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Abstract: Tracking control of nonlinear systems subject to constraints on the input
is a challenging issue in control design. Forcing saturation on a previously designed
controller may in general lead to destabilization or at least result in performance
losses. Hereby it is shown that for a certain class of nonlinear monotone systems it
is possible to design a suitable static nonlinear output feedback which stabilizes the
system and preserves stability under control saturation. Copyright c©2005 IFAC
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1. INTRODUCTION

An important class of dynamical systems is that of
monotone systems. Among the classical references
in this area are the text-book (Smith, 1995) and
the papers (Smale, 1976; Hirsch, 1985; Hirsch,
1988). Monotone systems are those for which
trajectories preserve a partial ordering on the
states. Recently the notion of monotonicity has
been extended to systems with inputs and out-
puts (Angeli and Sontag, 2003; Angeli and Son-
tag, 2004a; Angeli and Sontag, 2004b) in order
to understand system interconnections arising in
mathematical biology. Monotone systems include
certain classes of competitive and cooperative sys-
tems (De Leenheer and Aeyels, 2000; De Leenheer
and Aeyels, 2001a) for which different state vari-
ables attenuate (negative feedback) or reinforce
(positive feedback) each other respectively. More
in general, for systems which preserve the par-
tial order induced by an arbitrary given orthant,
each pair of variables may affect each other in a
mixed form (Angeli and Sontag, 2003). Examples
of applications of this theory are in many different
areas such as, for instance, chemistry (chemical
reaction networks) (Angeli et al., 2004; Volpert et

al., 1994), ecology, molecular biology and econ-
omy to name a few. When the dynamics are
linear and the positivity cone is the positive or-
thant, monotone systems boil down to the so
called positive linear systems. This is itself a
very interesting class of systems which (in con-
tinuous as well as discrete time) has attracted
a lot of attention in the control literature; see,
for instance, (Luenberger, 1979; Muratori and Ri-
naldi, 1991; Valcher, 1996; Farina and Rinaldi,
2000; De Leenheer and Aeyels, 2001b; Piccardi
and Rinaldi, 2002).

So far much attention has been devoted to the
analysis of monotone systems and to the study
of their interconnections; much less is known as
far as specific control synthesis tools which could
exploit monotonicity in some respect. One of the
major problems in control theory is the design
of an offset-free tracking control law for nonlin-
ear systems subject to constraints on the input.
The present paper shows that, for a certain class
of nonlinear monotone systems, it is possible to
design a static output controller in a straight-
forward way and then force saturation on the
input without loss of stability and providing some



optimality in the performance. The resulting con-
trol strategy is applicable in a simple way and
its computational burden is very low. The paper
is organized as follows. First a review of basic
definitions and results on monotone systems is
carried out in section 2. Then the main results
on the convergence properties of the saturated
control are presented and proved in section 3. The
applicability of the method and its effectiveness is
illustrated by means of a simulative example in
section 4. Finally some conclusions are drawn in
section 5.

2. PROBLEM FORMULATION

Consider the following continuous-time nonlinear
system

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

(1)

where the map f(x, u), defined for x ∈ X ⊆ IRn

and u ∈ U ⊆ IR is continuous in (x, u) and
locally Lipschitz continuous in x locally uniformly
on u and the map h(x) ∈ Y ⊆ IR is continuous.
The solution of (1) for the initial state x0 ∈ IRn

and the input signal u ∈ U will be denoted by
x(t, x0, u). In the Euclidean space a partial order
� induced by a positivity cone C is defined. That
is, C ⊆ IRn is a nonempty, closed, convex, pointed
( C

⋂−C = {0}) cone with nonempty interior,
and x1 � x2 means that x1 − x2 ∈ C. Strict
ordering is denoted by x1 � x2, meaning that
x1 � x2 and x1 6= x2. The input signal is a
locally essentially bounded Lebesgue measurable
function u(·) : IR≥0 −→ U and the statement u1 �
u2 means that u1(t) � u2(t) for almost all t ≥ 0.
The system (1) is said monotone if the following
property holds, with respect to the orders on the
state and the inputs for all x1, x2 ∈ X and input
signals u1, u2 ∈ U :

x1 � x2 and u1 � u2 ⇒
x(t, x1, u1) � x(t, x2, u2) ∀t ≥ 0

(2)

and the function h : IRn 7−→ IR is a continuous and
monotone map with respect to the partial order on
the state and output space, i.e. h(x(t, x1, u1)) ≥
h(x(t, x2, u2)) for all t ≥ 0. It is important to
be able to check monotonicity without having
to compute the trajectories of (1); some useful
results in this respect are reported in (Angeli
and Sontag, 2004a) and references therein. An
important characterization of monotone systems
from (Angeli and Sontag, 2003) is given in the
subsequent theorem. This characterization uses
the concept of convex tangent cone to the set
S ⊂ IRn at the point x ∈ IRn denoted as TxS
and defined hereafter.

Definition 1. The tangent cone to S at x is the
set TxS of all limits of the type

lim
i→∞

xi − x

ti

such that xi → x as i → ∞ while xi ∈ S and
ti → 0 while ti > 0.

Theorem 1. The system ẋ = f(x, u) is monotone,
with respect to the positivity cone C on the states,
if and only if

x1 � x2 and u1 � u2 ⇒
f(x1, u1) − f(x2, u2) ∈ Tx1−x2

C
(3)

In this paper, the control objective is that

(1) the output y(t) track a piecewise constant
reference r(t), i.e. a signal switching among
different constant set-points;

(2) the input u(t) satisfy the constraints

u ≤ u(t) ≤ ū (4)

For the subsequent developments the following
assumption is made.

Assumption 1. For each constant set-point r there
is associated an unique (state,input) equilibrium
pair (xe(r), ue(r)) such that

f(xe(r), ue(r)) = 0, r = h(xe(r)) (5)

Clearly the constraints (4) restrict the statically
admissible set-points r to the ones that belong to
the set

R = {r : u ≤ ue(r) ≤ ū}. (6)

3. SYSTEM STABILIZATION AND MAIN
RESULTS

In order to design a suitable tracking policy for (1)
under the constraints (4) it is relevant to find how
to stabilize such a system. A useful stability result
for systems without external input is reported in
(De Leenheer et al., 2004)

Theorem 2. Suppose that:

(i) the dynamical system ẋ = f(x) is monotone;
(ii) its trajectories are continuous and bounded

in X ;
(iii) X contains exactly one equilibrium point xe;
(iv) for every compact subset S of X , both

inf(S) and sup(S) belong to X (see (Davey
and Priestley, 2002) for a rigorous definition of
inf(S) and sup(S)).

Then xe is asymptotically stable globally in X ,
i.e. lim

t→∞
x(t, x0, 0) = xe for all x0 ∈ X .



However the open-loop system (1) needs not have
unique and stable equilibria. Its steady state be-
haviour will be useful in order to design a con-
troller.

Definition 2. The system (1) admits a (possibly
multivalued) input to state (I/S) steady-state
response curve defined as follow

kX(u)
4
= {x ∈ X : f(x, u) = 0} (7)

if assumption 1 is satisfied. If (1) admits an I/S
characteristic, its input/output (I/O) characteris-
tic is by definition the composition

kY (u)
4
= {y ∈ Y : y = h(x) and f(x, u) = 0} (8)

In the present paper SISO systems are considered,
as the results are easier to state in this context.
Without loss of generality (otherwise, it is always
possible to consider −u as an input or −y as an
output), the considered order on the input and
output spaces is CU = CY = IR≥0. Our interest
will be in the design of static nonlinear output
feedback u = `(y, r) solving the control objective
stated in the previous section.

Theorem 3. Suppose that the system (1) is mono-
tone with respect to C in X , with CU = CY =
IR≥0 and it has an I/O characteristic kY (u). More-
over assume that ẋ = f(x, u) and ẋ = f(x, u)
admit a unique asymptotically stable equilibrium
point in x ∈ X . Design an output feedback u =
`(y, r) with the following properties.

(1) It admits, for each fixed r, only one intersec-
tion point in the plane (y, u) with the I/O
characteristic kY (u).

(2) It is such that the closed-loop system

ẋ = f(x, `(h(x), r)) (9)

is monotone with respect to the same partial
order and has bounded trajectories.

Then the saturated control

sat(`(h(x), r)) =






u if `(h(x), r) < u
`(h(x), r) if u ≤ `(h(x), r) ≤ u
u if `(h(x), r) > u

(10)

is such that the output asymptotically tracks any
constant reference r ∈ R globally in X , i.e. for all
initial states x0 ∈ X .

In order to prove the above theorem, the following
Lemma is fundamental.

Lemma 1. If both systems (1) and (9) are mono-
tone with respect to the same partial order, then
the closed-loop system under the saturated feed-
back (10) is monotone.

Proof - By theorem 1 one needs to show the
following for all r ∈ R

x1 � x2 ⇒ f(x1, sat(`(h(x1), r)))
−f(x2, sat(`(h(x2), r))) ∈ Tx1−x2

C
(11)

Only the following two cases need to be considered
(the other are trivial)

(1)
`(h(x1), r) ≥ sat(`(h(x1), r)) ≥
≥ sat(`(h(x2), r)) ≥ `(h(x2), r)

(12)

(2)
`(h(x1), r) ≤ sat(`(h(x1), r)) ≤
≤ sat(`(h(x2), r)) ≤ `(h(x2), r)

(13)

In the first case, condition (11) is immediately
verified by applying condition (3) to the open-
loop system and letting u1 = sat(`(h(x1), r)) and
u2 = sat(`(h(x2), r)). In the case (2) one has the
following equality

f(x1, sat(`(h(x1), r))) − f(x2, sat(`(h(x2), r))) =
f(x1, sat(`(h(x1), r)) − f(x1, `(h(x1), r))+
+f(x1, `(h(x1), r)) − f(x2, `(h(x2), r))+
+f(x2, `(h(x2), r)) − f(x2, sat(`(h(x2), r)))

(14)

Considering the relations in (13) and the mono-
tonicity of the open-loop and closed-loop systems,
it is straightforward to conclude that

f(x1, sat(`(h(x1), r)) − f(x1, `(h(x1), r)) ∈ T0C
f(x1, `(h(x1), r)) − f(x2, `(h(x1), r)) ∈ Tx1−x2

C
f(x2, `(h(x2), r)) − f(x2, sat(`(h(x2), r))) ∈ T0C

(15)

Since T0C ⊆ Tx1−x2
C for all x1 − x2 ∈ C,

the condition (11) for monotonicity is verified by
convexity of the cones, i.e f(x1, sat(`(h(x1), r)) −
f(x1, `(h(x1), r)) ∈ Tx1−x2

C.

Proof of theorem 3 - Since under the feedback
u = `(y, r) the closed-loop system (9) is monotone
and has bounded trajectories then, from theorem
2, the unique equilibrium point xe(r) ∈ X is
globally asymptotically stable in X . Lemma 1
asserts that also the closed-loop system under the
saturated feedback (10) is monotone. Under the
assumption that ẋ = f(x, u) and ẋ = f(x, u)
admit a unique asymptotically stable equilibrium
point in X , the system ẋ = f(x, sat(`(h(x), r)))
has only an equilibrium point for all r ∈ R and
its trajectories are bounded. Once again theorem
2 applies and ẋ = f(x, sat(`(h(x), r))) is globally
asymptotically stable in xe(r) for all r ∈ R and
globally in X .



Hereafter a sufficient condition for monotonicity
preservation under feedback control is given. Re-
call that a matrix is Metzler if its off-diagonal
entries are non negative.

Proposition 1. Given the monotone system (1)
with y = h(xi), xi being the i-th component of
x, a sufficient condition for the closed-loop system
under a stabilizing controller u = `(h(xi), r) to be
still monotone is the following:

(1)
∂fi

∂u
> 0 and

∂fi

∂u
= 0 for j 6= i,

∀x ∈ X, ∀u ∈ U .

(2)
∂f

∂x
is Metzler ∀x ∈ X, ∀u ∈ U .

Proof - The Jacobian of the system (9) is

∂f

∂x
+

∂f

∂u

∂`

∂h

∂h

∂x
(16)

It is immediate to see, evaluating (16) in (x, r) for
each r and exploiting (1) and (2), that one gets
the following equation structure

∂f

∂x
+

∂f

∂u
γeT

i =
∂f

∂x
+ βeiγeT

i (17)

where ei is a vector with all 0s except for a 1 in
the i− th entry, β = ∂fi

∂u
∈ IR and γ = ∂`

∂h
∂h
∂xi

∈ IR.

This means that the term βeiγeT
i does not affect

the off-diagonal elements of ∂f
∂x

and, hence, the
monotonicity of the system is preserved.

Remark 1. Under monotonicity of the map ` with
respect to r the saturated control feedback cor-
responds to a one-step-ahead reference governor
policy. In a more formal way it corresponds to
the solution of the following optimizing control
algorithm:
At time t, given the output y(t) and the desired
reference rd(t) = rd, the applied reference r(t) is
the solution of the following problem

r(t) = argmin
r∈R

(rd − r)2

subject to
u ≤ `(y, r) ≤ u

(18)

Indeed if the constraints are not active, the ref-
erence rd is applied. Conversely, when the con-
straints are active, the saturated input, for each
given output, may be seen as the input `(y, r)
for a different reference. It is straightforward to
realize that under the condition of monotonicity
of the scalar map ` with respect to r, the selected
reference is the one that solves (18). Actually the
cost in the optimization problem (18) is equivalent
to minr (`(y, rd)−`(y, r))2. In a more formal way,
the following relation holds:

`(y(t), r(t)) = sat(`(y(t), rd)) (19)

Remark 2. Under conditions of proposition (1)
the design of a controller u = `(y, r) turns out
to be straightforward. Indeed any design that sat-
isfies the requirement that the two sets of points
(u, kY (u)), i.e. the plant I/O characteristic, and
(`(y, r), y), i.e. the controller I/O characteristic,
admit just one intersection in the plane (u, y)
for each r, does not destroy the monotonicity
of the system. Therefore it is possible to choose
graphically the shape of u = `(y, r) so that the
uniqueness of the equilibrium point is guaranteed
for all r. In order to carry out easily a graphical
choice of the feedback shape it is possible to re-
parametrize the feedback as `(y, α(r)) for a suit-
able r-dependent parameter α. Given the desired
structure of `(y, α(r)) it is possible to determine
α(r) by solving the following equation

kY (`(r, α(r)) = r (20)

The existence of a suitable `(y, r) is ensured by
assumption 1. Then, for each value of r, the com-
putation of the matched value α(r) is performed
on-line, so that offset-free tracking is ensured.

4. EXAMPLE

An interesting situation for the application of
theorem 3 is when the monotone system presents
a steady state characteristic with hysteresis as in
the following example

ẋ1 = 1 − x1 − 200 x1

u4x4
2

30 + u4x4

2

ẋ2 = 1 − x2 − 10 x2

x4
1

1 + x4

1

(21)

where x ∈ IR≥0, IR≥0 being an invariant region
for the above system. It is possible to describe a
parametrized family of equilibrium points for (21)
through the choice of x1 as scheduling variable.

x2e =
1 + x4

1

1 + 11x4
1

ue =
1 + 11x4

1

1 + x4

1

4

√

(1 − x1)30

201x1 − 1

(22)

This parametrization suggests the choice

y = x1 (23)

as output map. Notice that ue is defined in the
output range (1/201, 1]. It is straightforward to
check that the system (21) is monotone with
respect to the order induced by the positivivity
cone C = IR≤0 × IR≥0 in X = IR2

≥0
. The I/O

characteristic of the system (21), (23) is not well-
defined. It is an hysteresis as shown in figure 1
which presents multiple equilibria for some values
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Fig. 1. The plant I/O characteristic kY (u)

of u. In order to stabilize the branch of unstable
equilibrium points in IR≥0 it is straightforward
to design a controller satisfying the conditions of
theorem 3. The simplest choice is

u = αy2 (24)

Chosen the desired reference r ∈ R, the corre-
sponding α(r) is easily computed as

α(r) =
(1 + 11r4) 4

√

(1 − r)30

r2(1 + r4) 4
√

201r − 1
(25)

The obtained behaviour of the proposed track-
ing strategy is shown by simulation experiments
choosing the following input constraints

0.8 ≤ u ≤ 1.8 (26)

The constraints (26) guarantee the existence of a
unique equilibrium point for all r ∈ R (see figure
2). The output response to a square wave set-
point, applying the control law u = sat(α(r)y2),
is shown in figure (3). The input (24) and the
saturated one are reported in figures (4) and,
respectively, (5) Notice that in this case the input
has been saturated in the usual way since in IR2

it is straightforward to show that the closed-loop
system is still monotone. Finally in figure 6 the
choice of the feasible α(r) is reported and it is
evident how the saturated control is equivalent to
a reference governor.

5. CONCLUSIONS

The paper has addressed tracking control of
monotone nonlinear system in the presence of
input constraints. It has been shown that for a
certain class of nonlinear monotone systems, it
is possible to design a static output controller
in a straightforward way and then force satura-
tion on the input without loss of stability and,
under certain condition, some optimality in the
performance is guaranteed. The implementation
of the resulting control strategy is simple and its

Fig. 2. The intersection between the plant I/O
characteristic kY (u) and u = sat(`(y, r))) for
r = 0.5
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Fig. 3. Desired output (dashed) and output re-
sponse (solid)
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Fig. 4. Non-saturated input
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Fig. 6. Desired α (dashed) and values of α(r(t))
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computational burden is very low. Future work
will be devoted to consider discrete time systems
and the presence of state constraints.
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