).



