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Abstract: Complete type Lyapunov Krasovskii functionals for systems with dis-
tributed time delays are presented. The derivative of these functionals depends on
past states, and they admit a quadratic lower bound. These functionals are suitable
for obtaining exponential estimates of the solution and for robustness analysis of
uncertain systems Copyright c°2005 IFAC.
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1. INTRODUCTION

Construction of Lyapunov-Krasovskii function-
als with a given time derivative was initiated
in (Repin, 1965). Since that several interesting
results have been reported in (Datko, 1971),
(Infante, 1978), (Huang, 1989). The main atten-
tion was paid to the case when the time derivative
is a negative definite quadratic form of the present
state of a system. As it has been demonstrated
in (Huang, 1989) the corresponding functionals
do not admit positive lower quadratic bounds,
and therefore can not be applied, for example,
for estimation of robustness of time delay sys-
tems. In a recent paper (Kharitonov, 2003), a
modification of the functionals has been proposed
that, for the case of exponentially stable systems,
provides the modified functionals with positive
quadratic lower bounds. The modified functionals
were called as complete type ones. These complete
type functionals, unlike the previous ones, have a
time derivative that depends on the past states
of the system. It has been demonstrated that the
complete type functionals can be used for the de-
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termination of exponential estimates, and for the
robust stability analysis of uncertain time delay
systems.

In this contribution we extend the construction of
complete type functionals, given in (Kharitonov,
2003), to the case of systems with distributed
time delay. After introducing some preliminary
results in Section 2, the construction of complete
type functionals for systems with concentrated
and distributed delays is addressed in Section 3.
Then, in Section 4 and 5, it is shown how these
functionals can be used to derive exponential
estimates of the solutions of time delay systems,
and to analyze the robust stability of uncertain
systems. The paper ends with some concluding
remarks.

2. PRELIMINARIES

Given a time delay system of the form

.
x(t) =

mX
k=0

Akx(t− hk) +

Z 0

−τ
Q(θ)x(t+ θ)dθ,

with x(ζ) = ϕ(ζ), for ζ ∈ [−H, 0],
(1)



where x(t) ∈ Rn, Ak ∈ Rn×n, Q(θ) ∈ Rn×n is
defined for θ ∈ [−H, 0], 0 < h1 < h2 < ... < hm,
andH = max {τ , hm}. Furthermore, each element
of the matrix Q(θ) is continuous.

Definition 1. System (1) is said to be exponen-
tially stable if there exist α > 0 and γ ≥ 1 such
that for every solution x(t, ϕ) of system (1) with
initial function ϕ(θ), θ ∈ [−H, 0] the following
condition holds

kx(t, ϕ)k≤ γ kϕkH e−αt, ∀ t ≥ 0. (2)

Here kϕkH denotes

kϕkH = sup
ζ∈[−H,0]

kϕ(ζ)k .

In this note, the term stable means exponentially
stable. As it plays a central role in the construc-
tion of the complete type functional, the equiv-
alent of the Cauchy formula for the solutions of
system (1) is recalled.

Theorem 1. (Bellman and Cooke, 1963) Con-
sider the n × n matrix function K(t) such that
the equation

d

dt
K(t) =A0K(t)+

mX
k=0

AkK(t− hk)

+

Z 0

−τ
Q(θ)K(t+ θ)dθ,

with the initial condition K(0) = I, and K(t) = 0
for t < 0. Then for t ≥ 0

x(t, ϕ) =K(t)ϕ(0)+
mX
k=0

Z 0

−hk
K(t− hk−ζ)Akϕ(ζ)dζ

+

Z 0

−τ

Z 0

θ

K(t− ζ + θ)Q(θ)ϕ(ζ)dζdθ. (3)

The matrix K(t) is know as the fundamental
matrix of system (1) and each column of this
matrix is a solution of the system. It also satisfies

d

dt
K(t) =K(t)A0+

mX
k=0

K(t− hk)Ak

+

Z 0

−τ
K(t+ θ)Q(θ)dθ. (4)

If the system is stable then the matrix K(t) also
satisfies the inequality

kK(t)k≤ γe−βt, for all t ≥ 0. (5)

Lemma 1. Let system (1) be stable, then for any
n× n constant symmetric matrix W, the matrix

U(τ) =

Z ∞
0

KT (t)WK(t+ τ)dt, (6)

is well defined for all τ ∈ R. It satisfies the
(i) symmetric property

U(−τ) = UT (τ), for all τ ≥ 0, (7)

(ii) dynamic property. For all τ ≥ 0,

U
0
(τ) =

mX
k=0

U(τ − hk)Ak+

Z 0

−τ
U(τ + θ)Q(θ)dθ,

(iii) algebraic property

−W = U
0
(+0)− U

0
(−0). (8)

3. CONSTRUCTION OF COMPLETE TYPE
FUNCTIONALS.

We are looking for a Lyapunov-Krasovskii func-
tional v(xt) such that

dv(xt)

dt

¯̄
(1) = −w(xt), t ≥ 0,

where the functional w(xt) is of the form

w(xt) = xT (t)W 0x(t)+
mX
j=1

xT (t− hj)W jx(t− hj)

+
mX
k=1

Z 0

−hk
xT (t+ θ)Rkx(t+ θ)dθ

+

Z 0

−τ
xT (t+ θ)Mx(t+ θ)dθ. (9)

Here Wk, Rk, k = 0, ...,m, and M are given
positive definite matrices. Let ϕ(θ) be a contin-
uous initial function on [−H, 0] . As the system is
assumed to be stable, it follows that the functional
v(xt) exists. Furthermore it can be written as

v(ϕ) =

Z ∞
0

w(xt(ϕ))dt.

This integral converges and is well defined. First,
we build a functional v0(xt) such that

d

dt
v0(xt) = −xT (t)Wx(t). (10)

Integrating this expression from 0 to∞, and using
the fact that the solution is stable yields

v0(ϕ) =

Z ∞
0

xT (t, ϕ)Wx(t, ϕ)dt (11)

Substituting x(t, ϕ) under the integral (11) by (3),
and after some simple calculations we obtain



v0(xt) =x
T (t)U(0)x(t) + 2x

T
(t)×⎡⎣ mX

j=1

Z 0

−hj
U(−hj − ζ)Ajx(t+ ζ)dζ

+

Z 0

−τ

Z 0

θ

U(θ − ζ)Q(θ)x(t+ ζ)dζdθx(t)

¸
+

mX
j=1

Z 0

−hj

"
mX
k=1

Z 0

−hk
xT (t+ ζ1)A

T
k× (12)

U(hk+ζ1−hj−ζ2)Ajx(t+ ζ2)dζ1

i
dζ2

+2

Z 0

−τ

Z 0

θ

xT (t+ ζ1)Q
T (θ)×

U(ζ1−θ − hj−ζ2)Ajx(t+ ζ2)dζ1dθ

+

Z 0

−τ

Z 0

θ1

Z 0

−τ

Z 0

θ2

xT (t+ ζ1)Q
T (θ1)×

U(ζ1−θ1−ζ2+θ2)Q(θ2)x(t+ ζ2)dζ2dθ2dζ1dθ1,

where the matrix U(τ) is defined by (6). Consider
the next lemma.

Lemma 2. Given definite positive matrices Wj ,
j = 1, 2, ..., 2m, and M. The time derivative of
the functional

∼
v(xt) =

mX
j=1

Z 0

−hj
xT (t+ θ) [Wj + (hj + θ)Wm+j ]×

x (t+ θ) dθ

+

Z 0

−τ
(τ + θ)xT (t+ θ)Mx (t+ θ) dθ, (13)

is equal to

d
∼
v(xt)

dt
= xT (t)

⎧⎨⎩
mX
j=1

(Wj + hjWm+j) + τM

⎫⎬⎭x(t)

−
mX
j=1

xT (t− hj)W jx(t− hj)

−
mX
j=1

Z 0

−hj
xT (t+ θ)Wm+jx(t+ θ)dθ

−
Z 0

−τ
xT (t+ θ)Mx(t+ θ)dθ. (14)

Proof. Define in (13) the change of variable
ξ = t+ θ in both integrals, then

∼
v(xt) =

mX
j=1

Z t

t−hj
xT (ξ) [Wj+(hj + ξ − t)Wm+j ]×

x (ξ) dξ+

Z t

t−τ
(τ + ξ − t)xT (ξ)Mx (ξ) dξ.

(15)

Differentiating with respect to t, yields

d
∼
v(xt)

dt
= xT (t)

⎧⎨⎩
mX
j=1

(Wj+hjWm+j)+τM

⎫⎬⎭x(t)

−
mX
j=1

xT (t− hj)W jx(t− hj)

−
mX
j=1

Z 0

−hj
xT (t+ θ)Wm+jx(t+ θ)dθ

−
Z 0

−τ
xT (t+ θ)Mx(t+ θ)dθ.

Now, choose in the functional (12) the matrix
U(τ) with W defined as follows

W =W 0+
mX
j=1

(Wj + hjWm+j)+τM, (16)

and consider the sum

v(xt) = v0(xt) +
∼
v(xt),

the functional v(xt) is

v(xt) = xT (t)U(0)x(t) + 2xT (t)×⎡⎣ mX
j=1

Z 0

−hj
U(−hj−ζ)Ajx(t+ ζ)dζ+

Z 0

−τ

Z 0

θ

U(θ − ζ)Q(θ)x(t+ ζ)dζdθ

¸
+

mX
j=1

Z 0

−hj

"
mX
k=1

Z 0

−hk
xT (t+ ζ1)A

T
k×

U(hk+ζ1−hj−ζ2)Ajx(t+ ζ2)dζ1

+2

Z 0

−τ

Z 0

θ

xT (t+ ζ1)Q
T (θ)×

U(ζ1 − θ − hj − ζ2)Ajx(t+ ζ2)dζ1dθ] dζ2

+

Z 0

−τ

Z 0

θ1

Z 0

−τ

Z 0

θ2

xT (t+ ζ1)Q
T
(θ1)×

U(ζ1−θ1−ζ2+θ2)Q(θ2)x(t+ ζ2)×

dζ2dθ2dζ1dθ1+
mX
j=1

Z 0

−hj
xT (t+ θ)×

[Wj+(hj+θ)Wm+j ]x (t+ θ) dθ

+

Z 0

−τ
(τ + θ)xT (t+ θ)Mx (t+ θ) dθ. (17)

and it follows of (10) and (14) that the time
derivative of v(xt) along the trajectories of system
(1) is −w(xt). We are now able to state our main
result.

Theorem 2. Let system (1) be stable. Given the
n × n definite positive matrices W0, Wk, Wm+k,
M, k = 1, 2, ...,m, the functional (17) satisfies the
condition

d

dt
v(xt) = −w(xt).



Proof. The result can be verified by direct
calculation.

Remark 1. It follows from (17) that the func-
tional v(xt) is completely determined once the ma-
trix function U(τ), τ ∈ [0,H] is known. The nu-
merical construction of U(τ) is an essential part of
our current research. For the case of systems with
distributed delays, one possible approache is the
computation of piecewise linear approximations
of U(τ), see (Garcia-L. and Kharitonov, 2004).
Notice also that if matrix W , defined in (16),
is given then the corresponding matrix function
U(τ) is unique, while a great deal of freedom in
the choice of the matrices W0, Wk, Wm+k, M,
k = 1, 2, ...,m is still left.

Lemma 3. For some constant α > 0, the func-
tional (17) admits a quadratic lower bound of the
form

α kx(t)k2≤ v(xt).

Proof. Define the functional

v(α)(xt) = v(xt)− α kx(t)k2 .
The time derivative of v(α)(xt) along the trajec-
tories of the system (1) is

d

dt
v(α1)(xt) = −w(α1)(xt) = −w(xt)− 2αxT (t)×"
mX
k=0

Akx(t− hk)+

Z 0

−τ
Q(θ)x(t+ θ)dθ

#

= −xT (t)W0x(t)−
mX
k=1

xT (t− hk)Wkx(t− hk)

−
mX
k=1

Z 0

−hk
xT (t+ θ)Wm+kx(t+ θ)dθ

−
Z 0

−τ
xT (t+ θ)Mx(t+ θ)dθ − 2αxT (t)×"

mX
k=0

Akx(t− hk)+

Z 0

−τ
Q(θ)x(t+ θ)dθ

#
.

It follows that

w(α)(xt) ≤

⎡⎢⎢⎢⎣
x(t)

x(t− h1)
...

x(t− hm)

⎤⎥⎥⎥⎦
T

M(α)

⎡⎢⎢⎢⎣
x(t)

x(t− h1)
...

x(t− hm)

⎤⎥⎥⎥⎦
+

mX
k=1

Z 0

−hk
xT (t+ θ)Wm+kx(t+ θ)dθ

+

Z 0

−τ
xT (t+ θ)Mx(t+ θ)dθ

−α
Z 0

−τ
xT (t+ θ)QT (θ + τ)Q(θ + τ)x(t+ θ)dθ.

where

M(α) =

⎡⎢⎢⎢⎣
W0 + α(A0 +AT

0 − In) αA1 · · · αAm

αAT
1 W1 · · · 0
...

...
. . .

...
αAT

m 0 · · · Wm

⎤⎥⎥⎥⎦
Using the fact that each element of the ma-
trix Q(θ) is continuous in [−H, 0] , we have that°°QT (θ)Q(θ)

°°
H
≤ _

q, so we have that

w(α)(xt)≤

⎡⎢⎢⎢⎣
x(t)

x(t− h1)
...

x(t− hm)

⎤⎥⎥⎥⎦
T

M(α)

⎡⎢⎢⎢⎣
x(t)

x(t− h1)
...

x(t− hm)

⎤⎥⎥⎥⎦
+

mX
k=1

Z 0

−hk
xT (t+ θ)Wm+kx(t+ θ)dθ

+

Z 0

−τ
xT (t+ θ)

¡
M − α

_
qIn

¢
x(t+ θ)dθ.

Then there exists an α > 0 such that

M(α) > 0 and M − α
_
qIn > 0

Indeed, as W0,Wk, Wm+k and M , k = 1, 2, ...,m,
are positive definite matrices, we have that

w(α)(xt) ≥ 0, for all t ≥ 0.
hence

v(α)(ϕ) =

Z ∞
0

w(α)(xt(ϕ))dt ≥ 0,

and it follows that

α kx(t)k2 ≤ v(xt). (18)

Lemma 4. For some constant ε > 0, the func-
tional (17) admits the following quadratic upper
bound

v(xt)≤ ε

(
kx(t)k2 +

mX
k=1

Z 0

−hk
kx(t+ θ)k2 dθ

+

Z 0

−τ
kx(t+ ζ)k2 dζ

¾
. (19)

Proof. Let

ν =max kU(τ)k , τ ∈ [0,H] , (20)

a=max kA1k , i = 1, 2, ...,m (21)

ω=max {kW1k , kW1k , .., kWmk , kMk} (22)
Using appropiate majorizations for each term of
functional described by (17) leads to

v(xt)≤ η1 kx(t)k2 + η2

mX
k=1

Z 0

−hk
kx(t+ θ)k2 dθ

+η3

Z 0

−τ
kx(t+ ζ)k2 dζ (23)



where

η1 = ν +
τ2qν

2
+ νa

mX
j=1

hj

η2 = νa2
mX
j=1

hj + aν + a
τ2qν

2
+ ω(1 + hm)

η3 = qντ + τqνa
mX
j=1

hj +
τ3q2ν

2
+ ωτ

and the result holds for any ε such that ε ≥
max {η1, η2, η3} .

Remark 2. Using (20), (21), (22) and the fact
that kx(t)k ≤ kxtkH , it is not difficult to prove
that the functional (17) also satisfies

v(xt) ≤ α1 kxtk2H . (24)

4. EXPONENTIAL BOUNDS.

In this section, for a given initial function, we
obtain an exponential estimate of the form (2) of
the solution of System (1) based on the complete
type functional (17). First we prove a preliminary
result.

Lemma 5. Let System (1) be exponentially sta-
ble. Given positive definite matrices W0, Wk,
Wm+k andM, there exists a constant β > 0, such
that the functional w(xt) defined in (9) satisfies

2βv (xt)≤ w(xt). (25)

Proof. Consider (23) and a lower bound for
w(xt) obtained as follows. Let

µ = min {λmin(Wj) , λmin(M)} , j = 0, 1, 2, ..., 2m,

then

µ

Ã
kx(t)k2 +

mX
k=1

Z 0

−hk
kx(t+ θ)k2 dθ

+

Z 0

−τ
kx(t+ ζ)k2 dζ

¶
≤ w(xt).

Finally observe that if we choose β as

2β = min

½
µ

η1
,
µ

η2
,
µ

η3

¾
(26)

the expression (25) is satisfied.

Theorem 3. Let system (1) be exponentially sta-
ble and the matrices Wi, i = 1, ..., 2m, be given.
For any initial condition ϕ(θ), θ ∈ [−H, 0], the
solution of system (1) satisfies the inequality

kx(t, ϕ)k≤
r

α1

α
kϕkH e−βt, t ≥ 0,

where α, α1 are the constants defined by (18) and
(24), respectively, and β is defined in (26).

Proof. Observe that (25) implies that

dv(xt)

dt
≤ −w(xt) ≤ −2βv(xt),

solving for v(xt) yields v(xt) ≤ e−2βtv(ϕ). Then,
(3) and (24), imply that

α kx(t, ϕ)k2 ≤ v(xt) ≤ v(ϕ)e−2βt ≤ α1e
−2βt kϕk2H ,

and the result follows from the first and last terms
of these inequalities.

5. ROBUST STABILITY

In this section we show that the complete type
functional can be used to derive robust stability
conditions. Consider the perturbed system

.
y(t) =

mX
k=0

(Ak+∆k) y(t− hk)

+

Z 0

−τ
(Q(θ) +∆(θ)) y(t+ θ)dθ. (27)

where

k∆kk≤ ρk, k = 0, 1, 2, ...,m.

k∆(θ)kτ ≤ δq, θ ∈ [−τ, 0] . (28)

Let the nominal system described by (1) be stable.
Using the complete type functional constructed
in Section 3, we want to derive conditions under
which the perturbed system remains stable. The
derivative of v(yt) along the trajectories of (27) is

dv(yt)

dt

¯̄̄̄
(27)

= −w(yt)

+2

"
mX
k=0

∆ky(t− hk) +

Z 0

−τ
∆(θ)y(t+ θ)dθ

#T
⎡⎣U(0)y(t) + mX

j=1

Z 0

−hj
U(−hj−ζ)Ajy(t+ ζ)dζ

+

Z 0

−τ

Z 0

θ

UT (θ − ζ)Q(θ)y(t+ ζ)dζdθ

¸
.

Considering (20), (28) and (21) we thus see that

dv(yt)

dt

¯̄̄̄
(27)

≤ −yT (t) {W0 − Γ1In} y(t)

−
mX
k=1

yT (t− hk) {Wk − Γ2In} y(t− hk)

−
mX
k=1

Z 0

−hk
yT (t+ ζ) {Rk − Γ3In} y(t+ ζ)dζ

−
Z 0

−τ
yT (t+ θ) {M − Γ4In} y(t+ θ)dθ

where



Γ1 =2νρ0 +
mX
k=1

ρkν + νδqτ + ρ0νa
mX
j=1

hj

+νρ0q1
τ2

2

Γ2 = ρkν + aν
mX
j=1

ρkhj + νq1
τ2

2
ρk

Γ3 = νa
mX
j=0

ρj + δqντa

Γ4 = νδq + τνq1

mX
k=0

ρk +
3

2
τ2δqνq1

From the above, we can write the following result.

Theorem 4. Let System (1) be stable. Then the
system (27) remains stable for all perturbations
which satisfy the conditions (28) if there exist
positive definite matrices W0, Wk, Rk and M ,
k = 1, 2, ..,m such that

W0 > Γ1In, Wk > Γ2In, Rk > Γ3In, M > Γ4In

6. CONCLUSIONS

In this contribution, the construction of complete
type functionals proposed in (Kharitonov, 2003)
is extended to systems with distributed time de-
lays. Quadratic lower and upper bounds for these
functionals are obtained. It is shown that these
functionals can be employed to determine expo-
nential bounds for the solutions of systems with
distributed time delays and to find conditions of
robust stability when there is uncertainty in the
parameters.
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