MODELLING AND CONTROLLING TRAFFIC
BEHAVIOUR WITH CONTINUOUS PETRI NETS

Jorge Julvez ! René Boel **

* Departamento de Informdtica e Ingenieria de Sistemas
Universidad de Zaragoza, Maria de Luna 3, E-50015
Zaragoza, Spain, julvez@unizar.es
** SYSTeMS, Universiteit Gent
B-9052 Zwijnaarde, Belgium, Rene.Boel@UGent .be

Abstract: Traffic systems are discrete systems that can be heavily populated.
One way of overcoming the state explosion problem inherent to heavily populated
discrete systems is to relax the discrete model. Continuous Petri nets (PN) repre-
sent a relaxation of the original discrete Petri nets that leads to a compositional
formalism to model traffic behaviour. This paper introduces some new features of
continuous Petri nets that are useful to obtain realistic but compact models for
traffic systems. Combining these continuous PN models with discrete PN models
of traffic lights leads to a hybrid Petri net model that is appropriate for predicting
traffic behaviour, and for designing traffic light controllers that minimize the total
delay of the vehicles in the system. Copyright (©2005 IFAC

Keywords: Petri-nets, Road traffic, Traffic Control, Models, Continuous Systems

1. INTRODUCTION

The aggregate behaviour of vehicles in a traffic
network requires a model with various modes
of operation such as free flow traffic, satu-
rated/congested traffic, traffic jams, stop-and-go
waves, etc. The use of traffic models gives one
the chance of analyzing, predicting and controlling
the behaviour of traffic systems. The application
of control strategies allows one to improve some
interesting traffic performance measures such as
throughput, delay and fuel consumption.

The population of a traffic system is described by
the number of vehicles, a discrete value. Hence
discrete event models can accurately describe the
behaviour of traffic systems. However, it is well
known that highly populated discrete systems suf-
fer from the state explosion problem. One way of
overcoming this problem is to relax the original
model. In the scope of traffic systems, macroscopic
models (see (Hoogendoorn and Bovy, 2001; Kot-

L Supported by D.G.A. ref B106/2001 and a European
Community Marie Curie Fellowship, CTS, contract num-
ber: HPMT-CT-2001-00278

sialos et al., 2002; Helbing, 1997)) disregard indi-
vidual cars and consider mainly three real valued
variables: density, speed and flow.

This paper introduces an aggregated model for
traffic systems based on continuous/hybrid Petri
nets. The road network to be modelled is sub-
divided into sections. Each section is modelled
separately by a continuous Petri net. The model
for the whole network is obtained by joining the
nets for the sections: The flow of cars from one sec-
tion to the next section is represented by the flow
of the transition interconnecting both sections.
Thus, the model becomes highly compositional. In
the proposed model the flow through transitions
is variable (similar to (Tolba et al., 2001)), i.e.,
infinite servers semantics is used, as opposed to
earlier papers (Febbraro and Sacone, 1998; Feb-
braro et al., 2001) using Petri nets with constant
speed of transitions, i.e., finite servers semantics.
Under infinite servers semantics the flow of a tran-
sition is proportional to its enabling degree. This
fact entails that the rising edge of the fundamental
traffic diagram can be modelled more realistically
with infinite servers semantics than with finite

servers semantics. Traffic lights are modelled by
discrete places and transitions. The control of
the system can be achieved by determining the
switching times of the traffic lights.

The rest of the paper is organized as follows:
Section 2 introduces continuous Petri nets and
some modelling considerations. In Section 3, some
special features of continuous PNs are introduced.
Section 4 makes use of these features to obtain
a more realistic representation of traffic systems.
A control scenario is considered in Section 5.
Conclusions are drawn in Section 6.

2. CONTINUOUS PETRI NET SYSTEMS
2.1 Timed Continuous Petri Net Systems

The reader is assumed to be familiar with Petri
nets (PNs) (see for example (Silva, 1993)). The
Petri net systems that will be considered here
are continuous (Julvez, 2004). Continuous PNs
are obtained as a relaxation of discrete ones.
Unlike “usual” discrete systems, the amount in
which a transition can be fired in a continuous
Petri net is a nonnegative real number; the state
of a continuous PN at instant 7 is a vector
m(7) of nonnegative real numbers. Graphically,
a continuous place is represented as a double
circle and a continuous transition as a white
box. Matrices Post and Pre are the arc weight
matrices and C = Post — Pre is the token flow
matrix.

For the timing interpretation, infinite servers se-
mantics (Recalde and Silva, 2001) (or variable
speed) will be used. According to this semantics
the flow through transition ¢ at instant 7 is defined
as ft](r) = A[t] - enab(t,m(7)) where Aft] > 0
is the constant internal speed of the transition
and enab(t,m(7)) = minyce;{m(p](7)/Pre[p,]}
is the enabling degree of the transitions. Thus, the
flow of a transition is proportional to the mark-
ing of the input place determining the enabling
degree. The evolution of the marking is given by
m(r) = C-f(7).

2.2 Some modelling considerations

Infinite servers semantics allows system models in
which the processing speed, i.e., flow of transi-
tions, is proportional to the number of customers
in the upstream place, i.e., enabling degree. The
following examples show how the flow of transi-
tions and the rate of change of the marking of
places can be affected by the arc weights.
Consider transition ¢; (see Figure 1(a)) that has
one input place p;. Its flow is £[t1] = A[t1]-m[p1]/z
where z > 0 is the weight of the arc. As shown
above under infinite servers semantics the marking
changes according to m[p;] = —z - f[t1] = —A[t1] -
m/[p;]. Thus, the evolution of the marking of p;
does not depend on z.

By manipulating the system in Figure 1(a) it is
possible to obtain a system in which the evolution
of p; depends on the weight of its input (output)
arc. Consider the system in Figure 1(b) with

P1 b b2 q ty
O— o>
q-a
(a) (b)

Fig. 1. Two modelling options.

qg > 0 and ¢ — a > 0 since arc weights must be
positive. The flow of the transition is f[ta] = A[t2]-
m(ps]/q and the marking of ps evolves according
to mps] = (¢ — a — q) - f[t2] = —a/qA[t2] - mpy],
depending on the parameter values ¢ and a. If
a > 0 the marking of ps decreases (due to the
constraint ¢g—a > 0 the maximum rate of decrease
is bounded by 1m[ps] = —Ate] - mlps]). If a = 0
then m[ps] is constant. If ¢ < 0 then mips]
increases.

3. SPECIAL FEATURES OF THE MODEL

This section proposes two modifications to the
continuous Petri net formalism presented in Sec-
tion 2 that are useful to obtain more realistic,
and yet compact, models of traffic behaviour. The
standard infinite servers semantics represents in-
stantaneous flow of material (or vehicles in the
traffic model) from one place to the next one. This
is impossible in real systems because vehicles have
a finite speed. Moreover, places without input flow
empty exponentially slowly over an infinite inter-
val of time according to infinite servers semantics.
Again this is not realistic for many applications.
This section shows how the model can be modified
to remedy these drawbacks.

3.1 Discrete time model

The system in Figure 2 represents a machine, tq,
working at constant speed, f[t;] = A[t1] - m[p1],
that places its production in a conveyor, py. One
can imagine that machine ¢; places pieces of fin-
ished material at uniformly distributed locations
on the conveyor belt po, that moves those pieces
to the second machine t5. Machine t5 processes its
input material and stores it in the warehouse ps.
The initial marking of the system is mg = (1 0 0),
i.e., the conveyor and the warehouse are initially
empty.

D1 31 D2 2 D3

o —0— 0

Fig. 2. A continuous Petri net modelling a con-
veyor.

According to the continuous time model proposed
in Section 2 the initial flow of t; is f[t1](r =
0) = A[t1]. This implies that material is placed
in the conveyor po from the initial instant 7 = 0
(m[ps](7) > 0 for every 7 > 0). This entails

fita](t) > 0 for every 7 > 0. This behaviour
cannot be a faithful representation of a real system
behaviour since it implies that the material has
spent zero units of time to reach ts.

In (Corriga et al., 1997) a new net element called
continuous transition with delay arc is introduced
in order to avoid infinitely fast movements of ma-
terial. In this paper, instead of introducing a new
element, infinitely fast movements are avoided
by considering a discrete time model: Time is
discretized in steps (intervals) of length A > 0.
At the beginning of each step the flow of the
transitions is computed with the usual expres-
sion for infinite servers semantics: f[t](k) = A[t] -
min,ce,{m[p|(k)/Pre[p,t]} for the k" step. The
marking at the next step is defined by m(k +
1) = m(k) + C - f(k) - A. This way, the flow of
a transition during A units of time depends only
on the marking of its input places at the beginning
of the interval. The interval A can be seen as the
travelling time (delay) of the material between
two transitions (Daganzo, 1995). In Figure 2, A
is the time the conveyor takes to arrive from t;
to to. Notice that the flow of 5 is zero during the
first interval (f[t2](7 = 0..A) = 0 if the system is
discrete time, f[t2](7) > 0 for every 7 > 0 if it is
continuous time).

The value of A has to be chosen carefully to repre-
sent the delay between transitions. A too large A
can lead to negative markings since the marking
may be linearly decreasing during an interval. For-
tunately, it is possible to compute an upper bound
for A in order to ensure the nonnegativeness of
the marking. Such upper bound depends only on
the structure of the net (not on the marking).
To compute this upper bound, each place will be
considered separately. It will be assumed that no
input flow is coming into the place and it will
be computed how fast it can become empty. The
interval required to empty the place that takes
the shortest time to become empty is the upper
bound.

Let us compute how fast the place p; of the system
in Figure 3(a) can become empty. The marking
of p; decreases iff r > s, hence only this case
is considered. Let us first compute how long it
takes to empty p; if m[pi]/r < m[po]/q, ie.,
m(p;]| defines the enabling degree of ¢;. In that
case f[t1](k) = Alt1] - m[p1](k)/r and m[p;](k +
1) = mlp1](k) + (s — r) - A[t1] - m[p1](k)/r - 0. It
follows that m[pi](k + 1) = 0 when 6 = r/(A[t1] -
(r —s)). Notice that in the case that m[p;]/r >
mps]/q (m[ps] defines the enabling degree) the
flow through ¢; would be less than in the previous
case and therefore it would take longer to empty
p1. For the system in Figure 3(a), the shortest
time to empty py is r/(Alt1] - (r — s)). Any A
smaller than r/(A[t1] - (r — s)) prevents p; from
becoming negative.

A similar approach can be taken to compute a
bound for A for a system having places with
several output transitions (see Figure 3(b)). To
compute the fastest emptying time of p; only the

P1 D2

P2 b1 b3

@) R O
s r q s v

tli ' uﬁ 2

(2) (b)

Fig. 3. The value of A is upper bounded.

output transitions that decrease the marking are
considered, i.e., t1 (t2) is considered iff r > s (u >
v). The shortest emptying time occurs when p; is
determining the flow of both output transitions.
For a system with several places, to avoid negative
markings the value of A has to be at most:

min

p, 3t € p°® such that Prep,t] > Post|p, t]

1
{ Alt] - (Pre[p,] — Post[p, t]) }
2 te p* Prelp, {]
Prelp,t] > Post|p, t]

3.2 Emptying places in finite time

Let us consider the discrete time evolution of the
system in Figure 4. Let A be the length of the
time interval of the discrete time model (according
to the previous Subsection, A is upper bounded
by min{1/A[t1],1/A[t2]}). After the first interval,
the marking of p; is m[p;](1) = m[p;](0) + C -
£[1)(0) - A = mfpy])(0) — Alt2] ‘mlpi] (0)- A = (1—
Alt1] - A) - m[p;1](0). After the second interval
mp)(2) = (1— Afta] - &) - mlpi)(1) = (1 -
Alt1] - A)? - m[p;](0) and after the k** interval
mpi](k) = (1= Alts] - A)" - m(p;](0). This way,
if A = 1/A[t1], p1 becomes empty after the first
step and remains empty indefinitely. However, if
A < 1/A[t1] the evolution of m[p;] follows a
geometric progression and never gets completely
empty.

Fig. 4. p; is emptied in finite time iff A = 1/A\[t1].

From a modelling point of view a geometrical
emptying of a place can be useful, for example, to
model how a capacitor discharges exponentially.
Nevertheless, for other modelling purposes this
feature is not desired. Suppose that the marking
of p; is the number of customers waiting to be
served by t1, and t; is a server that starts working
at a speed that is proportional to the length of the
queue. If there are no new customers coming into
the queue the speed of ¢; should remain constant
until the queue empties.

Infinite servers semantics can be modified to avoid
falling in a geometric progression when emptying
a place: For a given transition ¢ and at a given
step k it will be checked whether its input place

determining the enabling degree had input flow
(new customers) during the previous step k —
1. If there was no input flow to that place the
flow of t is “forced” to be the same, f[t|(k) =
f[t](k — 1), otherwise the usual firing semantics
is applied, f[t](k) = A[t] - enab(¢,m, k). This
way, transitions can be emptied in finite time.
This modification in the model leads to non pure
discrete time infinite servers semantics and could
cause negative markings even if the bound for A is
considered. To avoid negative markings, the flow
of the transitions will be forced to be the minimum
between the value just described and the flow that
would empty one of the input places at the end
of the time interval. Thus, places become empty
exactly at the end of time intervals.

4. MODELLING TRAFFIC SYSTEMS

This section proposes a model for traffic systems
based on the concepts presented in the previous
Section. The model requires the road to be divided
into several sections. In Subsection 4.1 a continu-
ous PN model of one single section is presented.
Subsection 4.2 uses this model as a building block
for representing large networks.

4.1 Modelling a road section

The state of a section of a road network is de-
scribed by three macroscopic variables: Density
of cars, average speed and flow. The marking m
of a place will represent the number of cars in
the section, these cars being uniformly distributed
along the length of the section, and having average
speed v. Note that m is proportional to the density
d of cars along the section. The flow f of cars
leaving the section is then f =d - v.

In a traffic system the cars in a section with
low density travel at a given free speed, free
flow traffic. Hence, the flow out of the section
increases proportionally to the density. When the
density of the section is higher, the average speed
decreases and the flow out of the section keeps
ideally constant. If the density is much higher,
the traffic becomes heavy and the flow out of the
section decreases. This (bell shape) relationship
between the flow and the density is known as the
fundamental traffic diagram. In this Subsection
a net that models free flow traffic and constant
flow traffic is presented. In the next subsection the
decrease in flow due to densities above the traffic
jam density is modelled by adding additional flow
reducing places.

The number of cars in road section i will be
represented by the marking of a place, pi in
Figure 5(a), and the flow of cars leaving the
section will be the flow of a transition, t;. If p}
is ignored, the use of infinite servers semantics
establishes f[t;] = A[t;] - m[pi], i.e., the outflow is
proportional to the density. Hence, the subnet pi,
t; with an appropriate A[t;] models free flow traffic
according to the fundamental traffic diagram. It is
interesting to notice that this relationship between
the flow and the marking, f[t;] = A[t;] - m[pt],

cannot be modelled with finite servers semantics
in which the flow of a transition is independent
of the marking of its positively marked input
places (Balduzzi et al., 2000; Febbraro et al.,
2001).

Constant flow traffic can be modelled by adding
p%. The marking of p} is always constant and its
physical meaning is that given a A[t;], the value
Alt;] - m[p}] is the maximum traffic flow admitted
by ti.

Fig. 5. Modelling a section.

Obviously, the capacity of a road section is finite.
This can be modelled by adding a new place to the
section model, see p} in Figure 5(b). At any time
it holds m[p{] + m[py] = k* where k' represents
the capacity of the section and m(p}] the number
of free gaps.

4.2 Joining sections

In a Petri net model with several sections, two
adjacent sections, 7, j, share a transition, ¢;, whose
flow represents the number of cars passing from
section 7 to section j per time unit. Hence, a
given transition ¢; of the net model has three
input places: pi representing the number of cars
in section i, p4 with constant marking bounding
the flow of t; and p} representing the number
of gaps in section j. Therefore, the flow of cars
from section i to section j also depends on the
number of gaps in the downstream section j,
f[t;] = Alt;] - min{m[pi], m[p}], m[pl]}. This fact
is very realistic, if one considers for example, how
a traffic jam (decreasing of the flow when the
density is high) propagates from downstream to
upstream sections. The flow of ¢; is the minimum
between the number of cars desiring to leave
the section (sending function) and the number of
cars allowed to enter the next section (receiving
function) (Daganzo, 1995).

The outflow from a low density section i (free flow)
is proportional to the number of cars (f[t;] = A[t;]-
min{m(pi{]}) being A[t;] the proportionality con-
stant. If the downstream section becomes full, the
outflow is proportional to the number of gaps of
the downstream section (f[t;] = A[t;]-min{m|p}]})
with A[t;] as the proportionality constant. That
is, the proportionality constant, A[t;], is the same
under both situations. One way to avoid this fact
is to use the arc loops presented in Subsection 2.2.
The use of such arc loops allows one to have

different proportionality constants for the density
of cars and the number of gaps.

Figure 6 shows a traffic model consisting of three
sections and arc loops to control the proportional-
ity constants. With an appropriate A, that system
can be reduced to an equivalent one with only one
arc loop on each transition (A[t;] is already the
proportionality constant either for the density or
for the number of gaps).

Fig. 6. Traffic system with three sections.

5. CONTROLLING THE SYSTEM
5.1 Modelling traffic lights and intersections

The usual way to control real traffic systems is
through traffic lights. A traffic light can be seen as
a discrete event system whose state can be either
red, amber or green. In our model a traffic light
is modelled as a discrete Petri net, see Figure 7
for a traffic light ruling an intersection with two
crossing lanes L1 and L2. Discrete places and
transitions are represented by circles and lines.

-

(a) (b)

Fig. 7. A discrete Petri net modelling traffic lights
in an intersection.

The traffic light has six phases represented by
each of the places of the net. A given phase is
active when its corresponding place is marked.
Since only one phase can be active at a given
instant, the number of tokens in the net is 1. The
meaning of the phases is: ggg: cars of L1 crossing,
ggr: stopping traffic of L1, grr: cars of L2 start
crossing, rrr: cars of L2 crossing, rrg: stopping
traffic of L2, rgg: cars of L1 start crossing. The
use of the phases ggr, grr, rrg, rgg allows one a
more realistic modelling of the system since they
model how the flow of cars softly becomes either
Zero or positive.

Figure 8 models four sections and an intersection
in which the traffic is regulated by a traffic light
like the one in Figure 7. It is a hybrid Petri net
since it includes discrete and continuous places
and transitions. When the traffic light is at ggg
the flow of ¢; depends on the marking of its input
places and the flow of t5 is 0. Similarly, at phase
rrr t1 is blocked and the flow of t; depends on

the marking of its input places. For the rest of the
phases, ggr, grr, rrg, rgg, the flow of the transitions
involved in the intersection, t; and t5, is defined
to model how the flow of cars speeds up and slows
down when the traffic light switches: If the traffic
light switches to green (rgg for section 1) the
flow of ¢; increases linearly from zero to the flow
computed with the usual infinite firing semantics;
if the traffic light switches to red (ggr for section
1) the flow of t; decreases linearly to zero. These
behaviours can be easily simulated by computing
a constant flow that produces the marking that
would be obtained if the flow increased/decreased
linearly.

inflow 4

Fig. 8. A Petri net modelling an intersection.

5.2 Objective function

Several objectives can be pursued when control-
ling a traffic system. In this paper the goal is to
minimize the total delay (waiting time) of the cars
in the system.

Let us consider the road section in Figure 5(b).
For a time step of A units of time, the total
time spent by the cars in that section is given by

delay = fOA m|pt]dr. Since the flow of the transi-
tions is constant during each time step the evolu-
tion of the marking of p; is linear and the delay be-
tween two steps k and k41 is m[pll(k)+'2n[p1](k+l) .
A. Hence, for a given horizon of h steps the delay
in that section is 37 pl](kH;n[pl (k+1).A. The
total delay of the system is obtained by summing
the delays of all the sections.

Recall that the flow of cars crossing the inter-
section is considered to increase/decrease linearly
during phases different to ggg and rrr. In these
cases the expression for the delay is different to
the one just presented. Such expression can be

computed by solving delay = fOA m[pi]dr taking
into account the linear evolution of flows.

5.8 Control example

Consider the system in Figure 8. Let us assume
that each section is 200 meters long and is com-
posed of two lanes. Let the capacity of the sections
be 80 cars (m[pi] + m[ps] = 80 for i = 1...4),
At;] =4fori=1...4, ¢* =100 for i = 1...4,
r® =80 for i = 1,2, ' = 0.5 for i = 1...4, the
initial load of the sections in cars m[pi] = 50,
m[p?] = 30, m[p$] = 35, m[p}] = 60 and the time
step A = 8 seconds. Let us assume that the traffic
light is initially red for section 1 and that there
exist constant input flows of 0.8 cars per second
entering section 3 and 0.5 cars per second entering
section 4.

The system will be controlled during 3 traffic light
cycles, each of them having a duration of 120
seconds. At the beginning of each cycle the traffic
light is forced to become red for section 1. The
switching time for each cycle is computed inde-
pendently. The optimal control for a given cycle is
computed by carrying out as many simulations as
steps in a cycle: Simulation j switches the traffic
light from red to green at the beginning of step
7 + 1. The evolution of the system under optimal
control is shown in Figure 9 (in that plot, stars at
a level of 10 mean red light for section 1).

System evolution during three cycles.

104 % 4% HAKKE KKK KA A

" L L n L L "
0 50 100 150 200 250 300 350 400
time

Fig. 9. Evolution of the system in Figure 8 under
optimal control.

6. CONCLUSIONS

Several modelling features of continuous Petri
nets have been presented. It has been seen that
the use of loops of arcs with appropriate weights
allows a good and computationally feasible de-
scription of the flow of vehicles in a traffic system,
allowing control design. A discrete time model
is useful to easily model delays in the material
travelling from one part of the system to another
part. A modification in the firing semantics allows
places that are not receiving inflow to become
empty in a finite time interval. These modelling
features are very suitable for traffic systems.

The proposed traffic model is highly composi-
tional: A traffic model can be quickly built by
assembling subnets modelling road sections. Since
the number of cars in the system is considered a
real number, simulation times are independent of
the system load.

In order to control the system, discrete Petri
nets modelling traffic lights have been introduced.
Thus, the net model becomes a hybrid Petri net.
A traffic control problem has been presented.
Switching times of traffic lights have been com-
puted so that the total delay of the cars in the
system is minimized.

REFERENCES

Balduzzi, F., A. Giua and G. Menga (2000).
First-order hybrid Petri nets: a model for
optimization and control. IEEE Trans. on
Robotics and Automation 16(4), 382-399.

Corriga, G., A. Giua and G. Usai (1997). Petri net
modeling of irrigation canal networks. In: Int.
Work. on Regulation of Irrigation Canals.
Marrakech, Morocco. pp. 39-48.

Daganzo, C. (1995). A finite difference ap-
proximation of the kinematic wave model
of traffic flow. Transportation Research B
29B(4), 261-276.

Febbraro, A. Di and S. Sacone (1998). Hybrid
Petri nets for the performance analysis of
transportation systems. In: Proc. IEEE Con-
ference on Decision and Control. Tampa, FL.

Febbraro, A. Di, D Giglio and N. Sacco (2001).
Modular representation of urban traffic sys-
tems based on hybrid Petri nets. In: Proceed-
ings of 2001 IEEE Intelligent Transportation
Systems.

Helbing, D. (1997). Traffic data and their impli-
cations for consistent traffic flow modelling.
In: Transportation Systems (IFAC, Chania,
Greece) (M. Papageorgiou and A. Pouliezos,
Eds.). Vol. 2. pp. 809-814.

Hoogendoorn, S. and P. Bovy (2001). State-of-the-
art of vehicular traffic flow modelling. Special
Issue on Road Traffic Modelling and Control
of the Journal of Systems and Control Eng.
Proc. of the IME 1.

Julvez, J. (2004). Algebraic Techniques for the
Analysis and Control of Continuous Petri
Nets. PhD thesis. University of Zaragoza,
Spain.

Kotsialos, A., M. Papageorgiou, C. Diakaki,
Y. Pavis and F. Middelham (2002). Traffic
flow modelling of large-scale motorway us-
ing the macroscopic modeling tool metanet.
IEEE Transactions on Intelligent Transporta-
tion Systems 3(4), 282-292.

Recalde, L. and M. Silva (2001). Petri Nets fluidi-
fication revisited: Semantics and steady state.
APII-JESA 35(4), 435-449.

Silva, M. (1993). Introducing Petri nets. In: Prac-
tice of Petri Nets in Manufacturing. pp. 1-62.
Chapman & Hall.

Tolba, C., D. Lefebvre, P. Thomas and A. FEl
Moudni (2001). Continuous Petri nets models
for the analysis of traffic urban networks. In:
Proceedings of the 2001 IEEE International
Conference on Systems, Man, and Cybernet-
ics. Vol. 2. pp. 1323-1328.

