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Abstract: Piecewise affine (PWA) systems are useful models for describing non-
linear and hybrid systems. They also result from LTI systems subject to con-
strained optimal control. Recently, stability analysis of PWA systems has received
increased interest since it can help to obtain explicit feedback control laws of low
complexity (Grieder et al., 2003b; Grieder and Morari, 2003; Grieder et al., 2004).
A wide range of methods with varying degrees of conservativeness are available, for
analyzing stability of PWA systems. This survey introduces the most promising
existing methods and adapts them to discrete-time PWA systems. Specifically,
we investigate the computation of common quadratic, common quartic, piecewise
affine, piecewise quadratic and piecewise quartic Lyapunov functions using linear
programming, semi-definite programming and sum-of-squares techniques. Subse-
quently, the different methods are compared regarding the likelihood of finding
a certificate of stability and computation run time. The objective is to provide
the reader with a practical ‘recipe’ for analyzing PWA systems. To this end, an
extensive case study is performed.
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1. INTRODUCTION

Piecewise affine (PWA) systems have attracted
much interest in the research community since
they provide a useful modelling framework for
a large class of hybrid systems. Discrete-time
PWA systems are equivalent to interconnections
of linear systems and finite automata (Sontag,
1996), to linear complementary systems (Heemels
et al., 2001) and also hybrid systems in mixed

logical dynamical (MLD) form (Bemporad and
Morari, 1999). The MLD form encompasses a
large class of hybrid systems including linear hy-
brid dynamical systems, hybrid automata and
some classes of discrete event systems. Software
for MLD modelling is available from (Torrisi and
Bemporad, 2004) and an algorithm to transform
an MLD system into a discrete-time PWA sys-
tem is given in (Bemporad et al., 2000; Bempo-
rad, 2004). In addition to hybrid systems, PWA



systems are a powerful tool for approximating
non-linear systems (Sontag, 1981). Furthermore,
LTI systems subject to constraints and linear
or quadratic optimal control are constrained au-
tonomous PWA systems (Bemporad et al., 2002).

It was shown how to use semidefinite program-
ming (SDP) to compute piecewise quadratic
(PWQ) Lyapunov functions for continuous-time
PWA systems in (Johansson and Rantzer, 1998)
and for discrete-time PWA systems in (Ferrari-
Trecate et al., 2002; Feng, 2002; Grieder et
al., 2003a). A detailed description of PWA and
PWQ stability analysis schemes was later pro-
vided in (Johansson, 2002). In (Prajna and Pa-
pachristodoulou, 2003), the authors show how to
apply sum-of-squares methods (Parrilo, 2003) to
compute higher order (piecewise) polynomial Lya-
punov functions for continuous-time PWA sys-
tems. Recently, stability analysis of discrete-time
PWA systems has received an increased interest
since efficient stability analysis schemes can assist
in the computation of feedback controllers of low
complexity, for constrained LTI or PWA systems
(Grieder et al., 2003b; Grieder and Morari, 2003;
Grieder et al., 2004).

At this stage, there is a wide range of tools
available to analyze PWA systems with no clear
‘best’ method. While simple Lyapunov functions
(e.g. common quadratic) may not exist, higher
order piecewise Lyapunov functions (e.g. piece-
wise quartic) may not be computable even if they
exist, because of the conservative problem for-
mulation which is needed to pose the respective
SDP. In addition, the run-time of the respective
analysis problems may be prohibitive. Finally, it
is not clear if the proposed Lyapunov functions
(i.e. PWQ etc.) are strong enough for practical
problems.

The objective of this paper is to survey and
evaluate various approaches to analyze discrete-
time PWA systems in practice. First, the basic
computational building blocks (e.g. reachability
analysis) and assumptions (e.g. set invariance)
will be established. Second, we show how to com-
pute PWA, PWQ and (Piecewise) Polynomial
Lyapunov functions for discrete-time PWA sys-
tems. All of these analysis schemes have been
presented previously for continuous-time PWA
systems. However, the computation schemes for
PWA and higher order piecewise polynomial Lya-
punov functions were not previously published for
discrete-time PWA systems. Finally, in a detailed
case study the various analysis methods will be
compared with respect to the likelihood of finding
a Lyapunov function and the computation run-
time.

2. STABILITY OF DISCRETE-TIME PWA
SYSTEMS

2.1 Problem Statement

PWA systems are defined by a series of affine
systems where each affine dynamic is defined over
a polyhedral set in the state-input space.

Definition 1. (Polyhedron). A convex set P ⊆ Rn

given as an intersection of a finite number of q
closed half-spaces P , {x ∈ Rn | Hx ≤ K}, is
called polyhedron. Here H ∈ Rq×n, K ∈ Rq.

Specifically, an autonomous discrete-time PWA
system is described by

x(k+1) = Arx(k)+gr, if x(k) ∈ Pr, r ∈ R, (1)

where the currently active dynamic r is defined by
the polyhedron

Pr , {x ∈ Rn | Hrx ≤ Kr} (2)

and the index set R , {1, 2, . . . , R}, where R
denotes the number of different dynamics. We
will denote the set of states over which the PWA
system (1) is defined as SPWA =

⋃
r∈R Pr.

The standing assumption throughout this paper
is that the autonomous PWA system does not
contain overlapping regions Pi, i.e. Pi ∩ Pj = ∅
for i 6= j. However, if the system dynamics are
continuous, it is possible for two regions Pi and
Pj to share a common facet. The ‘no-overlaps’
condition is needed to ensure that the state-
update equation is uniquely defined for all states.
Furthermore, we assume the PWA partition to be
invariant (x(0) ∈ SPWA ⇒ x(k) ∈ SPWA, ∀k ≥
0), since the notion of stability has no practical
relevance if the state trajectory exits the defined
state space SPWA.

The following theorems are based on (Vidyasagar,
1993, p. 267) and have been adapted to deal with
the special case of autonomous PWA systems of
type (1) subject to constraints:

Theorem 1. (Asymptotic Stability). The origin x =
0 is asymptotically stable for the autonomous
PWA system if there exists a function V (x) :
SPWA → R with 0 ∈ SPWA and scalar coefficients
α > 0, β > 0, ρ > 0 such that β‖x‖ ≥ V (x) ≥
α‖x‖ and V (Arx+gr)−V (x) ≤ −ρ‖x‖, ∀x ∈ Pr,
∀r ∈ R. Here, ‖ · ‖ denotes a vector norm.

Theorem 2. (Exponential Stability). The origin x =
0 is exponentially stable for the autonomous PWA
system if there exists a function V (x) : SPWA → R
with 0 ∈ SPWA and scalar coefficients α > 0,
β > 0, ρ > 0 and p > 1 such that β‖x‖p ≥
V (x) ≥ α‖x‖p and V (Arx+gr)−V (x) ≤ −ρ‖x‖p,
∀x ∈ Pr, ∀r ∈ R. Here, ‖·‖ denotes a vector norm.



2.2 Reachability Analysis

When searching for a piecewise Lyapunov function
V (x) (e.g. PWA or PWQ), the explicit represen-
tation of the decay rate V (x(k + 1)) − V (x(k))
depends on the regions Pi, Pj which contain x(k)
and x(k + 1), respectively. Therefore, a region
transition map needs to be created in order to
formulate the search for such a Lyapunov func-
tion (Grieder et al., 2003a). For computational
efficiency, this reachability computation is split
into two parts: First, the feasible transitions from
region i to j are identified and subsequently the
set of states Pij which actually execute such a
transition are computed.

Specifically, a transition map T is first created
∀i, j ∈ {1, . . . , R} according to

T (i, j) =
{

1, if ∃x ∈ int(Pi), s.t. Aix + gi ∈ Pj ,
0, otherwise,

where int(·) denotes the strict interior of a set.
The matrix T is then used to construct the set
T , {i, j ∈ R | T (i, j) = 1}.

Remark 1. In principle, one LP needs to be solved
for each element of the transition map T , i.e.
a total of R2 LPs, where R denotes the total
number of system dynamics. However, instead of
solving LPs directly, it is advisable to first com-
pute bounding boxes (hyper-rectangles) for each
region Pr (r ∈ R). In addition, a bounding box
of the affine map of the region P+

r = {Arx +
gr ∈ Rn| x ∈ Pr} needs to be computed. The
number of LPs which need to be solved in order
to compute the bounding boxes is linear in the
number of regions R and state space dimension
n. This computation is tractable even for very
complex partitions. The bounding boxes can be
efficiently checked for intersections, such that cer-
tain transitions i → j can be ruled out. In our
experience, the bounding box implementation is
the most effective way to compute T for complex
region partitions.

In a second step, the transition sets Pij for system
(1) are explicitly computed for all i, j ∈ T :

Pij = {x ∈ Rn| x ∈ Pi, Aix + gi ∈ Pj} (3a)

= {x ∈ Rn| Hij x ≤ Kij}. (3b)

If T (i, j) = 0, then Pij = ∅. The transition set T
will be used in the following sections to search for
piecewise Lyapunov functions.

3. PWA LYAPUNOV FUNCTIONS

It will be shown in the following how to formulate
the search for a PWA Lyapunov function guaran-
teeing asymptotic stability for autonomous PWA

systems as a linear program (LP). The scheme
presented in this section is based on results for
continuous time systems which were published in
(Johansson, 2002). The computation scheme for
the PWA Lyapunov function is non-conservative
(i.e. if a PWA Lyapunov function over the given
partition exists, it will be found), thus it may
succeed when no PWQ Lyapunov function can
be found with the schemes in (Ferrari-Trecate et
al., 2002; Feng, 2002; Grieder et al., 2003a).

In each polyhedral cell Pr, the function PWA(x)
will be defined by PWAr(x) = xT Lr + Cr. It
should be pointed out that the PWA Lyapunov
function is allowed to be discontinuous and/or
non-convex, since we are dealing with discrete-
time systems. Hence, we are looking for a function
PWA(x) which satisfies the following constraints:

β‖x‖1 ≥ PWAr(x) ≥ α‖x‖1,
α, β > 0,∀x ∈ Pr, ∀r ∈ R, (4a)

PWAj(Aix + gi)− PWAi(x) ≤ −ρ‖x‖1,
ρ > 0, ∀x ∈ Pij , ∀i, j ∈ T . (4b)

Note that it is possible to replace the 1-norm in
(4) with any other linear norm, e.g. ∞-norm.

In order pose the search for PWA(x) as an LP,
it is necessary to first compute the vertices of
the transition sets (vert(Pij)) and of the dynamic
sets (vert(Pi)). The problem of finding a PWA
Lyapunov function, for the autonomous PWA
system (1) such that the conditions in Theorem
1 are satisfied can now be stated as

β‖x‖1 ≥ PWAr(x) ≥ α‖x‖1,
α, β > 0,∀x ∈ vert(Pr), ∀r ∈ R, (5a)

PWAj(Ãix + g̃i)− PWAi(x) ≤ −ρ‖x‖1,
ρ > 0, ∀x ∈ vert(Pij),∀i, j ∈ T . (5b)

Since the vertices of all sets Pi and Pij are known,
the resulting problem is linear in Lr, Cr and can
therefore be solved as an LP.

Remark 2. It follows from the constraints (5a)
(i.e. V (0) = 0) that the PWA Lyapunov function
will have no offset term for all regions containing
the origin, i.e. Ci = 0, ∀i ∈ R0. Since the
Lyapunov function is PWA for the remainder of
the state space, there will always exist a parameter
β bounding the Lyapunov function from above.
Hence, the ‘upper bound’ constraint β||x||1 ≥
PWAi(x) does not need to be enforced when
solving the LP (5).

Theorem 3. (Asymptotic Stability via LP). If the
LP (5) associated to the autonomous PWA system



(1) is feasible, then this system is asymptotically
stable.

Proof First note that the linear norm ‖x‖1 is
convex. Since the function PWAr(x), r ∈ R is
piecewise affine, it follows that satisfaction of (5a)
for all vertices of Pr implies that the inequalities
in (5a) will also hold ∀x ∈ Pr. Furthermore, if
(5b) holds for all vertices of Pij , it follows from
linearity of the system dynamics (1) that the
inequality will hold for all states x ∈ Pij . Since
the partition SPWA is invariant, it follows that
SPWA =

⋃
r∈R Pr =

⋃
i,j∈T Pij . Therefore, the

inequalities in (5a) and (5b) hold ∀x ∈ SPWA such
that the conditions in Theorem 1 are satisfied, i.e.
feasibility of (5) implies asymptotic stability of
the autonomous PWA system (1). 2

It should be noted that the required computation
time may become large due to the extensive reach-
ability analysis (Section 2.2), vertex enumeration
and size of the final LP. Specifically, the LP (5)
introduces one constraint for each vertex of each
region Pr, ∀r ∈ R (see (5a)) and one constraint
for each vertex of each Pij , ∀i, j ∈ T (see (5b)).
The number of variables is (n + 1)R, where R
denotes the number of dynamics and n the state
space dimension.

4. PWQ LYAPUNOV FUNCTIONS

It will be shown in the following how to for-
mulate the search for common quadratic and
PWQ Lyapunov functions guaranteeing asymp-
totic stability for autonomous PWA systems as
an SDP problem. The use of SDP based meth-
ods is illustrated for continuous-time systems in
(Johansson and Rantzer, 1998; Johansson, 2002)
and for discrete-time systems in (Ferrari-Trecate
et al., 2002; Feng, 2002; Grieder et al., 2003a).
In each polyhedral cell Pr, the function PWQ(x)
is defined by PWQr(x) = xT Qrx + xT Lr + Cr.
Specifically, this function should satisfy

βxT x ≥ PWQr(x) ≥ αxT x,

α, β > 0, ∀x ∈ Pr,∀r ∈ R, (6a)

PWQj(Aix + gi)− PWQi(x) ≤ −ρxT x,

ρ > 0,∀x ∈ Pij ,∀ i, j ∈ T . (6b)

Let Gij(x) = Kij − Hijx (recall the notation in
(3)) and ∆Vij(x) = PWQj(Aix + gi)−PWQi(x).
By applying the S-procedure 1 (Boyd et al., 1994),
we can conservatively approximate (6b) with

∃Nij ≥ 0 : ∆Vij(x) ≤ −ρxT x−GT
ij(x)NijGij(x),

(7)

1 f(x) ≥ 0 ∀x : gi(x) ≥ 0 is conservatively replaced with
the sufficient condition ∃λi ≥ 0 : f(x) ≥

∑
λigi(x)

where ρ > 0 and Nij is an arbitrary symmetric
matrix consisting of non-negative elements only.

With x̄ = [x 1]T with x ∈ Pij , we arrive at
the following inequality (Johansson and Rantzer,
1998; Ferrari-Trecate et al., 2002):

∆Vij(x) = x̄T

[
∆Qij ∆Lij ,

∆LT
ij ∆Cij

]
x̄ (8a)

≤ x̄T

(
−

[−HT
ij

KT
ij

]
Nij [−Hij Kij ]− ρ

[
I 0
0 0

])
x̄

(8b)

The matrices ∆Qij , ∆Lij and ∆Cij can easily be
derived from (1) and the definition of PWQ(x).

Remark 3. Ideally we would want ∆Vij(x) ≤
−ρxT x, ∀x ∈ Pij and ∆Vij(x) arbitrary for x /∈
Pij . Since this constraint is non-convex, we relax
this condition by imposing that ∆Vij(x) ≤ −ρxT x
for all x in a quadratic surface containing Pij

in (8b). This constraint can be made convex by
applying the S-procedure (Boyd et al., 1994).
Since the only constraint on Nij in (8b) is the
non-negativity of its elements, the shape of this
quadratic surface can be (almost) arbitrarily cho-
sen.

It is now possible to pose the semi-definite pro-
gram to calculate a PWQ Lyapunov function:

find PWQr, Nr, Nij , ρ, ε,

s.t. ∀r ∈ R, ∀i, j ∈ T ,[−∆Qij − ρI −∆Lij

−∆LT
ij −∆Cij

]
º

[−HT
ij

KT
ij

]
Nij [−Hij Kij ]

(9a)
[ Qr − εI

1
2
Lr

1
2
LT

r Cr

]
º

[−HT
r

KT
r

]
Nr [−Hr Kr], (9b)

Nij ≥ 0, Nr ≥ 0, ρ > 0, ε > 0, (9c)

Nr = NT
r , Nr ∈ Rdr×dr , Nij = NT

ij , Nij ∈ Rdij×dij

Cq = 0, Lq = 0 ∈ Rn,

∀ q ∈ R0, R0 , {r ∈ R | 0 ∈ Pr}. (9d)

It follows from (8) that (9a) induces ∆Vij(x) ≤
−ρxT x. Inequality (9b) ascertains that the PWQ
Lyapunov function is bounded from below by
a quadratic function and (9c) ensures that all
elements of Nr and Nij are nonnegative where dr

and dij denote the number of rows of Hr and Hij ,
which are defined by Pr = {x ∈ Rn | Hr x ≤
Kr} and (3). Just like for PWA functions (see
Remark 2), the quadratic upper bound on the
PWQ function does not need to be enforced here,
since the Lyapunov function is quadratic around



the origin (see (9d)) and PWQ on the rest of the
state space.

Since equation (9a) is sufficient (not necessary)
for ∆Vij(x) ≤ −ρxT x, the SDP formulation is
conservative and may not yield a solution even
if one exists. The scalar parameters ε and ρ are
arbitrarily small but positive in order to enforce
a strictly positive PWQ function and exponential
stability, respectively.

Theorem 4. (Exponential Stability via SDP). If the
SDP (9) associated with an autonomous PWA
system of type (1) is feasible, then that system
is exponentially stable.

Proof The conditions in (6) are sufficient for
exponential stability according to Definition 2,
since SPWA =

⋃
i,j∈T Pij =

⋃
i∈R Pi according

to the assumptions in Section 2.1. Therefore we
need to show that (9) implies (6). It follows
from (8) that (9a) implies (6b). Furthermore (9b)
implies that there exists a lower quadratic bound
on the PWQ Lyapunov function. A quadratic
upper bound exists automatically because of (9d).
Hence, (9) implies (6). 2

When computing a common quadratic Lyapunov
function V (x) = xT Qx the problem formulation
(9) can be drastically simplified. Specifically it is
sufficient to impose

find Q Â 0, ρ > 0, (10a)

−
[

AT
r QAr −Q + ρI AT

r Qgr

(AT
r Qgr)T gT

r Qgr

]

º
[−HT

r

KT
r

]
Nr [−Hr Kr], ∀r ∈ R, (10b)

Nr ≥ 0, Nr = NT
r , Nr ∈ Rdr×dr , (10c)

where Hr and Kr are defined by (2) and (10c) is
used to enforce that each element of the matrix Nr

is non-negative. In (10), the number of constraints
is linear in the number of controller regions R
while they are quadratic in (9), when searching
for a PWQ Lyapunov function.

5. PIECEWISE POLYNOMIAL LYAPUNOV
FUNCTIONS

It will be shown in the following how to formulate
the search for polynomial or piecewise polynomial
Lyapunov function guaranteeing asymptotic sta-
bility for autonomous PWA systems by using sum-
of-squares (SOS) methods (Parrilo, 2003). This
issue has been investigated for continuous time
PWA systems in (Prajna and Papachristodoulou,
2003).

Before describing the use of SOS for Lyapunov
functions, a brief introduction to SOS theory is in

order. A multivariate polynomial p(x) is a sum of
squares if there exist polynomials p1(x) . . . pm(x)
such that p(x) =

∑m
i=1 p2

i (x). Equivalently,

p(x) = Z(x)T QZ(x) (11)

where Z(x) is a vector of monomials (e.g. x ∈
R2 and Z(x) of order k = 2 implies Z(x) =
[1 x1 x2 x1x2 x2

1 x2
2]

T ) and Q is a positive semi-
definite matrix. Being a sum of squares imme-
diately implies non-negativity of p(x), a condi-
tion that otherwise is very hard to prove 2 . The
computation of a SOS decomposition can be per-
formed using a semidefinite program, which can
be solved efficiently. These properties lend them-
selves very conveniently to the computation of
Lyapunov functions. As we move to higher order
polynomials, there are more degrees of freedom in
choosing the Lyapunov function and this implies
that there is a higher probability of finding a Lya-
punov function, if it exists. It is also possible to use
SOS techniques when applying the S-procedure,
e.g. it is possible to replace each element in the
matrix Nr in (9b) with an SOS function. Higher
order functions allow for better approximations
of the polytopic regions over which the Lyapunov
function constraints in (6) are imposed, hopefully
leading to further reduction in conservativeness.

Specifically, we aim to find a piecewise polynomial
Lyapunov function PWP(x) of degree k, defined
by polynomials PWPr(x) over each polytopic re-
gion Pr. In the same vein as for the piecewise
quadratic case, define ∆Vij = PWPj(Aix + gi)−
PWPi(x). For a stability certificate, we need

PWPr(x) ≥ αxT x ∀x ∈ Pr,∀r ∈ R, (12a)

∆Vij(x) ≤ −ρxT x, ∀x ∈ Pij ,∀ i, j ∈ T . (12b)

In the following, let G(x) = K − Hx and Gi(x)
denote the ith row of G(x). As in the piecewise
quadratic case, we can use the S-procedure to
eliminate the polytopic regions, i.e. add terms of
the type Gi(x)NijGj(x) to the constraints. How-
ever, nothing prevents us from using higher or-
der multipliers Nij , i.e. parameterize the elements
Nij(x) as positive polynomials. To allow for even
more degrees of freedom, we can also add terms
of the form Gi(x)Gj(x)Gk(x)Gl(x) and so on. In
fact, in can be shown that by using sufficiently
many terms and multipliers of sufficiently high
order, the higher order S-procedure will be both
sufficient and necessary (Parrilo, 2003, Th. 5.1).

To calculate a piecewise polynomial Lyapunov
function, we apply a higher order S-procedure to
(12) and replace non-negativity constraints with
SOS constraints. The SOS program will be

2 Non-negativity does however not imply that the poly-
nomial can be written as a SOS. It is only a sufficient
condition for non-negativity



PWPr(x)− αxT x = Sr(x) ∀r ∈ R, (13a)

− ρxT x−∆Vij(x) = Sij(x), ∀i, j ∈ T . (13b)

The S-procedure terms Sq(x) are defined by

Sq(x) = F q
0 (x) +

m∑

i1=1

m∑

i2=1

F q
i1i2

(x)Gi1(x)Gi2(x) + . . .

+
m∑

i1=1

m∑

i2=1

. . .

m∑

ik=1

F q
i1i2...ik

(x)Gi1(x)Gi2(x) . . . Gik
(x),

(14)

where F0(x) is an SOS polynomial of degree k,
Fi1i2(x) of degree k−2 and so on and the functions
Gik

(x) are defined by the sets Pr and Pij respec-
tively. By constraining all functions F q(x) to be
SOS, we can ensure that Sq(x) is non-negative if
x ∈ Pq. This is a more powerful condition com-
pared to the SDP based S-procedure described in
the previous section.

The SOS problem for a common polynomial func-
tion can be formulated along the same lines as
the common quadratic function scheme described
in Section 4. We will refrain from a detailed dis-
cussion here since the modifications to (10) are
straightforward.

Regarding complexity, each SOS condition of de-
gree k involves a vector of monomials Z(x) (see
(11)) from degree 1 to d, where d = k

2 . For
an n dimensional problem, the total number of
monomials is

(
n+d

d

)
. This translates to solving an

SDP of size
(
n+d

d

) × (
n+d

d

)
(Parrilo, 2003). Every

positivity constraint for a region (13a) or decay
constraints between 2 regions (13b) is a single such
SOS constraint of degree k.

Furthermore, each SOS multiplier condition F q(x)
(see (14)) of degree l = 0, 2 . . . k involves solving
an SDP with the size determined by l. Consider
a constraint of the type (13a) or (13b) over a
polytope defined by m half-spaces. There would
be

(
m

k−l

)
SOS multipliers of degree l for this sin-

gle constraint corresponding to different combi-
nations of Gi1(x)Gi2(x) . . . Gil

(x), each of which
corresponds to an SDP of size

(
n+l

l

) × (
n+l

l

)
.

Note that there is no benefit in choosing the S-
procedure terms to be of higher order than the
Lyapunov function V (x). Ideally, they are of equal
order. The rapid growth in problem size places a
practical limit on the order of Lyapunov functions
(13) and the order of the S-procedure terms (14)
which can be computed for medium sized PWA
systems (i.e. several hundred regions).

6. TUNING PARAMETERS

As stated in the previous sections, the complexity
of the various Lyapunov function computation

schemes can be prohibitive for large partitions.
This will also be illustrated by the case study in
Section 7. Hence, this section will discuss mod-
ifications to the previously introduced problem
formulations which make the associated compu-
tations more efficient.

Fixed Exterior Ellipsoids: The standard S-
procedure described in Section 4 achieves the
objective of ensuring positivity over a particu-
lar region by approximating that region with a
quadratic surface (see (8b)). This version of the
S-procedure is not lossless (Boyd et al., 1994),
but the shape of the quadratic surface is a
degree of freedom in the solution. As an alter-
native, it is possible to fix the surface a priori,
i.e. by selecting it to be the minimal volume
ellipsoid containing the region. The associated
S-procedure is lossless and the degrees of free-
dom in the SDP are significantly reduced. The
new problem formulation is given by

V (x)− τ

[ −E Ex0

xT
0 ET 1− (xT

0 Ex0)

]
≥ 0

where the minimum volume exterior ellipsoid
is defined by (x − x0)T E(x − x0) ≤ 1. Here,
there is just one free variable τ , compared to
the m(m−1)

2 free variables in (8b), where m is
the number of half-spaces defining the polytope.

However, as stated in (Johansson, 2002), us-
ing the exterior ellipsoid is always more con-
servative than using the S-procedure in (8b).
Therefore, for simple partitions, the ellipsoidal
approach may be more of a liability due to the
effort required for the calculation of the exte-
rior ellipsoid and the increased conservative-
ness. The computational advantages are more
discernible for partitions with a large number
of regions, for which a significant reduction in
the number of decision variables is achieved.

Upper Bound Constraints: The upper bound
constraints in Theorems 1 and 2 can be omit-
ted by enforcing a certain structure upon the
Lyapunov function around the origin. For ex-
ample, when searching for PWQ functions it is
sufficient to enforce that the function has no
affine and offset terms (Lr = 0, Cr = 0) for
the regions containing the origin (0 ∈ Pr) and
for PWA functions it is sufficient to enforce that
the function has no offset terms (Cr = 0) for the
regions containing the origin (0 ∈ Pr). If this
structure is imposed, it follows trivially that an
upper bound on V (x) exists, and the associated
constraints can be omitted.

Lower Bound Constraints: In many practical
cases, it is advisable to completely discard the
lower bound constraints for regions that do
not contain the origin (Johansson, 2002). For



asymptotically stable systems, the decay con-
straint will directly imply that a lower bound
exists. Since this is not true for unstable sys-
tems, it is necessary to check the existence of
a lower bound in the second step. Since the
complexity of SDP solvers is polynomial this
‘divide-and-conquer’ approach will guarantee
faster runtime.

Degree of SOS Multipliers: In SOS-schemes,
the degree of the polynomial functions is a
crucial influence on the likelihood of finding a
Lyapunov function. In order for the constraints
in (13) not to be too conservative, it is advisable
to select the Lyapunov polynomial to be of
the same order as the associated S-procedure
terms. However, as we increase the degree of the
SOS functions, the number of variables in the
associated SDP problem increases fast, placing
a practical limit on tractable problem sizes.
Hence, it may sometimes be advisable to select
the S-procedure multipliers of a lower order
than the associated Lyapunov function, in order
to keep the degrees of freedom limited.

7. CASE STUDY

7.1 Problem Setup

The systems considered in our case study are con-
strained LTI and PWA systems subject to optimal
PWA control. Our case studies were performed
on a large number of random open-loop stable
and unstable systems of order 2 and 3 with one
input. The PWA systems were created by assum-
ing random dynamic matrices defined over four
random non-overlapping polytopes, whose union
covers the feasible state space.

The elements of the dynamic system matrices
were assigned random values between −2 and +2
and the system inputs and states were constrained

‖u(k)‖∞ ≤ 1 and ‖x(k)‖∞ ≤ 10, ∀k ≥ 0. (15)

The control objective was defined by a finite
horizon cost,

J∗(x(k)) =
N−1∑

k=0

min
u
‖Qxx(k + 1)‖p + ‖Quu(k)‖p

(16)
using both the standard squared Euclidean norm
(p = 2) and linear norms (p = 1 and p = ∞).
The weights were always Qu = 10I and Qx =
I. Calculation of an explicit solution to these
optimal control problems all result in a PWA
control law, formalized in the following theorem
(Borrelli, 2003; Bemporad et al., 2002).

Theorem 1. Consider an optimal control problem
(16) for an LTI system subject to constraints

(15). For the set of feasible parameters XN , the
optimizer U∗

N : XN → RN is piecewise affine
(PWA), i.e.

U∗
N (x) = Frx + Gr, if x ∈ Pr (17)

where Pr = {x ∈ Rn|Hrx ≤ Kr}, r = 1, . . . , R.

As a consequence of this theorem, the closed loop
systems we are analyzing in this case study are all
constrained autonomous PWA systems.

Specifically, we applied the control scheme in
(Grieder and Morari, 2003; Grieder et al., 2004)
such that invariant PWA partitions were ob-
tained. This is achieved by posing a receding hori-
zon control problem with an invariance constraint
on the first state, i.e. the state at time k + 1
is restricted to be contained inside the maximal
control invariant set. Although the obtained PWA
partitions are guaranteed to be invariant, there is
no guarantee of asymptotic stability. Therefore,
the schemes in (Grieder and Morari, 2003; Grieder
et al., 2004) rely heavily on the stability analysis
of PWA systems investigated here.

The PWA partitions considered here were ob-
tained for prediction horizons N = 1, 3, 5. The
partitions consisted of 9 to 201 regions with 9
to 515 associated transitions. We chose relatively
small systems since this allowed us to perform the
case study on a large number of systems within a
reasonable amount of time. The large runtime for
the SOS based methods did not allow us to con-
sider partitions with a larger number of regions,
as will be illustrated in Section 7.3.

We will now briefly motivate our selection of sys-
tems which we analyzed. The choice of systems
was mainly driven by two objectives: the stability
analysis must have practical relevance and the
PWA partition must be invariant, as discussed
in Section 2.1. Both of these objectives are nat-
urally met by the controller partitions considered
here. In addition, the control objective (16) was
selected such that the expensive control action
(Qu > Qx) may easily lead to unstable closed-
loop behavior. Finally, the scheme in (Grieder and
Morari, 2003; Grieder et al., 2004) yields PWA
systems of relatively low complexity. Therefore,
the systems used in this case study are a good
choice for the above stated reasons of invariance,
practical relevance and low complexity. Note that
it is not possible to consider random bounded
PWA partitions directly since these will not be
invariant, in general.

All computations were carried in MATLAB, using
the Multi-Parametric Toolbox (Kvasnica et al.,
2003) and YALMIP (Löfberg, 2004).
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(a) N = 1, Initial state is close to origin: Conver-
gent Trajectories.

−6 −4 −2 0 2 4 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

(b) N = 1, Initial state is far from origin: Limit
Cycle Trajectories.
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(d) N = 5

Fig. 1. Closed-loop trajectories for Example 1 for various prediction horizons N .

7.2 Numerical Results - Specific Systems

Before presenting the results of the large scale
case study in Section 7.3, we will focus on specific
systems which exhibit certain properties that we
wish to highlight.

Example 1. Consider the unstable 2nd order sys-
tem with one input defined by

x(k + 1) =
[

1.2 1.2
0 1.2

]
x(k) +

[
1.0
0.5

]
u(k) (18)

The system is subject to the constraints ‖x(k)‖∞ ≤
5 and ‖u(k)‖∞ ≤ 1, ∀k ≥ 1. The control objective
in (16) is defined by the 2-norm and the weights
Qx = I and Qu = 1.

If we apply an optimal controller as in (Grieder
and Morari, 2003) with prediction horizon N = 1
to Example 1, all stability analysis schemes con-
sidered here (PWA, PWQ, piecewise SOS up to
fourth order) fail. When simulating closed loop
trajectories, one can observe that the system con-
verges to the origin if the initial state is close
to the origin, see Figure 1(a). However, if the
initial state is further away, the system reaches
a limit cycle, as is depicted in Figure 1(b). Hence,
the system is indeed not asymptotically stable.

If we increase the prediction horizon to N = 3,
the convergent closed-loop trajectories in Figure
1(c) are obtained. However, none of the techniques
considered here succeeds in finding a Lyapunov
function. If the prediction horizon is increased to
N = 5, the system is stable as can be seen from
the trajectories in Figure 1(d). For the result-
ing partition, it is not possible to find common
quadratic or common quartic Lyapunov functions,
while piecewise quadratic and piecewise quartic
functions can be computed.

This simple example clearly illustrates the conser-
vativeness of certain types of Lyapunov functions
as well as the impact of the controller prediction
horizon N on stability of the closed-loop system.

Figure 2 shows the plots of different Lyapunov
functions for the PWA partition which is obtained
when applying the control scheme in (Grieder and
Morari, 2003) with prediction horizon N = 1 to
the following stable LTI system:

x(k+1) =
[

0.4734 0.6756
0.7353 −0.1321

]
x(k)+

[
0.4776
0.4459

]
u(k)

(19)
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(f) Piecewise SOS order 4

Fig. 2. Different Lyapunov functions for same controller

7.3 Numerical Results - Random Systems

The results in this section were obtained by con-
sidering 100 random PWA systems and 200 ran-
dom LTI systems subject to the control scheme in
(Grieder and Morari, 2003; Grieder et al., 2004)
for prediction horizons N = 1, 3 and 5. Specifi-
cally, the likelihood of successfully computing a
Lyapunov function as well as the associated com-
putation time are given in Tables 1–3.

The solution time corresponds to the time spent
in computing the solution to the problems as
described in the previous sections. The setup time
refers to the time required to do the pre-processing
(e.g. reachability analysis, vertex enumeration)
and actual setup of the constraints. All the SOS
data provided in the following tables were ob-
tained with YALMIP (Löfberg, 2004). See the
discussion in Section 7.4 for details on the choice
of solvers. Note that we have also used the SOS
based code to compute both common quadratic
and PWQ Lyapunov functions, for verification
reasons. The computation times and success rates
were consistent with the results obtained with
the methods in Section 4 and are therefore not
restated here.

If no Lyapunov function could be found with any
method, we analyzed the corresponding partition
through exhaustive simulation. Amongst all the
analyzed partitions for the LTI systems, for less
than 1% of the systems that exhibited convergent
trajectories, the Lyapunov analysis failed. For the
PWA systems however, we were unable to find a

Lyapunov function for nearly 10% of the systems
that exhibited convergent trajectories.

7.4 Discussion of Results

7.4.1. Likelihood of Success

• If the control scheme in (Grieder and Morari,
2003) is applied to stable LTI systems, the
stability analysis of the resulting PWA sys-
tems is very likely to be successful. There are
cases where quadratic and PWA approaches
fail but the PWQ approach succeeds. On
the other hand, we have also observed cases
where the PWA approach succeeds while the
quadratic and PWQ approach fails.

• The stability analysis of the PWA systems
generated by using the control scheme in
(Grieder et al., 2004) for PWA systems has a
higher possibility of failure. The failure rate
of common quadratic and higher order poly-
nomial approaches is the highest. It is much
easier to find a Lyapunov function using
piecewise techniques. This behavior coincides
with our expectations, since the likelihood of
finding a common Lyapunov function over
completely different dynamics is relatively
low.

• It is interesting to observe that the num-
ber of convergent closed-loop systems re-
sulting from unstable LTI systems is much
lower for linear performance objectives, even
though the associated prediction horizons are
much larger than for the quadratic objectives



Partitions obtained for 2nd order PWA systems, N = 1
50 Systems, ∞ norm objective 50 Systems, 1 norm objective

Method Success Solution Time Setup Time Success Solution Time Setup Time
Quadratic 14/45 1.3 sec. 1.7 sec. 6/46 0.9 sec. 1.4 sec.

Piecewise Affine 42/45 0.9 sec. 7.7 sec. 40/46 1.9 sec. 13.1 sec.
Piecewise Quadratic 43/45 6.4 sec. 9.9 sec. 37/46 7.0 sec. 10.8 sec.

Common SOS order 4 19/45 0.9 sec. 0.4 sec. 9/46 0.7 sec. 0.3 sec.
Piecewise SOS order 4 36/45 54.0 sec. 21.3 sec. 22/46 55.2 sec. 23.3 sec.

Table 1. The number of regions were between 29 and 201 with 63-515 transitions.
‘Success’ denotes the number of Lyapunov functions found out of the total number
of systems with convergent trajectories, the ‘Solution Time’ is the cpu-time required
to solve the associated optimization problem and ‘Setup Time’ is the time needed

to pre-process the problem.

Partitions obtained for 3rd order LTI systems, 2 norm objective
50 Stable Systems, N = 1 50 Unstable Systems, N = 1

Method Success Solution Time Setup Time Success Solution Time Setup Time
Quadratic 45/50 0.7 sec. 0.4 sec. 43/50 1.1 sec. 0.5 sec.

Piecewise Quadratic 50/50 1.9 sec. 1.0 sec. 50/50 2.9 sec. 1.5 sec.
Common SOS order 4 50/50 2.2 sec. 0.7 sec. 50/50 3.4 sec. 1.7 sec.
Piecewise SOS order 4 40/50 8.2 sec. 4.3 sec. 13/50 21.5 sec. 9.3 sec.

Table 2. The number of regions were between 9 and 15 with 9-47 transitions.
‘Success’ denotes the number of Lyapunov functions found out of the total number
of systems with convergent trajectories, the ‘Solution Time’ is the cpu-time required
to solve the associated optimization problem and ‘Setup Time’ is the time needed

to pre-process the problem.

Partitions obtained for unstable 2nd order LTI systems, ∞ norm objective
50 Systems, N = 3 50 Systems, N = 5

Method Success Solution Time Setup Time Success Solution Time Setup Time
Quadratic 20/28 1.6 sec. 1.9 sec. 17/17 2.8 sec. 3.9 sec.

Piecewise Affine 20/28 4.8 sec. 22.6 sec. 17/17 10.3 sec. 45.5 sec.
Piecewise Quadratic 26/28 6.7 sec. 12.7 sec. 17/17 11.1 sec. 24.2 sec.

Common SOS order 4 28/28 1.7 sec. 1.1 sec. 17/17 1.8 sec. 1.1 sec.
Piecewise SOS order 4 23/28 43.5 sec. 24.0 sec. 16/17 97.7 sec. 52.2 sec.

Table 3. For N = 3 the number of regions was between 40 and 72 with 56-154
transitions. For N = 5 the number of regions was between 70 and 184 with 100-363
transitions. ‘Success’ denotes the number of Lyapunov functions found out of the
total number of systems with convergent trajectories, the ‘Solution Time’ is the
cpu-time required to solve the associated optimization problem and ‘Setup Time’ is

the time needed to pre-process the problem.

(see Tables 2 and 3). The cause of this is
not apparent, but part of ongoing research.
The large number of convergent closed-loop
systems which were obtained by controlling
PWA systems (see Table 1) is attributable to
the fact that not all of the random PWA sys-
tems were unstable. Note that it is impossible
to generate random unstable PWA systems.

• Theoretically, a higher order S-Procedure as
illustrated in (14) should have a positive in-
fluence on the likelihood of successful analy-
sis, since it allows for higher order approxi-
mations of the polytopic regions. In practice,
however, higher order multipliers result in
more frequent numerical problems and the

likelihood of successful analysis is decreased.
In hundreds of simulations we have not been
able to find a PWA partition where the SOS
approaches outperform the lower order SDP
schemes.

• It was observed that the numerical problems
associated to the SOS approaches occur re-
gardless of SOS (Löfberg, 2004; Prajna et
al., 2004) and SDP (Sturm, 1999; Toh et
al., 1999) solver. Problem specific solvers or
novel problem formulations may be able to
alleviate the numerical issues. We have not
been able to satisfactorily deal with the nu-
merical issues resulting from the SOS prob-
lems. As a consequence, the success rates of



the SOS approaches remained disappointing.

• Recovering from numerical problems in the
optimization problems and dealing with the
associated low quality solutions, is much
more straightforward for linear and quadratic
Lyapunov functions, compared to SOS based.
The reason is that validity of a quadratic
Lyapunov function easily can be checked
a-posteriori by, e.g., checking eigenvalues.
Checking the validity of slightly perturbed
SOS decompositions is however much more
intricate. This problem is part of on-going
research and has already motivated the in-
troduction of a post-processing algorithm in
the SOS module in YALMIP (Löfberg, 2004).

• Using the minimum volume exterior ellip-
soids to reduce the number of variables has a
surprisingly strong impact on the likelihood
of successful analysis, i.e. it is much harder
to find Lyapunov functions.

• Overall, it was observed that the simpler
functions like common quadratic, PWA, PWQ
were most effective in obtaining a certificate
of stability for the type of problems consid-
ered here. Overall, the percentage of systems
exhibiting convergent behavior for which no
Lyapunov function was found is below 5%.

7.4.2. Computation Time

• The overall computation time correlates di-
rectly to the number of regions and, more
importantly, to the number of transitions
which occur between regions. In general, un-
stable LTI systems result in more complex
partitions such that the associated stability
analysis is more time consuming.

• Since the PWA Lyapunov function computa-
tion requires vertex enumeration of the poly-
topes defining regions and transitions, the
problem setup time is larger than for the
quadratic and PWQ case.

• In general, the linear cost objectives generate
partitions consisting of more regions than
those obtained for quadratic cost objectives.
Hence, the associated analysis is more time
consuming.

• The piecewise SOS scheme, although being
theoretically more powerful than the other
techniques has practical limitations. As is
clear from the tables, much of the compu-
tation time is spent in setting up the prob-
lem. The reason is the large amount of sym-
bolic manipulation of higher order polynomi-

als needed for the SOS formulations.

• Neglecting the lower bound constraints in the
problem formulation as described in Section
6 leads to large speedups, especially in the
SOS based cases.

• Exterior Ellipsoids: For the partition sizes
considered here, no runtime benefit was ob-
tained by computing the exterior ellipsoids a
priori. A benefit may result for larger parti-
tions.

8. CONCLUSION

An extensive survey of various methods of com-
puting Lyapunov functions for discrete-time PWA
systems was presented in this paper. First, the ba-
sic building blocks (e.g. reachability analysis) and
assumptions (e.g. set invariance) were established.
Second, it was shown how to compute PWA, PWQ
and higher order piecewise polynomial Lyapunov
functions for discrete-time systems. The computa-
tion schemes for PWA and higher order piecewise
polynomial functions were not previously pub-
lished for discrete-time PWA systems.

Finally, the results of an extensive case study are
given. The PWA systems considered here are the
result of applying the control scheme in (Grieder
and Morari, 2003; Grieder et al., 2004) to random
LTI and PWA systems. We consider the resulting
autonomous PWA systems to be a good choice for
our case study because of invariance of the con-
trolled set, practical relevance and low complexity
of the partition. Note that it is not possible to con-
sider random bounded PWA partitions directly
since these will not be invariant, in general. Un-
bounded PWA systems were not considered due
to the limited practical relevance. The case study
illustrates that simple Lyapunov functions (i.e.
quadratic, PWA or PWQ) are generally sufficient
for analyzing discrete-time PWA systems of the
type considered here.

All tools as well as the random systems be down-
loaded from (Kvasnica et al., 2003).

REFERENCES
Bemporad, A. (2004). Efficient conversion of mixed logical

dynamical systems into an equivalent piecewise affine
form. IEEE Trans. Automatic Control 49(5), 832–838.

Bemporad, A. and M. Morari (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica 35(3), 407–427.

Bemporad, A., G. Ferrari-Trecate and M. Morari (2000).
Observability and controllability of piecewise affine
and hybrid systems. IEEE Trans. Automatic Control
45(10), 1864–1876.

Bemporad, A., M. Morari, V. Dua and E.N. Pistikopoulos
(2002). The explicit linear quadratic regulator for
constrained systems. Automatica 38(1), 3–20.



Borrelli, F. (2003). Constrained Optimal Control Of Linear
And Hybrid Systems. Vol. 290 of Lecture Notes in
Control and Information Sciences. Springer.

Boyd, S., L. El Ghaoui, E. Feron and V. Balakrish-
nan (1994). Linear Matrix Inequalities in System
and Control Theory. Studies in Applied Mathematics.
SIAM.

Feng, G. (2002). Stability analysis of piecewise discrete-
time linear systems. IEEE Trans. on Automatic Con-
trol 47(7), 1108–1112.

Ferrari-Trecate, G., F. A. Cuzzola, D. Mignone and
M. Morari (2002). Analysis of discrete-time piecewise
affine and hybrid systems. Automatica 38(12), 2139–
2146.

Grieder, P. and M. Morari (2003). Complexity reduction of
receding horizon control. In: Proc. 42th IEEE Conf.
on Decision and Control. Maui, Hawaii, USA.

Grieder, P., M. Kvasnica, M. Baotić and M. Morari (2004).
Low complexity control of piecewise affine systems
with stability guarantee. In: Proc. of the American
Control Conference. Boston, USA.
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