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Abstract: An approach of generating multiple pseudo random bits from a single
spatiotemporal chaotic system is proposed in this paper. A coupled map lattice
is adopted as a prototype of a spatiotemporal chaotic system. The cryptographic
properties of the pseudo random bits generator based on the coupled map lattice
(CML-MPRBG) are analyzed, and simulation results show that the CML-MPRBG
is a good candidate for generating keystreams in cryptography. C’opyright© 2005
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1. INTRODUCTION

Recently, spatiotemporal chaos has been attract-
ing more and more interests from researchers in
the fields of mathematics, physics and computer
engineering. Much research has been devoted
to controlling and synchronizing spatiotemporal
chaos using various methods. Especially, synchro-
nization of spatiotemporal chaos has been applied
to secure communication (Wang et al., 2002; Tang
et al., 2003), where the information are masked
and transmitted simultaneously, and as a result,
the communication efficiency is greatly enhanced.
It motivates the research of applying spatiotem-
poral chaos to generate multiple Pseudo Random
Bit Sequences (PRBSes) at one time, thus to pro-

I Thanks Dr. Shujun. Li at City University of HongKong
for the fruitful discussion and for his valuable comments
to the paper. Thanks also go to Dr. F.H. Willeboordse at
the National University of Singapore for his help in the
simulation of the paper.

vide a fast Multiple PseudoRandom Bit Generator
(MPRBG) with good cryptographic properties for

cryptography.

In fact, spatiotemporal chaos has its evident ad-
vantages in cryptography. It is well known that
any chaotic orbit will eventually be periodic in
computer realizations with a finite precision. How-
ever, since the period of an chaotic orbit with
a sufficiently large number of chaotic coupled
oscillators is too long to be reached in the re-
alistic communications, periodicity is practically
avoided in spatiotemporal chaotic systems. More-
over, since spatiotemporal chaotic systems have
large numbers of positive Lyapunov exponents, bit
diffusion and confusion are conducted in multiple
directions and high dimensional variable spaces,
thus become very strong (Tang et al., 2003).

Most chaos-based pseudo random bit generators
are obtained directly by sampling the orbit of a
single chaotic system, where the PRBS exposes



some information about the chaotic system, con-
sequently, it may be not so appropriate for cryp-
tography. From this point of view, spatiotemporal
chaotic systems as high dimensional chaotic sys-
tems have potential to be used to generate more
secure PRBS. In addition, chaos-based pseudo
random bit generators mostly generate only one
PRBS, however, a number of PRBSes can be
obtained simultaneously from a spatiotemporal
chaotic system, which provides a more secure
and faster solution for generating keystreams in
cryptography. In this paper, an algorithm of gen-
erating a multiple pseudo random bits genera-
tor based on spatiotemporal chaos is proposed.
It possesses very good cryptographic properties,
such as long period, balance, large linear complex-
ity, 6-like auto-correlation and close-to-zero cross-
correlation, all of which will be analyzed in this
paper. Therefore, the MPRBG can generate good
keystreams for cryptography.

The rest of the paper is organized as follows.
Section 2 describes the construction of the CML-
MPRBG. In section 3, cryptographic properties
of the CML-MPRBG are analyzed numerically,
and the results show the CML-MPRSG is fit to
be applied in cryptography. Finally, conclusion is
drawn in section 4.

2. CONSTRUCTING A MPRBG BASED ON
SPATIOTEMPORAL CHAOS

2.1 A Spatiotemporal Chaotic System

Spatiotemporal chaotic systems are often modeled
by partial differential equations (PDE), coupled
ordinary differential equations (CODE), or cou-
pled map lattices (CML) (Schuster(ed.), 1999).
These systems exhibit chaotic properties both in
time and space.

In this paper, CML is adopted as the model
of a spatiotemporal chaotic system. There are
two main merits of using CML. One is that
CML captures the essential of spatiotemporal
chaos. Another is that CML can be easily handled
both analytically and numerically (Schuster(ed.),
1999).

The spatiotemporal chaos in CML is created by
local nonlinear dynamics and spatial diffusion.
By adopting various nonlinear mappings for local
chaos and various discretized diffusion processes,
which are also regarded as coupling, various forms
of CML can be obtained. The logistic map as the
local map and the nearest-neighbor coupling are
popularly used.

A general nearest-neighbor coupling CML can be
described as

Tpt1i = (1 =€) f(wni) + E[f<xn,i+1) + f(@n,i-1)],(1)
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Where n = 1,2, ... is the time index, ¢ = 1,2, ...L
is the lattice site index with a periodic boundary
condition, f is a local chaotic map in the interval
I and € € [0,1] is a coupling constant. Here, the
logistic map is taken as the local map, that is,

f(x) = ra(l — =), (2)

where r € (0,4] is a constant.

2.2 Construction of the MPRBG via Digitization

A PRBS is generated by digitizing the chaotic out-
put of a lattice site of the CML. Define the chaotic
orbit generated from ith lattice site as {z,;}.
By digitizing {z,:}, a PRBS, S; = {sn:,n =
1,2,..., }, can be generated. Varieties of digitiza-
tion methods have been proposed. One of them
has been proposed in literature and is applied in
the paper.

Zn,; can be represented as a binary sequence
Tni = (O.bn7i71,bn,i72,...,bn,i7p), P stands for a
certain precision. Therefore, {b1 ; m,b2,im, ---bn i,m
.}, 1 < m < P, consist a PRBS. In this
method, P chaotic binary sequences can be de-
rived (Sang et al., 1998; Argenti et al., 2000; Pa-
reek et al., 2003; Kocarev and Jakimoski, 2003).

Based on the digitization method, a PRBS can
be generated from the output of a lattice site of
the CML. By simultaneously obtaining L. PRBSes
from the outputs of L lattice sites, a MPRBG can
be constructed based on the CML.

3. PROPERTIES OF THE MPRBG

To get cryptographically good PRBS, the CML
must satisfy the following requirements from
chaos theory and cryptographic points of view,
respectively.

3.1 Chaotic Properties

e Positive Leading Lyapunov exponent
To get chaotic outputs of CML, the largest
Lyapunov exponent of CML must be posi-
tive. The ith Lyapunov exponent is defined
as,

1
A; = lim —In[ith eigenvalue ofJ,,_1J,,—2...Jo],(3)

n—oo n

where J,, is the Jacobian matrix at time n.
The (i,7)th element of J, is J,(¢,7), which
is obtained as,

O%ny1,i
n)i,j — — s 4
(n)es = S22 (@



The nth Jacobian matrix of (1) is derived
as,

Ini,3) = /(@0 ) (1= i+ 56151+
215]L+51J+1+5ZL5J 1))
1,4f i=3j (5)
0, Zf Z#J’
1,2

For the CML (1), the parameters of CML
such as r, € and the dimension of system,
L, should be selected within certain ranges
where the largest Lyapunov exponent of the
CML is positive. In terms of (3), (5)and (1),
we calculate the largest Lyapunov exponent
of the CML with regard to varieties of r, €
and L, respectively, as shown in Fig. 1. As
we can see, CML operates chaotically with
r=4,¢=0.9, L =064.

Ergodicity

As a chaotic system, the CML can exhibit
ergodicity. The ergodic property of chaotic
maps is closely related to the property of
diffusion in encryption algorithms.

A chaotic system is called ergodic if the
time average of a typical orbit are the same as
the state space average, which is weighted by
the probability that a trajectory visits a par-
ticular portion of the state space (Hilborn,
2000). The Frobenius-Perron (FP) operator
P associated with iterated sequence {z,,} can
be used as a criterion for judging ergodicity,
that is to say, if there is a stationary probabil-
ity density function p*(x) of P and p*(z) >
0, then {z,} is ergodic in I (Lasota and
Mackey, 1997). Since a PRBS is derived from
a site of the CML, we concern the probability
density function of a single site, p(z), which
can be measured based on the probabil-
ity density function of L-dimensional CML,
p(Z). With the notation Z, = (Tn1, ..., Tn,L.)
and f(Zn) = (F(zn1), f(2n1), & com-
pact form of the CML (1) reads,

Ty = Af(Z,),
€
A= (1—¢€)dij+ 5(5@3‘—1 + 0105, (6)
+0i,j+1 + 6:,0.05,1)
The Frobenius-Perron operator for the N-

dimensional probability density p is defined
as,

—

P = Gx L ® O

where §/ is the solution given by (Kaneko(ed.),
1993),

A ®)

In terms of (7), the probability density of
a single site can be self-consistently derived
as (Kaneko, 1989):

PSPF
=) // S )dyody% (9)
|f
where 1 € £ (03], 7 =~ 55

fﬁl([ovx]) = [Ov %77 v1— l‘] [%Jr% V1-—z, 1]'
In general, probability distribution can only
be solved numerically based on (9). In Fig. 2
numerical results show that r has influence
on distribution, while neither € nor L have
significant influence. The bigger r 1is, the
closer to a stationary one the probability

density is. Therefore, r should be chosen as
4.

3.2 Cryptographic Properties

To generate secure keystreams, the CML-MPRBG
should have good cryptographic properties (Sang
et al., 1998; Li, 2003).

e Long period
Since chaotic maps are realized in com-
puter with a finite precision, the short pe-
riod problem of chaotic orbits is inevitable.
However, the period of CML with L lattices
is about 1070-4L252x0-47L ~ 107l (Wang
et al., n.d.), and the period of PRBS gen-
erated from CML-MPRBG is about 107%,
Therefore, when L > 5, the period of CML-
MPRBG satisfies the requirement of cryp-
tography since a length of order O(2'%0) is
cryptographically long.
e Balance
Since Sy = {s1, 2, ...84, ..., SN }, where N
stands for iteration times, generated from the
CML-MPRBG, is a binary sequence, uniform
distribution function, namely balance, of Sy
means P(s; = 0) = P(s; = 1), in other
words, the ratio between the number of {s; =
0} and that of {s; = 1} equals to 1.
e Large linear complexity
Let L, denote the linear complexity of
SN, the sequence {L,,n = 1,2,..N} is
called the linear complexity profile of Sy,
which can be computed using the Berlekamp-
Massey algorithm and be graphed by plotting
the points (n, L) in the n x L plane and
joining the successive points by a horizontal
line followed by a vertical line, if necessary.
The expected linear complexity of a random
sequence should close to L = N/2 (Menezes
et al., 1997).
o Close-to-zero cross-correlation
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PRBSes can be generated simultaneously
from CML-MPRBG. If being independent of
each other with zero-value cross-correlation,
they can be used to encrypt many plaintexts
at one time. The cross-correlation function
between two PRBSes is defined as a nor-
malized cross-covariance function (Xiao et
al., 1996):

Cij(1) = Cij(7) /) Cii(0)C;5(0),

N—|7|

Cij(1) = & 2
|7 =1,..,2N —1,

where Cj; stands for the cross-covariance
between the ith PRBS and the jth PRBS,
by, is the nth bit of the ith PRBS, and b4 ;
is the average value of by, ;.
é-like auto-correlation

The autocorrelation of Sy measures the
amount of similarity between the sequences
Sy and a shift of Sy by t positions. d-like
auto-correlation is required for a good PRBS.
The definition of auto-correlation is a special
case of cross-correlation with the form as:
Cii(1) = Cii(1)/C3i(0),
R 1 N—||

Cu(T) =

N n=1
7| =1,..,2N — 1,

Using the digitization method described in sec-
tion 2.2 can obtain a MPRBG. Its cryptographic
properties are shown in Fig. 3. Here, one of 64
PRBSes is randomly chosen for testing its dis-
tribution, linear complexity and auto-correlation.

> (bni = bai) (busjrl,; — ba), (10)

Additionally, two of 64 PRBSes are randomly
chosen for testing their cross-correlation.

As we can see, the PRBS is almost balance, the
linear complexity of the PRBS is about N/2, the
auto-correlation of the PRBS is d-like, and the
cross-correlation of the PRBS is close to zero.
Therefore, CML-MPRBG has good cryptographic
properties.

4. CONCLUSION

A novel pseudo random bits generator based on
spatiotemporal chaos has been presented in this
paper. By constructing an appropriate coupled
map lattice system, multiple chaotic numbers can
be simultaneously obtained from lattices of the
CML. With a suitable digitization method, many
PRBSes are derived at one time. Numerical re-
sults have shown that the CML-MPRBG has per-
fect cryptographic properties. Moreover, multiple
PRBSes can be used to encrypt many plaintexts
at one time or to serve as keys in block ciphers.
In a word, regarding the CML-MPRBG as the
keystream generator in a cipher, the security and
speed of encryption can be considerably improved.
The application of the CML-MPRBG in cryptog-

Z (bni = ba,)(brt |7 — bai), (11)raphy and its security analysis will be carried out

further.
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