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1. Introduction 
 

Cryptography, defined as the science and study of 
secret writing, concerns the ways in which 
communications and data can be encoded to prevent 
disclosure of their contents through eavesdropping or 
message interception, using codes, ciphers, or other 
methods, so that only certain people can see the real 
message. The science of cryptography is very old, and 
can be traced to Ancient Egypt. From Julius Caesar to 
Mary, Queen of Scots to Abraham Lincoln's Civil 
War ciphers, cryptography has been a part of the 
history. At that time, cryptography was concerned 
only by those associated with the military, the 
diplomatic service and government in general, and 
was used as a tool to protect national secrets and 
strategies. 

Nowadays, Internet has become an indispensable part 
of our daily life. However, over the Internet various 
communications, such as E-mails, or the use of 
WWW browsers, are not secure for sending and 
receiving information. Therefore, varieties of 
cryptographic methods have been proposed to secure 
Internet communication. For instance, the Data 
Encryption Standard (DES) was adopted as a U.S 
Federal Information Processing Standard for 
encrypting unclassified information. Others include 
IDEA (International Data Encryption Algorithm), and 
RSA (developed by Rivest, Shamir and Adleman), 
these encryption algorithms are based on number 
theory. However, none of them is absolutely secure.  

Cryptography can be strong or weak. Cryptographic 
strength is measured in the time and resources, which 
would require to recover the plaintext. A strong 
cryptography makes ciphertext difficult to be 
deciphered without possession of the appropriate 
decoding tool. In other words, given all of today's 
computing power and available time - even a billion 
computers doing a billion checks in a second, it is still 

impossible to decipher the result of strong 
cryptography before the end of the universe. 
Straightforward, one would think that even that strong 
cryptography would hold up rather well against even 
an extremely determined cryptanalysis. Nevertheless, 
no one can prove that the strongest encryption 
obtainable today will hold up under tomorrow's 
computing power. Therefore, some emerging 
theories, such as chaos theory, can be adopted to 
strengthen the existing cryptography. 

 The reason of applying chaos theory in cryptography 
lies in its intrinsic essential properties, such as the 
sensitivity to initial conditions (or control parameters) 
and ergodicity, which meet Shannon requirements of 
confusion and diffusion for cryptography. Shannon 
wrote in his seminal paper (Shannon 1949): In a good 
mixing transformation … functions are complicated, 
involving all variables in a sensitive way. A small 
variation of any one (variable) changes (the outputs) 
considerably. An important difference between chaos 
and cryptography lies on the fact that systems used in 
chaos are defined on real numbers, while 
cryptography deals with systems defined on finite 
number of integers. Nevertheless, it is believed that 
the two disciplines can benefit from each other 
(Baptista 1998). 

Chaotic cryptosystems can be analog or digital. The 
analog ones are based on chaotic synchronization 
technique, which was proposed in (Pecora 1990), to 
design analog circuits for secure communications via 
noisy channels. But this can not be extended to design 
modern cryptographic algorithms implemented with 
digital techniques (Frey 1993). The digital chaotic 
ciphers can be categorized into stream ciphers and 
block ciphers. Stream ciphers employ chaotic systems 
to generate pseudo-random keystream to mask 
plaintext, while block ciphers use the plaintext and/or 
the secret keys multiple times to obtain ciphertext. In 
addition, some other chaotic encryption schemes have 
also been proposed and tested (Kotulski 2000, 



 

     

Schneier 1996, Szczepanski 2000, Wong 2001, Zhou 
1997). In this paper, we focus on designing chaotic 
pseudo-random number generators (CPRNG) with 
chip implementation, because it turns out that pseudo-
random number generators (PRNG) play a central 
role in the construction of encryption schemes. The 
security of many cryptographic systems depends on 
the generation of unpredictable quantities, such as the 
keystream in the one-time pad, the secret key in the 
DES encryption algorithms, the primes p, q in the 
RSA encryption and digital signature schemes, etc. 
CPRNGs have particularly attractive properties which 
guarantee the uniqueness of the generated sequences 
for any chosen seed and the independence of the 
generated numbers along the obtained trajectory (the 
sequence). 

 
2. CHAOTIC PSEUDO-RANDOM NUMBER  

GENERATORS 
 

In this section, we discuss how to construct a CPRNG 
and analyze its properties. To ensure the required 
statistical properties of generated sequences the 
systems are not only chaotic but also ergodic or even 
mixing. Traditionally, statistical testing was used to 
assess or estimate the quality of the proposed 
CPRNGs. For instance, the American norm FIPS 140-
2 is one of the standard benchmarks (NIST 2001). 
 
 

2.1 Generating Chaotic Pseudo-Random Bit 
Sequence. 

 
Given a dynamic system, ),( φX , with a normalized 
invariant measure µ . Divide the state space X  in 

some appropriate way into two disjoint parts, 0X  

and 1X , such that 2/1)()( 10 == XX µµ  and 

take an initial value Xx ∈0 as a seed. 
 
To obtain a pseudo-random bit sequence we start to 
observe the evolution of the system governed by φ  

initiated from 0x , i.e., the sequence )( 0xx n
n φ= . 

Then, the n-th bit nb  of the sequence is determined 
by the coin-tossing formula: 
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Thus, an infinite bit sequence, 
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 is a Cartesian product. Owing to the 

intrinsic properties of chaos, like the extreme 

sensitivity to initial conditions, ergodicity and mixing, 
the CPRNG possesses the fundamental properties: 
unique dependence of the sequence on the seed, 
equiprobable occurrence of “0” and “1”, asymptotic 
statistical independence of bits, and so on. 
 

2.2 Properties of the CPRBG. 
 
2.2.1 Sensitivity to initial conditions 

 
Theorem 1. For each Xx ∈0  the following holds 
true: 

( ) .0))(( 0
1 =− xbB iµ  

Theorem 1 says that if we take two different seeds in 
the generator, then with probability one, we obtain 
two different sequences of bits. In practice, due to 
chaos, and with some appropriate partitions, two 
different seeds lead to completely different sequences 
(Kotulski 2000, Szczepanski 2000). 

 
2.2.2 Ergodicity 
 
Ergodicity implies that the space X  can not be 
divided into invariant nontrivial (w.r.t the measure 
µ ) disjoint parts. Therefore, if a trajectory starts 

from any point Xx ∈0 , it never settles in a small 
region, and even though knowing the final state of the 
system we can never identify the region (smaller than 
X ) where the trajectory started. By ergodicity we 

obtain that the expected number of “0” bits in the 
generated sequence is equal to the expected number 
of “1” bits.  
 
We say that a dynamic system ),( φX  is ergodic if 
and only if it has only trivial invariant sets, i.e., if and 
only if either ( ) 0=Bµ  or ( ) 0=BXµ , wherever 
B  is a measurable, invariant under φ , subset of the 
space X  (the invariance of B  means that 

BB ⊂)(φ ). 
 
To be more precise, applying the Birkhoff-Khinchin 
Ergodic Theorem to the system yields: 
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where 0xχ  is the indicator function of the set 0X  

and Xx ∈ . Since by our assumption ( ) 210 =Xµ  
we obtain that in the pseudo-random sequence 
determined by the seed x  the average number of “0” 
tends to 21 . 
 
2.2.3 Mixing 

 
The mixing property means that any measurable set 

XA ⊂  will be −µ uniformly distributed over the 
whole state space X  under iterations. We give the 
following theorem without proof, which states that 



 

     

the bits generated by CPRBG are asymptotically 
independent. 
Theorem 2. For K,2,1=n , the bits nB , knB +  
(considered as random variables) generated by a 
given mixing dynamical system ),( φX  are 
asymptotically independent as k  increases (Kotulski 
2000, Szczepanski 2000). 
 

2.3 Chaotic maps. 
 
Many existing chaotic maps can be adopted to 
generate pseudo-random bit sequence, such as the 
Logistic map, )1(41 nnn XXX −=+ , with its 

analytic solution, )arcsin2(sin 0
2 XX n

n = , 
and the Baker’s map, 
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These can be extended to more general forms, as 

( )0
2 arcsinsin XkX n

n = , for K,4,2=k  and 

[ ]1,0∈iX , and ( )0arcsinsin XkX n
n = , for 

K,3,1=k  and [ ]1,1−∈iX , as well as 

( )0cosarccos1 XkX n
n π

π
= , for 2>k , which 

corresponds to the Baker’s map. In addition, all the 
known solutions can be represented as the following 
general form: 

( )n
n TX κθΨ= , 

where )(tΨ  represents a periodic function 
(trigonometric, elliptic, hypoelliptic, Weirstrass, etc.), 
κ  is an integer number, T  is the period of )(tΨ , 

( )TX θΨ=0  is the initial condition of the chaotic 

system (θ  is a real parameter defining this 
condition). 
 
The Lyapunov exponent of such a system can be 
calculated as κλ ln= . These exactly solvable 
chaotic systems enable us to increase the accuracy 
and the speed of calculations. 
 
2.4 Generating Chaotic Pseudo-random Numbers 
 
It is known that each integer can be represented as a 
binary: 
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In order to obtain a highly random number with 
uniform distribution, we can randomly select each bit 
to correspond to the binary representation of an 
integer. That is to say, we use above obtained CPRBS 

to get the sequence ( )nMn bbbZ 110 ,, −= K . Since 

kb  is taken from set { }1,0  with probability 
2
1

, and 

an integer is obtained after M  such independent 
events, the integer can take any value between 0  and 

12 −M  with equivalent probability M2
1

. 

 
3.  Implementation of the CPRNG on Chips 
 

A chip implementation of the CPRNG is described in 
Fig.1 with an adoption of Logistic map. To generate 
an integer in between 0  and 12 −M , M sets of 
CPRBSGs are built in. For each set, a chaotic 
sequence is first generated then fed into a comparator 
to get a binary sequence by one bit quantization.  
 
However, in practice, the chaotic pseudo-random 
numbers are generated by computers in which 
computerization is in finite precision, which results in 
the appearance of period in CPRNS. In this case, the 
digitized nonlinear map is no longer chaotic and 
instead it shows a kind of stabilization, which leads to 
a random cycle length in CPRNS. Numerical 
simulations have shown that the cycle length is 
related to the computational precision and depends on 
the initial conditions. To solve this problem, a 
feedback mechanism is introduced here to increase 
the cycle length of the digitized chaotic map. 
 

 
Fig. 1  Block scheme of the CPRNG 

 
3.1 Chaotic Nonlinear Feedback Shift Registers 
 
A feedback shift register is shown in Fig. 2, which 
consists of two parts: an n-bit register to right shift 
bits and a feedback Boolean function 

),,( 21 naaaf K  to feed a binary value back to 

input. ),,( 21 naaaf K  can be either linear or 
nonlinear. A linear feedback Boolean function is 
often employed for simplifying the design and 
analysis. However, it is demonstrated that employing 
nonlinear feedback Boolean function, which is 
derived from a 1-D chaotic map, can greatly increase 
the cycle length. 
The block diagram of the pseudo-random bit 
sequence generator is illustrated in Fig. 3, where the 



 

     

digitized chaotic map takes the form of 
nkxckx 2mod)1)(()1( +=+ , followed by a 

comparator as a feedback Boolean function. Two 
 

 
Fig.2 Feedback shift register 

parameters, c and 0x , which are of n-bit length, 
determine the behavior of the bit sequence. So far, 
many digitization methods have been proposed. Here, 
the adopted digitization method is described as 
follows. At the k-th step, the integer input to the 
digitized chaotic map is kk

n
k
n xxxkx 021)( K−−= , 

where k
ix  is the i-th bit of the integer. After one 

iteration, we get the output, 
1
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output of the feedback Boolean function is: 
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The bipolarized value b  is further operated with 
plain-bit to get a feedback bit *b . The *b  is 
appended at the end of )(kx  and the new )(kx  is 
left-shifted by one bit to get a new interger 

*
02

* )1( bxxkx kk
n K−=+ , which is to be used in 

the next round of iteration. 
 
 

 
Fig.3 Structure of the chaotic pseudo-random bit 

sequence generator 
3.2 Chaotic Pseudo-random Number Generator  
 
The pseudo-random bit sequence generated by 
CNFSR is highly uncorrelated and of long circle 
length, therefore, a CPRNG consisting of sets of them 
is easily realized with good performance.  
 
For simplicity, we construct a CPRNG with 8 sets of 
CNFSRs, as shown in Fig.4. The coupling of the 
CPRNSs complicates the ensemble behavior of the 
CPRNG and diffuses and confuses each CPRBS.  

 
Fig.4 CPRNG with coupled CNFSR sets 

 
3.3 Chip Implementation 
 
Using the above proposed chaotic pseudo-random 
number generator, we can encrypt digitized texts, 
speeches or images byte by byte. Here, an image 
encryption is taken as an example for illustration. 
 
The proposed encryption scheme is suitable for 
hardware implementation due to without float-point 
operation. To integrate the algorithm into a chip, only 
some registers, fix-point multipliers, comparators and 
some other logic circuits are needed, as shown in 
Fig.5. 
 

 
Fig.5 Chip design of a set of NFSR 

Eight sets of such modules constitute an encryption 
chip to encrypt data byte-wise. The interface of the 
chip is shown in Fig.6. The interface circuit is very 
simple and the chip design is also not complex, thus it 
can be easily integrated into handhold or mobile 
devices. 

 
 

Fig. 6 Interface of chaotic encryption chip 



 

     

3.4 Experimental Results 
 
Fig.7 shows the histograms of encrypted-images, 
which are uniform. It makes statistical attacks 
difficult. 
 

 
Fig.7 Histograms of plain-image and encrypted image 

XOR-ed with sequence of CPRN 

 
A secure encryption should resist known plain-text or 
chosen plain-text attack, each of which can be used 
by opponents to dope out cipher keys so that the 
cryptosystem is broken. If we have two pieces of 
plain-texts, P  and *P , such that ε<<− *PP , 

and if their corresponding cipher-texts )(PEC =  

and )( ** PEC =  are significantly different, i.e., 

MCC >>− * , we say that the encryption scheme 

E  is sensitive to plain-text. If an encryption scheme 
is sensitive to plain-text, it can resist known plain-text 
or chosen plain-text attack. Since the proposed 
encryption scheme has used cipher-bits feedback, the 
encrypted output is highly correlated to its 
corresponding plain-text. Thus, it can resist known 
plain-text or chosen plain-text attack. Two images are 
employed here for illustration, which have only one 
byte difference on the top-left regions. The 
experimental results are shown in Fig. 8, where we 
can find that almost all pixels have been changed after 
one pixel on top-left corner was modified. Actually, 
the ensemble pixel difference of the two encrypted 
images is about 92.58%. 
 

4. Concluding Remarks 
 
In this paper, chaos-based cryptography is surveyed 
with focus on designing chaotic pseudo-random bits 
generators for stream cipher. A chaotic stream 
encryption scheme is proposed with chip 
implementation. In particular, it uses the digitized 
chaotic map instead of a continuous one, which 
simplifies chip design and makes it easy for hardware 
implementation. Experimental results have illustrated 
the effect of the proposed scheme. In the future, the 
detailed chip design and other tests will be further 
carried out. 
 

 
Fig.8 Sensitivity to a slight change in plain-text 
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